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Abstract. Deep learning-based methods have shown remarkable per-
formance in brain tumor image segmentation. However, there is a lack of
research on segmenting brain tumor lesions using frequency domain fea-
tures of images. To address this gap, an improved network SLf-UNet has
been proposed in this paper, which is a two-dimensional encoder-decoder
architecture combining spatial and low-frequency domain features based
on U-Net. The proposed model effectively learns information from spatial
and frequency domains. Herein, we present a novel upsample approach
by using zero padding in the high-frequency region and replacing the part
of the convolution operation with a convolution block combining spatial
frequency domain features. Our experimental results demonstrate that
our method outperforms current mainstream approaches on BraTS 2019
and BraTS 2020 datasets.
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1 Introduction

Medical image segmentation is a crucial tool for disease diagnosis, treatment
planning, and follow-up services. In particular, brain MRI analysis often uses
image segmentation to measure and visualize the regions and volumes of brain
tumors. Since 2012, the Brain Tumor Segmentation (BraTS) Challenge has been
held annually at MICCAI (Medical Image Computing and Computer Assisted
Intervention). has become a leading benchmark in the field of medical image
segmentation [1][2]. Gliomas are malignant brain tumors that vary in aggres-
siveness. Therefore, automated and accurate segmentation of these malignancies
on magnetic resonance imaging (MRI) is essential for clinical diagnosis [3].

Automated medical image segmentation techniques have proven effective
for accurately delineating brain tumors[4]. Recently, deep learning approaches
[5][6][7][8] have achieved state-of-the-art performance for brain tumor segmenta-
tion on various benchmarks, owing to the powerful feature extraction of CNNs
⋆ Supported by the National Natural Science Foundation of China (61876112).



2 Hui Ding, Jiacheng Lu et al.

[9]. The U-Net architecture [10], using an encoder-decoder structure with skip
connections for detail retention, has become mainstream. UNet3+ [11] and UC-
Transnet [12] further improved UNet-like models by enhancing skip connections.
The former employs full-scale connections for multi-scale feature fusion, while the
latter adopts channel-wise attention for a more effective combination. Usually,
three-dimensional (3D) deep learning frameworks would achieve higher accuracy
in brain tumor segmentation tasks but encounter obstacles like a high compu-
tational burden. Facing these challenges, how to further optimize brain tumor
segmentation models to improve segmentation accuracy remains an important
issue [13][14].

Frequency analysis decomposes images into components, providing rich rep-
resentations for more effective image understanding over spatial-only approaches
[15]. In brain tumor images, tissue edges exhibit high-frequency changes, while
lesions show gentle, low-frequency variations. Incorporating frequency domain
analysis enhances lesion features and improves model feature extraction.

Based on frequency analysis, this paper proposed an improved network SLf-
UNet, the following are the contributions of this work:

1) The proposed network, SLf-UNet, incorporates both spatial domain and
low-frequency domain characteristics. And the impact of high and low-frequency
components on segmentation was discussed and analyzed through experiments.

2) SF-block is proposed for effective fusion in the space-frequency domain.
It utilizes both spatial and frequency information from feature maps to achieve
information fusion.

3) For upsampling, we present a novel module zFUP, which solved the differ-
ent scale matching between spatial and frequency domains in deep convolution
layers by using zero-padding in the spectrum.

4) The proposed network structure achieves excellent performance on BraTS
2019 and BraTS 2020 datasets.

2 Related Works

While most research concentrates on model architectures, some recent work
leverages frequency domain information to address medical imaging challenges
using frequency transforms.

Stuchi et al. [16] enhanced image classification via frequency analysis. Luan
et al. [17] used high-frequency filtering to enhance the edge and fine structure of
breast images. Hu et al. [18] used high and low-pass filters for ultrasound thyroid
segmentation. Li et al.[19] utilized wavelet transform in medical multispectral
image fusion to exploit the frequency domain information of the images, which
helps highlight features of the target area. Azad et al. [20] pointed out that vanilla
CNNs tend to be biased towards textures while overlooking shape information for
medical image segmentation. They proposed an adaptive frequency recalibration
to reduce this bias and improve feature discrimination.

For brain tumor segmentation, Tang et al. proposed a novel model called
tKFC-Net [21], which integrates spatial and frequency domain features via the
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Fast Fourier Transform (FFT). However, it is worth noting that t-KFC incurs
a high computational cost, and its adoption of high-frequency components ren-
ders it not necessary for brain tumor image segmentation. This limitation arises
from the concentration of valuable information in the low-frequency region of
brain tumor images, as will be verified in Section 4.5. Therefore, while the pro-
posed tKFC-Net model demonstrates an innovative approach to incorporating
frequency representations within CNNs, its limitations regarding computational
efficiency and compatibility with brain tumor segmentation tasks warrant fur-
ther investigation and optimization.

3 Method

In this paper, we proposed an improved frequency network, which combing the
spatial and low-frequency convolution, and using the zero-padding to enhance-
ment the up-sampling.

3.1 SLf-UNet

Fig. 1 illustrates the architecture of SLf-UNet, a 2D model for BraTS. This model
is based on a U-Net encoder-decoder architecture that utilizes skip connections
to combine high-level and low-level features. The key components of this model
are the Spatial Frequency domain combining block (SF-block) and Zero-padding
Upsampling Pyramid in Frequency Domain (zFUP).

Fig. 1. The overall architecture of SLf-UNet. The architecture primarily comprises
zFUP, SF-block, frequency domain pooling, while retaining the classical U-Net skeleton.

The input to the model consists of a series of 4-channel brain tumor slices. To
enhance performance, we have incorporated the SF-Block in the first two layers
of the encoder and the last two layers of the decoder to introduce low-frequency
components and enable the model to learn effectively. However, applying SF-
Blocks to all layers would significantly increase the computational cost. More-
over, as the number of layers deepens, the impact of introducing low-frequency
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components diminishes. Hence, we have opted to use SF-Blocks in the first half of
the encoder and its corresponding layers in the decoder. This approach strikes a
balance between introducing low-frequency components and managing computa-
tional complexity. Additionally, we replaced all pooling methods with frequency
domain pooling blocks and utilized ZFUP for upsampling to align features from
different scales.

3.2 Spatial Frequency domain combining block (SF-block)

SF-block, which integrates both spatial and frequency domain features for CNNs
in brain tumor segmentation. The module utilizes frequency domain information
while preserving spatial cues. To analyze the influence of the two domains, we
designed several optional branches in the structure (Fig. 2).

Fig. 2. Spatial and frequency domain Fourier convolution(SF-block). Three optional
branches are given in the figure, namely the spatial branch, the low-frequency branch
and the high-frequency branch. The influence of different components on the segmen-
tation results is tested through different choices.

It first obtains high and low frequencies via a 2D discrete Fourier trans-
form. Corresponding kernels then convolve the spatial features to generate spa-
tial, low-frequency, and high-frequency branches. Features from the branches are
combined before outputting.

Given spatial input x ∈ RM×N with spectrum X ∈ CM×N , the low xl and
high xh frequency components are obtained. These components and the original
input x are then convolved with specific kernels as follows:

X = F (x) x ∈ RM×N , X ∈ CM×N (1)

where F (•)denotes 2D-DFT, which transforms spatial feature x into spectral
representation X. The components of low-frequency part and high-frequency
part are as follows:

X l
mn =

{
Xmn

M
4 < m ≤ 3×M

4 ,N4 < n ≤ 3×N
4

0 others
(2)
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Xh
mn =

{
0 M

4 < m ≤ 3×M
4 ,N4 < n ≤ 3×N

4

Xmn others
(3)

where X l
mn denote low frequency part, Xh

mn denote high frequency part, and
M and N denote the width and height of the feature map. Then transform the
frequency parts back to spatial domain:

xl = F−1(X l) xl ∈ RM×N (4)

xh = F−1(Xh) xh ∈ RM×N (5)

where xl denotes spatial features of low frequency partes, and xh denotes spatial
features of high frequency partes, F−1(•) denotes 2D-IDFT.

Fig. 3 demonstrates branching in the SF-block. As frequency components
increase computation, the high-frequency section here contains less lesion in-
formation. Thus, removing this branch to eliminate irrelevant interference can
facilitate lesion segmentation.

Fig. 3. Component examples in SF-block. The top and bottom rows present flair and
t1ce modalities. Columns 4-6 are outputs of the spatial, high-frequency (binarized), and
low-frequency branches respectively, with columns 1 and 3 displaying the corresponding
ground truths and column 2 showing the spatial spectral image.

For the three branches, the original spatial feature branch and the high fre-
quency branch adopts normal 3 × 3 kernel while the low frequency feature
employs a dilated kernel with rate of 2, which benefits the smooth low frequency
components and yields a broader sight vision. Then different branch combina-
tions are selected, and lastly they are combined in series and input into the
subsequent network structure:

xout = concat(ax, bxl, cxh) xout ∈ RM×N (6)

Here, a, b, and c are binary variables (1 being selected, 0 not selected) indicating
the selection of three branches. This improved frequency domain convolution
structure utilizes both spatial and frequency information, where the two com-
plementary image cues produce refined features with rich semantics and details.
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3.3 Zero-padding Upsampling Pyramid (zFUP)

UNet adopts an encoder-decoder framework to learn image features via con-
volutions. As the extracted feature maps are downsized, the decoder upsamples
them to regain the original image sizes for final predictions. Common upsampling
methods like deconvolution and bilinear interpolation directly enlarge feature
maps. Although restoring the size and most information, they may introduce
noise. Here, we recommend using zFUP - zero-padding for frequency-domain
upsampling (Fig.4, and Fig.1 bottom right).

Fig. 4. Schematic diagram of zFUP. During the zFUP, each layer of input is combined
with the output of the corresponding downsampling layer after zero/-padding to pass
through the convolutional layer.

As Fig.3 shows and aforementioned, high-frequency components have min-
imal impacts whereas low-frequency ones greatly affect segmentation. Unlike
zFUP, tKFC-Net’s [21] upsampling divides the preceding output into low and
high-frequency regions, generating padding results through a weighted approach.
This allows the propagation of high-frequency information from the preceding
layer to the low-frequency region of the subsequent layer. In contrast, the zFUP
module directly takes the preceding output as the central part of the frequency
domain for the next layer, applying zero-padding, and then concatenates it with
the inverse-transformed spatial image. This strategy focuses the learning process
on low-frequency features and optimizes computation by avoiding other padding
techniques.

The proposed approach begins by subjecting the input feature map to a
Fourier transform, converting it into the frequency domain. Subsequently, the
spectrum is padded, doubling the size of each frequency dimension to simulate
conventional pooling with a dilation rate of 2. We introduce adjustable padding
with the same rate for frequency upsampling. Finally, the inverse transformation
reconverts the data back to the spatial domain, resulting in an upsampled map
of twice the original size.
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3.4 Loss Function

In training, a hybrid loss function combining cross-entropy loss and Dice loss is
adopted. The cross-entropy loss is defined as:

Lbce = −
W∑
i=1

H∑
j=1

[Tij log(Pij ) + (1− Tij ) log(1− Pij ) ] (7)

where W and H denote the width and height of the predicted image Pij and
the ground-truth image Tij . And (i, j) are the coordinates of the pixels in the
predicted image Pij and the ground truth imageTij .

And the Dice loss is defined as:

Ldice(P, T ) = 1− 2×
∑N

i=1 pigi + τ∑N
i=1 pi +

∑N
i=1 gi + τ

(8)

where summation is carried over the N voxels of the ground truth volume ti ∈ T
and the predicted volume pi ∈ P , and τ is a minimal constant to prevent division
by zero.

Based on the above two loss functions, we propose a joint loss function com-
posed of BCE and Dice:

Ljoint =

3∑
i=1

(λLdicei + (1− λ)Lbcei) (9)

where λ is the weight to balance different losses, the value range is 0 < λ < 1,
and set to 1 in the experiment. In order to reduce the complexity of the task,
we divide the task of segmenting the three-category lesion area into a single-
category segmentation task with 3 channels, and calculate the loss separately.
Where Ldicei and Lbcei represent the Dice loss and BCE loss of the i-th channel,
respectively.

4 Experiments

4.1 Datasets

This paper utilizes BraTS 2019 and 2020 datasets, providing 3D MRI with voxel-
wise ground truth labels annotated by physicians for evaluating state-of-the-art
brain tumor segmentation methods [22][23][24]. BraTS 2019 contains 259 HGG
and 76 LGG cases, while BraTS 2020 has 369 scans with more HGG cases. Each
patient has four modalities: T1, T2, T1ce, and FLAIR MRI. Experts labeled
the images into background, non-enhanced region, edema, and enhancing tumor
based on unified standards. All scans have 240×240×155 voxel sizes. We focus
on segmenting three regions: enhancing tumor for ET; whole tumor with ET +
NET + ED; and tumor core containing ET + NET.
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4.2 Pre-processing

The image contrast of the four modalities of the glioma image dataset is different,
so the z-score method is used to normalize the images of each modality separately.
The 1% highest and lowest intensities are removed, and subtracting the mean
and dividing by the standard deviation of the intensities within the body. And
after, cropping the size of images into 160×160×155 to eliminate the unnecessary
background. Then, obtained the slices of 3D brain tumor MRI images. In order to
address the class imbalance problem, the slices without label pixels are excluded
from trainset. Finally, the slices of the four modalities of the data are combined
into multi-channel, and finally saved in npy for subsequent experiments.

4.3 Implementation Details

The experimental environment is: Ubuntu 18.04, NVIDIA GeForce GTX 2080Ti
x1, Intel Core i7-4790k @ 4.00GHz quad-core CPU. And the experiment is based
on the deep learning framework of Python 3.6 and Pytorch 1.6.0. We employed
the Adam optimizer with an initial learning rate of 3e-4. Model regularization
was conducted using L2 norm with a weight decay rate of 1e-4. For all models,
we set the maximum number of training epochs to 500 and implemented early
stopping after 50 epochs. Most models were terminated around 300 epochs during
training. All models were implemented in Pytorch.

4.4 Evaluation Metrics

In this paper, we evaluate brain tumor segmentation using two widely used med-
ical imaging metrics - Dice similarity coefficient (DSC) and Hausdorff distance
(HD). DSC measures overlap and similarity between segmentation and ground
truth. It weights recall and false positives equally. DSC is defined as:

DSC(P, T ) =
2|P1 ∩ T1|
|P1|+ |T1|

(10)

where P1 is the predicted tumor region, T1 is the true tumor region. DSC ranges
from 0 to 1, higher values signify better segmentation.

Hausdorff distance (HD) evaluates structural differences between segmenta-
tion and truth. It is defined as:

Haus(T, P ) = max{supt∈T infp∈P , supp∈P inft∈T d(t, p)} (11)

where the inf and sup denote the lowest and highest distances, t and p are
surfaces of the true and predicted regions, and d(t, p) calculates distance between
points t and p.
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4.5 Ablation Study

To analyze the impacts of spatial and frequency domains, we conducted SLf-
UNet with different channel settings (Table 1): solely spatial, solely low-frequency,
solely high-frequency, and jointly spatial-low. Results in Table 1 show adding
high-frequency channels decreased segmentation performance. Hence, we focused
on exploring the synergistic effects of low-frequency and spatial channels.

Table 1. ABLATION STUDY ON BraTS 2019 DATASET.

Model Dice_score(%) Haussdorff95
ET↑ WT↑ TC↑ ET↓ WT↓ TC↓

SLf-UNet (spatial only) 86.23 83.37 84.74 1.6124 2.6319 1.6599
SLf-UNet (low frequency only) 86.14 83.35 85.35 1.6153 2.7217 1.6783
SLf-UNet (high frequency only) 54.25 61.30 58.99 2.5454 3.5946 2.6147

SLf-UNet (spatial and lowfrq, ours) 87.61 83.31 86.86 1.5695 2.7135 1.6244

Table 1 presents ablation results on BraTS 2019. Combining low-frequency
and spatial channels yielded Dice scores of 87.61, 83.31, and 86.86 for ET, WT,
and TC, outperforming other settings except WT. As Section 3.2 and Fig. 3 ex-
plain, low-frequencies contain most lesion information but lack whole tumor edge
details, possibly contributing to the slight WT decrease. These results demon-
strate incorporating spatial and low-frequency cues enhances SLf-UNet’s effec-
tiveness in segmenting medical images like BraTS.

4.6 Multi-method Comparison

Table 2 and 3 show the comparison of the brain tumor segmentation performance
of our proposed Network SLf-UNet and the performance of other representative
segmentation networks, included U-Net, UNet3+, UCTansNet, tKFC-Net, and
transUNet.

Table 2. PERFORMANCE ON BraTS 2019 DATASET.

Model Source Dice_score(%) Haussdorff95
ET↑ WT↑ TC↑ ET↓ WT↓ TC↓

U-Net 2015 MICCAI 77.10 84.06 84.50 - - -
UNet 3+ 2020 ICASSP 87.04 83.48 86.06 1.5654 2.6372 1.6306
tKFC-Net 2021 CMPB 78.15 84.57 86.52 - - -
TransUNet 2021arxiv 80.69 80.74 77.23 1.7599 2.7598 1.8783
UCTransnet 2022 AAAI 84.99 84.32 83.43 1.5951 2.6471 1.7347

SLf-UNet(our) 87.61 83.31 86.86 1.5695 2.7135 1.6244

For BraTS’19, 285 subjects were used for training and 50 for testing. After
preprocessing, the dataset had 15,138 images for training, 3,785 for validation
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and 3,219 for testing. Table 2 evaluates segmentation of WT, TC and ET using
the mentioned metrics. In the BraTS’20 experiment, the 369 subjects in the
dataset were divided into training and test sets at a 8:2 ratio. The preprocessed
slices were evaluated, including ground-truths.

Table 3. PERFORMANCE ON BraTS 2020 DATASET.

Model Source Dice_score(%) Haussdorff95
ET↑ WT↑ TC↑ ET↓ WT↓ TC↓

U-Net 2015 MICCAI 90.87 86.3 87.76 0.6813 1.3916 0.9049
UNet3+ 2020 ICASSP 91.53 87.35 88.61 0.6781 1.3207 0.8903

TransUNet 2021arxiv 89.75 84.01 86.81 0.7272 1.4253 0.9507
UCTransnet 2022 AAAI 90.37 88.18 88.56 0.6971 1.2707 0.9063

SLf-UNet (ours) 91.83 87.62 88.94 0.6662 1.3166 0.8873

Table 3 compares SLf-UNet with other networks. The experimental results in
Tables 2-3 demonstrate that the improved SLf-UNet achieves comparable WT
segmentation performance to other networks, while attaining higher accuracy
on ET and TC. On BraTS 2019, SLf-UNet obtained Dice scores of 87.61, 83.31,
86.86 for ET, WT, TC respectively; and HD95 values of 1.5695, 2.7135, 1.6244
respectively. On BraTS 2020, it achieved Dice scores of 91.83, 87.62, 88.94; and
HD95 values of 0.6662, 1.3166, 0.8873 respectively. Fig. 5 presents SLf-UNet
segmentation outputs and multi-modal examples. As shown, the segmentation
results exhibit improved effects on details and edges.

Fig. 5. Examples of Multi-method segmentation results. For the segmentation result
image, where Green: peritumoral edematous/invaded tissue, red: necrotic tumor core,
yellow: GD-enhancing tumor.



SLf-UNet 11

5 Conclusion

We propose a novel 2D multi-modal spatial-frequency segmentation algorithm
for brain tumor MRI, validated on BraTS 2019 and 2020. Experiments show
our network outperforms most cutting-edge methods. The core innovation is in-
corporating frequency domain information through adaptive Fourier transforms,
learnable convolution kernels, and an efficient upsampling module zFUP. Future
work will explore advanced frequency integration techniques to further improve
tumor segmentation and broader medical image analysis.
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