
SAT Compilation for Constraints over Finite
Structured Domains

Alexander Bau?

HTWK Leipzig, Fakultät IMN, 04277 Leipzig, Germany
abau@imn.htwk-leipzig.de

Abstract. Due to the availability of powerful SAT solvers, propositional
encoding is a successful technique of solving constraint systems over finite
domains. As these domains are often flat and non-structured, the CO4

compiler aims to extend this concept by enriching the underlying domain
with user-defined algebraic data types. Syntactically, CO4 is a subset
of Haskell and allows to specify constraint systems over such enriched
domains using pattern-matching, higher-order functions and polymor-
phism. This paper illustrates examples and use-cases for CO4 and pro-
vides an conceptual overview over the transformation into propositional
logic.

1 Introduction

SAT solvers like Minisat [6] are successfully applied to solve constraints over
finite domains. A finite domain U can be expressed by an enumeration type
with a distinct constructor for each element of U , e.g., data U = False | True
for propositional logic. This paper illustrates a technique of specifying and
solving constraints over more complex domains U , that are written as algebraic
data types (ADT):

data Bool = False | True

data Color = Red | Green | Blue

data Monochrome = Black | White

data U = Colored Color | Background Monochrome

Such an extension is reasonable because many real-world constraints consists
of structured and hierarchical types. Thus, a constraint programming language
should reflect these properties by providing an appropriate type system.

Writing constraints over algebraic data types heavily involves pattern match-
ing, i.e., inspecting the constructor a given expression was built with.

case x of { Blue -> True; otherwise -> False }

Pattern matching enables the deconstruction of expressions and often is the main
control-flow feature of declarative programming languages that support ADTs.
? This author is supported by ESF grant 100088525

Constraints over finite algebraic data types can be solved using a SAT solver
by providing a transformation into propositional logic (propositional encoding).
Such a transformation tackles two problems:

Data Transformation Firstly, it must represent values of the original domain
by sequences of Boolean variables. While this is often straightforward for flat
enumeration types, it becomes more complicated for ADTs in general.

Program Transformation Secondly, expressions over the original domains
must be mapped to logical connectives that represent the control-flow in
the constraint system. The transformation of pattern matches is especially
crucial for the propositional encoding of the constraint system on the whole,
because pattern matching is the only control-flow feature in CO4 that en-
ables conditional branching based on the value of a particular expression
(the discriminant). As the discriminant may depend on the undetermined
solution of the constraint, pattern matches often can’t be evaluated directly.

So far, this transformation has been done manually: the programmer has to
construct explicitly a formula in propositional logic that encodes the constraint
in terms of logical connectives and Boolean variables. In particular, this ap-
proach has been successfully used for automatically analyzing (non-)termination
of rewriting systems [9,12,5], as can be seen from the results of International
Termination Competitions, where most of the participants use propositional en-
codings. Such a construction is similar to programming in assembly language:
the advantage is that it allows for clever optimizations, but the drawbacks are
that the process is inflexible and error-prone. This is especially so if the data
domain for the constraint system is remote from the “sequence of bits” domain
that naturally fits propositional logic. In typical applications, data is not flat but
hierarchical, and one wants to write constraints on such data in a direct way.

This paper illustrates the usage of the CO4 language and its compiler1. CO4

is a subset of Haskell including user-defined algebraic data types and recursive
functions defined by pattern matching, as well as higher-order and polymor-
phic types. The CO4 compiler transforms a high-level constraint system into a
satisfiability problem in propositional logic.

The advantages of re-using a subset of a high level declarative language for
expressing constraint systems are: the programmer can rely on an established
syntax, does not have to learn a new language, can re-use his experience and
intuition, and can re-use actual code.

Outline Section 2 illustrates the CO4 language to specify constraint systems.
Section 3 gives an overview of the transformation process into propositional
logic. We omit technical details that already have been published in [2] and
[3]. Section 4 presents an encoding of the n-queens problem and reviews the
use of recursive algebraic data types in CO4. Section 5 and Section 6 illustrate
real world use-cases for CO4 and outline the propositional encoding of built-in
naturals and partially defined functions.
1 available at https://github.com/apunktbau/co4

2

2 Constraint Systems in CO4

Syntactically CO4 is a subset of Haskell[10]. Thus, domains are specified using
algebraic data types (ADT):

data T v1 v2 . . . = C1 a11 a12 . . . | C2 a21 a22 . . . | . . .

An ADT T may be parametrized by n type variables v1, . . . , vn. If n > 0, then T
is a type operator, e.g., lists are usually defined as unary type operator (n = 1)
whereas pairs are defined as binary (n = 2) type operator:

data List a = Nil | Cons a (List a)
data Pair a b = Pair a b

The constructors Ci of an ADT T enumerate all values of T . A constructor
Ci may be parametrized by arguments aij . A constructor argument either refers
to a type or to one of T ’s type variables. Each constructor Ci denotes a function
Ci : ai1 → ai2 → · · · → Tv1v2 . . . from its argument types to the ADT.

Example 1. data Maybe a = Nothing | Just a defines a type operator with one
type variable and two constructors. Because constructor Nothing doesn’t men-
tion variable a, it denotes a polymorphic constant of type ∀a : Maybe a.

As CO4 features a strict and static type system, each expression inhabits at
least one type. An expression is either

– a variable, e.g., x, or
– a constructor call, e.g., Just, or
– an application, e.g., Just x, or
– an abstraction, e.g., \x -> Just x, or
– a local binding, e.g., let f = ... in ...,

or a pattern match. Pattern matching is the only expression that allows to
diverge the control-flow based on the value of a particular expression (discrimi-
nant). The discriminant is compared against a sequence of patterns, where each
pattern is associated with an expression (branch). The value of the pattern match
equals the value of the first branch whose pattern matches the discriminant.

Example 2. case x of { Just y -> f y; Nothing -> g } matches the discrim-
inant x against the patterns Just y and Nothing. If x matches the first (resp.
second) pattern, expression f y (resp. g) is evaluated.

Constraint systems consist of a set of top-level declarations, where a decla-
ration either defines an ADT or binds an expression to an identifier. Listing 1.1
in the next section shows an example of a constraint system written in CO4.

3

3 Propositional Encoding of Constraint Systems

A CO4 program always contains a parametrized top-level constraint constraint ::
P×U → Bool over a finite domain U where P is a (possibly singleton) parameter
domain. Listing 1.1 gives an unrealistic simple example.

1 data Bool = False | True
2 data Color = Red | Green | Blue
3 data Monochrome = Black | White
4 data Pixel = Colored Color
5 | Background Monochrome
6

7 constraint :: Bool -> Pixel -> Bool
8 constraint p u = case p of
9 False -> case u of Background m -> True

10 otherwise -> False
11 True -> isBlue u
12

13 isBlue :: Pixel -> Bool
14 isBlue u = case u of
15 Colored color -> case color of Blue -> True
16 otherwise -> False
17 Background m -> False

Listing 1.1. A trivial constraint over pixels

A solution for a constraint and a given parameter p ∈ P is an element
u ∈ U of the problem domain U , so that constraint p u = True. Given
the parameter True, Colored Blue is the only solution in Listing 1.1. In the
following, we call the input constraint a concrete program. A concrete program
operates on concrete values, like False, White or Colored Red.

The CO4 compiler uses an external SAT solver to find a solution for the
top-level constraint. To do so, the following steps are performed:

1. The concrete program is transformed into an abstract program. An abstract
program doesn’t operate on the domains of the original program , but on
abstract values.

2. Evaluating the abstract program for a given parameter p ∈ P gives a formula
f ∈ F in propositional logic.

3. An external SAT solver is called to find a satisfying assignment σ for f .
4. If there is a satisfying assignment, the solution u ∈ U is constructed from
σ. Optionally, testing whether constraint p u = True ensures that there
are no implementation errors. This check must always succeed if there is a
solution.

Note that the transformation into an abstract program is done independently
from an actual parameter. Thus, the same abstract program may be called for
different parameters without the necessity to recompile the original program.

4

We do not prescribe a concrete representation for propositional formulas in F.
For efficiency reasons, our implementation2 allows some form of sharing. Names
are assigned to subformulas by doing the Tseitin transformation [11] on-the-fly,
creating a fresh propositional literal for each subformula.

Propositional Encoding of Concrete Values The abstract program operates on
abstract values. An abstract value represents a set of concrete values by encoding
constructor indices using a sequence of propositional formulas.

Definition 1. Assume F being the set of propositional formulas. Then, the set
of abstract values A is the smallest set with A = F∗×A∗ where F∗ denotes the
set of sequences with elements from F. An abstract value a ∈ A is a tuple (

−→
f ,−→a)

of flags
−→
f and arguments −→a .

The flags encode a constructor index using binary code.

Example 3. Consider the type data Color = Red | Green | Blue from Listing
1.1. For an abstract value a ∈ A to represent all the elements of Color it must
consist of at least two flags, where each of them is a propositional formula. De-
pending on the satisfying assignment given by the SAT solver, a can be decoded
to any value of type Color. As no constructor of Color has any arguments, the
abstract value contains no arguments as well.

The arguments of an abstract value a ∈ A encode the constructor arguments
of the concrete values that a is representing. To reduce the size of the generated
propositional formula, the arguments of all constructors are overlapped in a.

Example 4. Consider the type

data Pixel = Colored Color | Background Monochrome

from Listing 1.1 and an abstract value a1 ∈ A that represents all concrete values
of type Pixel. As Pixel has two constructors, one flag f1 is enough to encode its
constructor index. Each constructor of Pixel has at most one argument, thus,
the abstract value a1 has one argument a2 ∈ A as well. a2 represents all concrete
values of type Color and Monochrome. To do so, a2 needs at least two flags f21
and f22, because Color has three constructors:

a1 = (f1, a2) a2 = ((f21, f22), ())

Propositional Encoding of Concrete Programs As mentioned in Section 1, the
propositional encoding of pattern matches is crucial for the encoding on the
whole, because they are the only control-flow feature in CO4.

In general, a pattern match on a discriminant v in the concrete program
cannot be evaluated in the abstract program, because v might be an element
of the problem domain. For example, the function isBlue in Listing 1.1 is a
2 https://github.com/apunktbau/satchmo-core

5

predicate on the problem domain Pixel and its inner pattern match can’t be
evaluated for that reason. That’s because values of the problem domain are yet
to be determined by the SAT solver and are undefined during the evaluation of
the abstract program. A way to resolve this situation is to evaluate each branch
of a pattern match and to merge all the resulting abstract values.

Example 5. isBlue in Listing 1.1 contains the pattern match

case u of

{
Colored _ → b1

Background _ → b2

where u (of type Pixel) is the discriminant and b1 and b2 are concrete expressions
of type Bool. The abstract program for this pattern match is

let (fu,_) = u′

(f1, ()) = b′1

(f2, ()) = b′2

fr = mergefu
(f1, f2)

in

(fr, ())

where

– u′ (resp. b′1, b′2) denotes the abstract program of discriminant u (resp. branch
b1, b2)

– fu (resp. f1, f2) denotes the single flag in the abstract value that results of
evaluating u′ (resp. b′1, b′2)

– fr denotes the single flag in the resulting abstract value. Note that the result
of the pattern match is of the same type as the branches are.

merge encodes a discrimination on the constructor indices of u on a binary level.

mergefu
(f1, f2) = (¬fu =⇒ f1) ∧ (fu =⇒ f2)

Informally, fr equals flag f1 if the discriminant’s flag fu does not hold, and
otherwise fr equals flag f2.

Using this transformation scheme and a parameter from the parameter do-
main, the evaluation of an abstract program results in an abstract value that
represents a concrete Boolean value a ∈ A, because constraint’s resulting type
is Bool. a contains a single flag f which is the result of all merge operations that
occurred while evaluating the abstract program. Thus, f represents the propo-
sitional formula that has to be solved by a SAT solver. If there is a satisfying
assignment σ for f , a solution of the problem domain can be constructed from
σ.

We refer to [2] for more technical details on the transformation process.

6

4 Example: The N-Queens Problem

Listing 1.2 illustrates an excerpt3 of a specification for the n-queens problem in
CO4. The board is represented by a list of naturals, where each natural denotes
the ordinate of a queen. The constraint holds if there are no two queens on each
row, column and diagonal.

1 data Bool = False | True deriving Show
2 data Nat = Z | S Nat deriving Show
3 data List a = Nil | Cons a (List a) deriving Show
4 type Board = List Nat
5

6 constraint :: Board -> Bool
7 constraint board = let n = length board
8 in
9 and2 (all (\q -> less q n) board)

10 (allSafe board)
11 allSafe :: Board -> Bool
12 allSafe board = case board of Nil -> True
13 Cons q qs -> and2 (safe q qs (S Z))
14 (allSafe qs)
15 safe :: Nat -> Board -> Nat -> Bool
16 safe q board delta = case board of
17 Nil -> True
18 Cons x xs -> and2 (noAttack q x delta)
19 (safe q xs (S delta))
20

21 noAttack :: Nat -> Nat -> Nat -> Bool
22 noAttack x y delta = and2 (noStraightAttack x y)
23 (noDiagonalAttack x y delta)

Listing 1.2. The n-queens problem in CO4 (excerpt)

In contrast to the introductory example in Section 1, the constraint in Listing
1.2 is not parametrized and makes use of recursive algebraic data types, e.g., Nat
and List. A type that is defined as a recursive ADT is inhabited by infinitely
many values, i.e., it’s not finite domain. Thus, those types can not be represented
using a finite propositional encoding.

To use recursive ADTs anyway, CO4 uses allocators to restrict the set of
concrete values that is represented by an abstract value.

Definition 2. Let C be the set of concrete values. Then, an allocator qa : C→
{0, 1} is a predicate on concrete values. For a given value c ∈ C qa(c) holds, if
the abstract value a ∈ A represents c.

When evaluating an abstract program in CO4, the user must provide an
allocator for the abstract value that represents the undetermined solution of
3 full version available at https://github.com/apunktbau/co4/blob/master/test/

CO4/Example/QueensSelfContained.hs

7

constraint, e.g., the board parameter in Listing 1.2. The propositional formula
generated by evaluating the abstract program not only specifies a solution for
constraint, CO4 also enforces that a potential solution satisfies the allocator
provided by the user.

Example 6. For the n-queens problem, allocators are utilized to restrict the re-
cursion depth of the board parameter in constraint. Assume a ∈ A being the
abstract value that represents the concrete board parameter. A possible allocator
qa may be informally described by

qa(b) =


1 if b is an 8× 8 board and each queen’s ordinate

is from the interval [0, 7]
0 otherwise

Allocators that restrict recursion depths effect the evaluation of the abstract
program and therefore the size of the resulting propositional formula. Table 1
lists some experimental results for different board sizes. All experiments were
run on a 3.2GHz CPU with 8GB RAM.

Table 1. Formula sizes for different instances of the n-queen problem

n #variables #clauses #literals solver runtime

4 363 958 2441 0.1s
8 3621 10146 26353 0.1s

16 41033 118690 311649 0.16s
32 523921 1541826 4075713 3s

For all instances of the n-queens problem CO4 generates a propositional en-
coding that is solved in less time compared to an equivalent encoding in Curry[8].
[2] gives a more detailed comparison of CO4 and Curry.

5 Use-case: RNA Design

This section illustrates the application of CO4 for RNA design[4] in bioinformat-
ics. A strand of RNA (ribonucleic acid) is a molecule that is described as chain of
the organic bases adenine, cytosine, guanine, and uracil, typically abbreviated
as A, C, G and U . Thus, a string over {A,C,G,U} is denoted as the RNA’s
primary structure. Many aspects of RNA are studied by inspecting its secondary
structure, i.e., strings over the canonical base pairs {AU,CG,GC,GU,UA,UG}.
Each RNA’s primary structure and one of its corresponding secondary structure
is associated with a certain amount of free energy based on a given energy model.

8

RNA design is a fundamental problem in bioinformatics that asks for a pri-
mary structure that folds optimally into a given RNA’s secondary structure, so
that the amount of free energy is minimized. Listing 1.3 shows an excerpt4 of a
specification for RNA design constraints. For technical reasons the constraint is
formalized to maximize the bound energy instead of minimizing the free energy.

1 data Base = A | C | G | U
2 type Primary = List Base
3

4 data Energy = MinusInfinity | Finite Nat
5

6 constraint :: Secondary -> (Primary, Matrix Energy) -> Bool
7 constraint secondary (primary, energy) = ...
8

9 cost :: Base -> Base -> Energy
10 cost b1 b2 = case (b1,b2) of
11 (C,G) -> Finite (nat 8 2)
12 (G,U) -> Finite (nat 8 1)
13 ...
14 _ -> MinusInfinity
15

16 max :: Energy -> Energy -> Energy
17 max e f = case e of
18 Finite x -> case f of
19 Finite y -> Finite (maxNat x y)
20 MinusInfinity -> e
21 MinusInfinity -> f
22

23 plus :: Energy -> Energy -> Energy
24 plus e f = case e of
25 Finite x -> case f of
26 Finite y -> Finite (plusNat x y)
27 MinusInfinity -> f
28 MinusInfinity -> e

Listing 1.3. RNA design using CO4 (excerpt)

The constraint is parametrized by the RNA’s secondary structure, where the
solution is a pair of a primary structure and a matrix of bound energies. This
matrix contains the energy values for the unknown primary structure and is
computed using the ADP framework[7].

The energy model in function cost associates a certain amount of bound
energy to each each of the canonical base pairs. Other base pairs are associated
with −∞ to exclude them as pairs in the potential solution. The dominant
operations while evaluating the abstract program are applications of max and
plus on elements of energy matrices.

4 full version available at https://github.com/apunktbau/co4/blob/master/test/
CO4/Example/WCB_MatrixStandalone.hs

9

In contrast to the n-queens problem in Listing 1.2, this example makes use of
CO4’s built-in naturals in order to reduce the size of the propositional encoding.
These naturals are binary encoded and CO4 provides built-in arithmetic and
comparison functions.

Example 7. A call to nat w n in an abstract program gives an abstract value
a = ((f1, . . . , fw), ()) ∈ A representing n in binary code using w flags f1, . . . , fw,
where w ≥ dlog2 ne. a does not contain any arguments. Using this representation
it is straightforward to implement arithmetic for naturals using binary arith-
metic. CO4 provides common arithmetic functions on naturals, e.g., plusNat
and maxNat in Listing 1.3.

Table 2 cites some experimental results[4] performed on different instances
of the RNA design problem.

Table 2. Formula sizes for different instances of the RNA design problem

length of primary structure #variables #clauses #literals solver runtime

20 77951 368036 1166086 2s
30 235714 1164984 3712214 4s
40 526111 2666878 8525686 7m
50 989133 5096071 16324618 36s

6 Use-case: Termination Analysis of Term Rewriting
Systems

The application of CO4 to termination analysis of term rewriting systems is
motivated by the automated analysis of programs. A non-terminating program
may be an unwanted behavior that indicates an error in the program’s design.
Unfortunately, termination is an undecidable property of programs, but there
are techniques that may prove termination in some cases.

A term rewriting system (TRS) is a computational model for terms, where
a term is either a variable or a n-ary function symbol applied to n terms. Terms
can be modeled using the following ADT:

data Term = Var Symbol | Node Symbol (List Term)

Term rewriting is based on the repeated application of rewriting rules, where
each rule l→ r replaces a (sub-)term l by a term r. A TRS is a set of rewriting
rules {l1 → r1, r2 → l2, . . . }. One common technique to prove termination of a
TRS is to find a reduction order > on terms, so that l > r holds for all rules
l→ r in the TRS[1].

10

Definition 3. Assume >prec being a strict order on function symbols. >prec
is denoted as precedence. Then, the lexicographic path order (LPO) >lpo is a
reduction order on terms s and t induced by precedence >prec, where s >lpo t, if

– LPO-1: t is a variable and s 6= t, or
– LPO-2: s = f(s1, . . . , sm), t = g(t1, . . . , tn), and
• LPO-2a: there exists i ∈ [1,m] with si ≥lpo t, or
• LPO-2b: f >prec g and s >lpo tj for all j ∈ [1, n], or
• LPO-2c: f = g, s >lpo tj for all j ∈ [1, n] and ther exists i ∈ [1,m] so
that s1 = t1, . . . , si−1 = ti−1 and si >lpo ti

In listing 1.4 Symbols are represented by naturals and the precedence >prec is
modeled using a mapping prec from function symbols to naturals. The semantics
are: f >prec g, if prec(f) > prec(g).

1 type Map k v = List (Pair (k,v))
2 type Symbol = Nat
3 type Precedence = Map Symbol Nat
4 data Order = Gr | Eq | NGe
5

6 lpo :: Precedence -> Term -> Term -> Order
7 lpo prec s t = case t of
8 Var x -> case eqTerm s t of
9 False -> case varOccurs x s of

10 False -> NGe
11 True -> Gr -- LPO-1
12 True -> Eq
13

14 Node g ts -> case s of
15 Var _ -> NGe
16 Node f ss -> -- LPO-2
17 case all (\si -> eqOrder (lpo prec si t) NGe) ss of
18 False -> Gr -- LPO-2a
19 True -> case ord prec f g of
20 Gr -> case all (\ti -> eqOrder (lpo prec s ti) Gr) ts of
21 False -> NGe
22 True -> Gr -- LPO-2b
23 Eq -> case all (\ti -> eqOrder (lpo prec s ti) Gr) ts of
24 False -> NGe
25 True -> lex (lpo prec) ss ts -- LPO-2c
26 NGe -> NGe

Listing 1.4. Lexicographic path orders in CO4 (excerpt)

lpo computes the lexicographic path order between two terms using a given
precedence. It is almost an direct encoding of the textbook definition 3.

The top-level constraint5 over the set of precedences is parametrized by a
TRS and simply checks whether lpo is a reduction order for all rules in the
TRS.
5 full version available at https://github.com/apunktbau/co4/blob/master/test/

CO4/Example/LPOStandalone.hs

11

1 type Rule = Pair Term Term
2 type Trs = List Rule
3

4 constraint :: Trs -> Precedence -> Bool
5 constraint rules prec =
6 all (\(lhs,rhs) -> eqOrder (lpo prec lhs rhs) Gr) rules

Listing 1.5. Top-level constraint for lexicographic path orders

For the following term rewriting system with function symbols {a/2, s/1, n/0}

a(n, y)→ s(y)
a(s(x), n)→ a(x, s(n))

a(s(x), s(y))→ a(x, a(s(x), y))

CO4 finds a precedence a >prec s =prec n using a propositional encoding with
167 variables, 517 clauses and 1365 literals almost immediately.

The Tyrolean Termination Tool 2 (TTT2)6 provides a hand-crafted propo-
sitional encoding for lexicographic path orders. For solving the aforementioned
rewriting system, TTT2 generates a formula with 7 variables and 9 clauses. This
result emphasizes the main drawback of CO4: most manually crafted proposi-
tional encodings that exploit low-level optimizations outperform the encodings
derived by CO4.

Propositional Encoding for Partial Functions Recall that the precedence is rep-
resented by a mapping from symbols to naturals. This mapping is realized as a
list of pairs. Accessing such a mapping using lookup is done by traversing the
whole list until the provided key is found:

1 lookup :: Symbol -> Precedence -> Nat
2 lookup symbol prec = case prec of
3 [] -> undefined
4 p:ps -> case p of
5 (key,value) -> case eqSymbol symbol key of
6 False -> lookup symbol ps
7 True -> value

Note that lookup is a partially defined function, because it is undefined if
prec is empty. To support partially defined functions in the abstract program,
the propositional encoding of abstract values illustrated in section 3 is extended
by an definedness flag.

Definition 4. The set of (possibly undefined) abstract values A is the smallest
set with A = F∗×A∗×F. An abstract value a ∈ A is a tuple (

−→
f ,−→a , d) of flags

−→
f , arguments −→a and an definedness flag d.
6 http://cl-informatik.uibk.ac.at/software/ttt2/

12

For abstract values that represent ordinary concrete values, the definedness
flag is constant 1, i.e., the abstract value is defined. Only the undefined symbol
results in an abstract value whose definedness flag is constant 0.

The definedness flags are merged as well as all the other flags during the
evaluation of pattern matches in the abstract program. Evaluating the abstract
top-level constraint then results in an abstract value a ∈ A with a single flag
f and a definedness flag d: as discussed in section 3, f discriminates the two
constructors of constraint’s resulting type Bool. d indicates whether a is de-
fined or not. As we aim to exclude undefined values from the set of potential
solutions, we search a satisfying assignment for f ∧ d using the external SAT
solver. If there are no undefined values in a constraint system, d is constant 1.
Otherwise, d is a propositional formula that represents the result of merging the
definedness flags of all abstract values, that have been evaluated.

Example 8. Consider a pattern match on a value u of type Bool where one
branch is undefined and the other branch b is of type Bool as well:

case u of

{
False → undefined
True → b

Assume the following flags

– fu denotes the single flag in the abstract value that represents the result of
evaluating discriminant u.

– db denotes the definedness flag of the abstract value that represents the result
of evaluating branch b. The definedness of undefined is constant 0.

The resulting definedness flag dr is merged equally as the other flags (c.f. Ex-
ample 5):

dr = mergefu
(0, db) = (¬fu =⇒ 0) ∧ (fu =⇒ db)

= fu ∧ (fu =⇒ db)
= fu ∧ db

7 Conclusion

In this paper we presented examples of using CO4 to write constraints on finite
structured domains using a subset of Haskell. We illustrated two real world use
cases where CO4 enables a natural way of specifying properties of application
specific data:

1. specifying a primary RNA structure that folds optimally into a given sec-
ondary structure

2. specifying a reduction order on terms that prove termination of a term rewrit-
ing system

13

We outlined the propositional encoding provided by the CO4 compiler includ-
ing the encoding for restricted recursive ADTs, built-in naturals and partially
defined functions. For a more technical description of CO4 we refer the reader
to [2].

The work on CO4 is ongoing. We strive to reduce the size of the generated
propositional encoding. While ideally CO4 should be competitive against other
encodings, carefully crafted manual encodings outperform CO4 in most cases
because of potential low-level optimizations. Thus, our goal is to minimize the
gap between manual propositional encodings and CO4.

Further work includes the support for a greater subset of Haskell’s syntax.
Supporting more features in the input language, e.g. type-classes, allows an even
more natural way of specifying constraint systems.

References
1. Franz Baader and Tobias Nipkow. Term rewriting and all that. Cambridge Uni-

versity Press, New York, NY, USA, 1998.
2. Alexander Bau and Johannes Waldmann. Propositional Encoding of Constraints

over Tree-Shaped Data. In 22nd International Workshop on Functional and (Con-
straint) Logic Programming, 2013.

3. Alexander Bau and Johannes Waldmann. Propositional encoding of constraints
over tree-shaped data. CoRR, abs/1305.4957, 2013.

4. Alexander Bau, Johannes Waldmann, and Sebastian Will. RNA Design by Pro-
gram Inversion via SAT Solving. In Workshop on Constraint-Based-Methods for
Bioinformatics, 2013.

5. Michael Codish, Jürgen Giesl, Peter Schneider-Kamp, and René Thiemann. Sat
solving for termination proofs with recursive path orders and dependency pairs. J.
Autom. Reasoning, 49(1):53–93, 2012.

6. Niklas Eén and Niklas Sörensson. An extensible sat-solver. In SAT, pages 502–518,
2003.

7. Robert Giegerich. A systematic approach to dynamic programming in bioinfor-
matics. Bioinformatics, 16(8):665–677, 2000.

8. M. Hanus. Functional logic programming: From theory to Curry. In Programming
Logics - Essays in Memory of Harald Ganzinger, pages 123–168. Springer LNCS
7797, 2013.

9. Masahito Kurihara and Hisashi Kondo. Efficient BDD encodings for partial order
constraints with application to expert systems in software verification. In Robert
Orchard, Chunsheng Yang, and Moonis Ali, editors, IEA/AIE, volume 3029 of
Lecture Notes in Computer Science, pages 827–837. Springer, 2004.

10. Simon Peyton Jones et al. The Haskell 98 language and libraries: The revised
report. Journal of Functional Programming, 13(1):0–255, Jan 2003. http://www.
haskell.org/definition/.

11. G.S. Tseitin. On the complexity of derivation in propositional calculus. In Jörg
Siekmann and Graham Wrightson, editors, Automation of Reasoning, Symbolic
Computation, pages 466–483. Springer Berlin Heidelberg, 1983.

12. Harald Zankl, Christian Sternagel, Dieter Hofbauer, and Aart Middeldorp. Finding
and certifying loops. In Jan van Leeuwen, Anca Muscholl, David Peleg, Jaroslav
Pokorný, and Bernhard Rumpe, editors, SOFSEM, volume 5901 of Lecture Notes
in Computer Science, pages 755–766. Springer, 2010.

14

