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Abstract 
Motivation: Cystic Fibrosis (CF), characterized by its profound impact on respiratory and 
digestive functions, arises due to genetic mutations in the CFTR gene on chromosome 7. Despite 
progress in medical science, treatments like ivacaftor and lumicaftor offer incomplete restoration 
of chloride function and are burdened by significant complications and side effects, highlighting 
an unmet medical need. The emergence of gene editing technologies, particularly those utilizing 
chemically modified mRNA, has shown promise in addressing the underlying genetic mutations 
associated with CF. Concurrently, Lipid Nanoparticles (LNPs) have revolutionized the 
pharmaceutical industry, with mRNA-based therapies at the forefront of innovation. However, 
the formulation of LNPs presents challenges concerning stability and biocompatibility, 
underscoring the necessity for innovative solutions. 
Results: This research introduces LNP-VACCO, a novel approach that seamlessly integrates 
cutting-edge technologies such as Variational Autoencoders (VAEs) and 
Combinatorial-Chemistry. By leveraging principles of lipophilicity encoded in Simplified 
Molecular-Input Line-Entry System (SMILES) strings, LNP-VACCO autonomously navigates 
the vast landscape of LNP compositions, offering an efficient and systematic exploration of 
potential formulations. The methodology involves a sophisticated three-step unsupervised deep 
learning process, wherein the model iteratively refines lipid constituent compositions to optimize 
LNP performance. Validation experiments conducted in vitro, involving the synthesis of lipids 
and subsequent transfection into HeLa mammalian cells, demonstrated promising results 
regarding encapsulation efficiency, cell viability, and other characteristics. This research 
represents a significant leap forward in enhancing the efficacy of nanoparticle-based drug 
delivery systems, offering hope for effective treatments for CF and other genetic disorders. 
 

 



 

1. Introduction 
Cystic Fibrosis (CF) is a complex genetic disorder that profoundly affects both the 

respiratory and digestive systems. At the core of this condition lies the abnormal composition of 
mucus within the airways of the lungs (NIH, 2023). Unlike the thin, watery mucus found in 
healthy individuals, the mucus in CF patients is notably thicker and stickier. This aberrant mucus 
consistency poses significant challenges, obstructing the air passages and impeding the normal 
flow of air into and out of the lungs. The underlying cause of CF can be traced back to a 
mutation in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene (Brian & 
Steven, 2009). Normally, this gene encodes a protein that regulates the movement of chloride 
ions across cell membranes, crucial for maintaining proper hydration levels in various tissues, 
including the epithelial lining of the lungs and digestive tract. However, in individuals with CF, 
this gene mutation disrupts the normal function of the CFTR protein, leading to the production of 
thick, sticky mucus characteristic of the disease. Historically, CF has been associated with a 
significantly shortened lifespan, often resulting in premature death, particularly in childhood. 

Lipid Nanoparticles (LNPs) are an effective drug encapsulation delivery system for 
nucleic acids (Mashima & Takada, 2022). They are currently used in drug delivery, specifically 
for gene editing, cancer immunotherapy, vaccines, and other therapeutic materials. The basic 
mRNA-LNP composition consists of four main lipid components: an ionizable cationic lipid, 
cholesterol, phospholipid, and a PEG-lipid (Figure 1). It comprises a polar head group, a 
hydrophobic tail region, and a linker between the two (Hou et al., 2021). The cationic ionizable 
lipid, crucial for encapsulating nucleic acids in LNPs and releasing them into the cytosol for 
disrupting endosomal membranes, plays an essential role in endosomal uptake (Sun & Lu, 2023). 
The cationic ionizable lipids are molecules with a positively charged tertiary amine that are 
uncharged in regular, neutral conditions but become positively charged in acidic conditions. The 
Polyethylene Glycol (PEG)-lipid, making up 1.5% of the total composition, impacts the size and 
uniformity of the LNPs, prevention of LNP aggregation, and stability during preparation and 
storage. The PEG-Lipids are also used as influential factors in the efficiency of encapsulating 
nucleic acids, the duration of circulation in the body, distribution in vivo, transfection efficiency, 
and the immune response (Sun & Lu, 2023). Cholesterol is used in LNPs to stabilize lipid 
bilayers by filling gaps between phospholipids (Cheng & Lee, 2016). Phospholipids play 
essential roles in improving encapsulation and cellular delivery of LNPs (Hald Albertsen et al., 
2022).  

LNPs are loaded with nucleic acids known as oligonucleotides (ONs), consisting of 
mRNA, siRNA, or DNA. LNPs utilize receptor-mediated endocytosis to enter cells. When they 
bind to a cell, they become enclosed in an endosome. The acidic environment inside the 
endosome protonates the ionizable lipid. This positive charge leads to a structural change in the 
nanoparticle, helping it escape from the endosome and release its nucleic acid cargo into the 
cell's cytoplasm (Cross, 2021). The ON will then enter the desired organelle, for instance, the 
nucleus for DNA and the ribosomes for mRNA. The endosome will combine with the lysosome 
to produce an endolysosome, which will further degrade within the cell (Figure 2).  



 

Current treatment options for CFTR modulators, such as lumifactor and ivacaftor, 
designed to target the underlying genetic defect in CF by restoring chloride transport across cell 
membranes, have shown remarkable efficacy in some respects, but have key limitations such as 
restriction, non-significant treatment responses, interaction with other enzymes, and significant 
side effects (Rafeeq & Murad, 2017). While composing LNP treatments, however, a main 
concern includes the time and financial investment required for LNP optimization. Optimization 
for LNPs claims to be such a difficult process in the lens of bioavailability, design, synthesis, 
characterization, and testing of the overall molecule, taking months to years while incurring 
major laboratory costs (Ball et al., 2016, Karl et al., 2023).  

 
2. Methodology 

2.1 Combinatorial Chemistry 
Combinatorial chemistry is a synthesis strategy that enables the simultaneous production 

of large numbers of related compounds. The approach, when combined with high-throughput 
screening and computational methods, has become integral to the lead discovery and 
optimization process in the pharmaceutical industry (Apell et al., 2017). Combinatorial chemistry 
involves the generation of a large array of structurally diverse compounds, called a chemical 
library, through systematic, repetitive, and covalent linkage of various “building blocks”. Once 
prepared, the compounds in the chemical library can be screened for individual interactions with 
biological targets of interest (Liu et al., 2017). This is used in the paper when the four different 
“building blocks” of LNPs are used in combination to construct the particle. The structures of the 
four different lipids that are used are also given. It is important, however, to note the structural 
differences between these components. For example, the large PEG-lipid tails and the aromatic 
cholesterol.  

 
2.2 Variational Autoencoders 

Variational Autoencoders (VAEs) are a type of deep generative model, part of 
unsupervised learning. A VAE is an autoencoder—a type of neural network—that is trained with 
regularization on its encodings distribution. This ensures that its latent space (the space where 
data is represented in a compressed form) has good properties for generating new data (Rocca, 
2020). An autoencoder is a neural network architecture composed of an encoder and a decoder. 
The encoder compresses the input data into a latent space representation, and the decoder 
reconstructs the original input data from this compressed representation (Figure 3). The latent 
space is a low-dimensional representation of the input data. Regularizing the latent space ensures 
that it has desirable properties, such as being continuous and smooth, which enables effective 
data generation. VAEs generate new data by sampling from the latent space and decoding these 
samples using the decoder network. By learning the distribution of data in the latent space, VAEs 
can generate new data points that resemble the training data. Variational inference is a statistical 
method used to approximate complex probability distributions. In VAEs, the regularization 



 

process is closely related to variational inference, as it involves approximating the true posterior 
distribution of the latent variables given the observed data (Cemgil et al., 2020). 
 
2.3 Application of VAEs: The Encoder/Decoder 

The VAE-Bayesian interference method is implemented in this study as it allows for a 
continuous, molecule-based algorithm that can derive features from its own latent space. As the 
input is a valid Simplified Molecular-Input Line-Entry System (SMILES) entry of an LNP, the 
VAE traverses through its encoder/decoder network recognizing the principal components of the 
entry. This model is differentiable, meaning it links molecular representations to desirable 
properties and enables efficient gradient-based optimization in chemical space. As the function is 
established as differentiable and continuous, it allows for Bayesian inference to select the 
informative compounds and for Gaussian optimization. The code is built using Keras and 
Tensorflow for the ML and supplied with libraries such as rdKit, PubChem, Numpy, and Pandas. 
This encoder/decoder system is made up of deep neural networks, powered by principles of 
linear algebra. The encoder is made based on Relational Graph Convolutional Networks 
(R-CGN).  

The goal of the encoder is to slowly chip away at the input dimensionality by calculating 
the eigenvector of the Laplace order - or the differential operator of the divergence of the 
gradient space - L. The well-known Fourier transform and the corresponding eigenfunction is 
computed. (Thanapalasingam et al., 2022) It is crucial to note that the Laplace transformation is 
merely another transformation on a matrix. Therefore, the eigenspace before and after will be 
retained. An eigenvector L with its corresponding eigenvalue will be similar to the complex 
exponential at a given frequency. A popular eigenvalue decomposition, further explored in the 
application, is the well-known L = UλUT where the Ith column of U is the eigenvector Ui and λl 
is the corresponding eigenvalue (Zhang et al., 2019).  

The main inputs for the encoder are the adjacency and feature matrices, given by the 
previously defined hyperparameters. While data processing, the data is turned into 
rdKit.Chem.Mol objects through defined SMILES-to-Graph and vice versa functions. After the 
relational convolutions, the dimensionality of the graph is then further reduced from 2D to 1D so 
that the molecule can then be easily represented for random selection later on. However, the 2D 
dimensionality is retained such that it represents the latent space. It then enters into a loop where 
it applies densely connected layers with ReLU activation and dropout regularization to the 
pooled features. Finally, the output layers, z_mean and log_var, the quantitative representations 
for the latent space, are compressed for output. The two refer to the Gaussian distribution and the 
mean of the latent space. These two metrics will be used in the loss function. 

The decoder reconstructs the primarily inputted SMILES from the latent space. The 
decoder, in essence, works oppositely from the encoder. After defining the latent (space) input, it 
applies densely connected layers inside the latent space to learn a nonlinear mapping from the 
latent space representation to the adjacency matrix and feature matrix. Therefore, the generated 
outputs capture meaningful graph structures and node features while mitigating the risk of 



 

overfitting. The decoder’s dense layers are then mapped to a continuous adjacency tensor and 
reshaped to match the specified adjacency shape to generate a representation of the adjacency 
matrix of the graph. After some symmetrization and applying softmax functions, the final 
adjacency and feature matrices are outputted.  

 
2.3 Chemical Composition and Optimization 

 The first step of the process is manned by combinatorial chemistry to form different 
syntheses of LNPs. After manually retrieving many different cationic ionizable lipids, 
cholesterols, phospholipids, and PEG-Lipids, a class was built using RDKit to combine the 
molecules in a reasonable setting. The client class iterates through the database, identifying the 
SMILES input of each compound. The canonical smiles were manually inputted at the beginning 
for easy access. Following this, it selects a “scaffold” compound, the cationic ionizable lipid. It 
selects the other three molecules and processes the input molecules to perform R-group 
decomposition concerning the given scaffold. Then, it uses rdRGroupDecomposition from 
RDKit to decompose the molecules into core and R-groups. The code then generates 
combinatorial libraries of molecules by enumerating possible combinations of R-groups on the 
scaffold. The combinations are established by creating a “bond” between the molecules using 
RDKit’s Chem.RWMol. After the composition, they are appended to one large array of LNPs.  

In the latent chemical space, the features, or properties, of the compounds were reduced 
to lower dimensionality and then optimized using Gaussian properties. The definition of a VAE 
is like any other ML model, built on its loss function, but specialized with random latent space 
sampling. A VAE is built by maximizing its loss function. (Boyar & Takeuchi 2023). Here, the 
objective function consists of two terms, a reconstruction loss, and a KL divergence loss. The 
reconstruction loss term measures how well the model reconstructs the input data, while the KL 
divergence term encourages the learned latent space to resemble a predefined prior distribution. 
The hyperparameter β is used to balance the influence of the reconstruction loss and the KL 
divergence term. A higher β places more emphasis on matching the latent space distribution to 
the prior, while a lower β prioritizes reconstruction accuracy. When β equals 1, the objective 
function reduces to that of a standard VAE, where the model aims to maximize a lower bound on 
the log-likelihood of the input data distribution. β-VAE refers to VAEs where β is not equal to 1, 
allowing for different trade-offs between reconstruction accuracy and latent space regularization. 
The encoder network maps input data points to mean (µ) and standard deviation (σ) vectors in 
the latent space. These parameters are used to sample latent space representations for the input 
data points. The sampling process involves generating a random variable (ε) from a standard 
normal distribution and combining it with the mean and standard deviation vectors. The decoder 
network takes latent space representations as input and generates reconstructed data points. 
Given a latent variable (z), the decoder produces a reconstructed data point (x̂) by sampling from 
the conditional probability distribution pθ(x | z). The Kullback-Leibler (KL) divergence in 
variational autoencoders (VAEs) quantifies the discrepancy between the encoder's learned 
approximate posterior distribution and a predefined prior distribution over latent variables, 



 

serving as a regularization term to ensure the learned latent space aligns with prior assumptions. 
Minimizing this divergence, alongside reconstruction loss, facilitates the acquisition of 
informative latent representations while balancing fidelity to input data with the model's 
generative capacity. 

Following the development of the model and exploration of the latent space to identify 
the most suitable representation using the decoder, the code undergoes a validation process to 
confirm the chemical validity of the output. Occasionally, the VAE may generate SMILES 
representations for molecules that are not chemically feasible. To address this, the code utilizes a 
function within a class, leveraging RDKit modules like Chem.MolFromSmiles, to assess the 
viability of the molecule. This involves iterating through the generated bonds to ascertain the 
practical feasibility of the molecule. Figure 4 shows a comprehensive overview of the full 
optimization and validation methodology.  

 
 

3. Experimental Section 
3.1 Materials 

This study selected 8 different lipid formulations from the optimized outputs of the VAE 
model built. The synthesis materials include 1,2-dioleoyl-3-trimethylammonium-propane 
(DOTAP), 1,2-Distearoyl-sn-glycero-3-phosphocholine (DSPC), 
1,2-dimyristoyl-rac-glycero-3-methoxypolyethylene glycol-2000 (DMG-PEG 2000), 
Cholesterol, 3,6-bis[4-[bis(2-hydroxydodecyl)amino]butyl]-2,5-piperazinedione (CKK e-12), 
N-(4-carboxybenzyl)-N,N-dimethyl-2,3-bis(oleoyloxy)propan-1-aminium (DOBAQ), 
6-((2-hexyldecanoyl)oxy)-N-(6-((2-hexyldecanoyl)oxy)hexyl)-N-(4-hydroxybutyl)hexan-1-amin
ium (ALC-0315), DLin-KC2-DMA (KC2),  1,2-Dioleoyl-sn-glycero-3-phosphoethanolamine 
(DOPE), 1,2-Dioleoyl-sn-Glycero-3-Phosphocholine (DOPC), 
1,2-Dimyristoyl-rac-glycero-3-methylpolyoxyethylene-5000 (DMG-PEG 5000), 
1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[carboxy(polyethylene glycol)-2000, ester] 
(DSPE-PEG2000), N-(Methylpolyoxyethylene 
oxycarbonyl)-1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine (DMPE-PEG 2000), CleanCap 
Firefly Lucifarase, PBS, and ethanol.  Size, polydispersity, and zeta potential were characterized 
by a Malvern Zetasizer ZS Dynamic Light Scanner. Assays were run with RiboGreen Reagent 
for encapsulation efficiency and CellTiter-Fluor Cell Viability for cell viability.  
 
3.2 LNP Preparation through Pipette Mixing 

Lipid Nanoparticles (LNPs) were prepared using a pipette mixing method to ensure 
uniformity in composition and facilitate the encapsulation of mRNA for efficient delivery. The 
LNP formulations consisted of a mixture of ionizable lipids, phospholipids, and PEG lipids, with 
cholesterol included to enhance membrane stability. The formulation process involved dissolving 
the lipid components in an organic solvent and then mixing them in precise ratios to achieve the 
desired lipid composition. After pipette mixing, the lipid mixture was hydrated with an aqueous 



 

buffer, followed by sonication to ensure uniform nanoparticle size and improve stability for 
efficient mRNA encapsulation and delivery. Eight different LNP formulations were prepared, 
each with distinct lipid combinations: LNP1, LNP2, and LNP3 utilized DOTAP or CKK-e12 as 
the ionizable lipids, DSPC as the phospholipid, and DMG-PEG2000 or DMG-PEG5000 as the 
PEGylated lipid, with cholesterol as a stabilizing agent. LNP4 incorporated LNP4DOTAP as the 
ionizable lipid, while LNP5 featured DOBAQ with DSPE-PEG2000-COOH-NHS for surface 
modification, and LNP6 included ALC-0315 with DSPE-PEG2000-Mal. LNP7 combined 
DOTAP with DOPC and DMPE-PEG2000, and LNP8 used KC2 as the ionizable lipid with 
DOPE and DMPE-PEG2000. The components were mixed thoroughly using a pipette, ensuring 
consistent lipid dispersion before subsequent steps in the LNP formulation process. This method 
provides an efficient means of preparing LNPs for transfection and drug delivery applications. 
 
3.3 Assays / Collected Measurements  
 Key assays were conducted to evaluate the quality and performance of the prepared 
LNPs, including particle size and polydispersity index (PDI) measurements, as well as 
encapsulation efficiency. Particle size and PDI were determined using dynamic light scattering 
(DLS) to assess the uniformity and stability of the nanoparticles. Encapsulation efficiency was 
evaluated to measure the proportion of mRNA successfully encapsulated within the LNPs, 
utilizing fluorescence-based quantification methods. These measurements provided critical 
insights into the structural and functional attributes of the LNP formulations, ensuring their 
suitability for subsequent biological testing. 
 
3.4 Transfection Efficiency  
 Transfection efficiency was assessed using the OneGlo™ and CellTiter-Fluor™ assays to 
measure the ability of the LNPs to deliver mRNA and maintain cell viability. HeLa cells were 
transfected with the LNP formulations encapsulating luciferase-encoding mRNA. The OneGlo™ 
assay quantified luciferase expression as a measure of successful mRNA delivery, while the 
CellTiter-Fluor™ assay evaluated cell viability to ensure minimal cytotoxicity of the 
formulations. These assays provided a comprehensive assessment of each formulation's 
transfection performance and biocompatibility, highlighting the most effective candidates for 
further development. 
 

4. Results 
4.1 Computational Output and Optimization 

The computational model developed for LNP optimization operates in four distinct 
phases: combination, VAE optimization, mixability testing, and data analysis. The model 
generates lipid nanoparticle formulations in the form of SMILES strings, enabling systematic 
exploration of the lipid design space. A Variational Autoencoder (VAE) was employed to learn 
latent representations of lipid structures and generate optimized compositions. This approach 
allowed for significant enhancements in encapsulation efficiency, achieving an increase from 



 

30% to 75% while maintaining biocompatibility. The dynamic hyperparameter training allowed 
for fine-tuning of the model to grant nuanced exploration of the latent space and assembling of 
the chemical compounds. 

The mixability test, an integral part of the pipeline, further refined the proposed LNPs, 
ensuring the practical compatibility of lipid constituents. The data analysis phase compared the 
generated LNP formulations side-by-side and evaluated their averages, demonstrating the 
efficacy of the VAEs in generating optimized LNPs. Although the model's runtime was 
substantial, it successfully balanced the tradeoff between computational complexity and the 
accuracy required for meaningful optimization. 
 
 
4.2 In-Vitro Validation 
 In-vitro experiments were conducted using HeLa cells to validate the efficacy of the 
computationally optimized LNPs. The formulations were assessed for encapsulation efficiency, 
cell viability, and overall delivery performance. The relative size and polydispersity of the LNPs 
ranged from ~500-800 nm, with a 0.3 nm variance, fitting the proper characteristic profile of a  
suitable LNP. Furthermore, the encapsulation efficiency increased to a range of ~80% from a 
conventional 30% rate. This shows that the mRNA loaded into the LNP was retained, and did not 
leak outside the particle. Cell viability was measured using the CellTiter-Fluor™ assay, with 
values consistently ranging from ~104–115%, indicating that the optimized LNPs were 
biocompatible and non-toxic. Transfection efficiency was evaluated using the OneGlo™ 
luciferase assay, which quantified the expression of luciferase-encoded mRNA delivered by the 
LNPs. The results confirmed that the computationally refined LNPs achieved high transfection 
rates, demonstrating their potential for effective mRNA delivery while maintaining cellular 
health (Figure 5). 
 
4.3 Comparison with Existing Formulations 
 The optimized LNP formulations were benchmarked against existing formulations to 
evaluate improvements in efficacy and safety. Standard LNPs typically achieve encapsulation 
efficiencies of ~30–50%, whereas the computationally optimized LNPs achieved a significantly 
higher efficiency of ~60–80%. Additionally, the optimized formulations exhibited enhanced cell 
viability, outperforming conventional formulations that often demonstrate moderate cytotoxicity. 
The particle size and PDI values of the optimized LNPs were consistent with those of existing 
formulations, ensuring stability and uniformity. These results underscore the advantages of 
incorporating computational tools, such as VAEs, into the design process, offering a systematic 
approach to improving nanoparticle-based drug delivery systems. 
 

5. Discussion  
5.1 Summary of Findings 



 

 This study demonstrated the effectiveness of the pipeline in optimizing lipid nanoparticle 
formulations through computational modeling. The application of VAEs and combinatorial 
chemistry resulted in a ~45% increase in encapsulation efficiency, improving from a 
conventional 30% to 75%. Cell viability remained stable, ranging from 104-115%, indicating 
that the optimized LNPs were nontoxic and supported cellular health. Additionally, the LNPs 
maintained a consistent particle size of 500-800 nm and a low polydispersity index (~0.3 
variance), ensuring stability. These findings suggest that the computational approach 
significantly enhances LNP efficacy and biocompatibility for mRNA-based therapeutics.  
 
 
5.2 Advantages Over Existing Approaches 
 The implementation of VAEs enabled a systematic and data-driven exploration of lipid 
compositions, allowing for efficient formulation discovery. The model autonomously identified 
high-performance LNPs, optimizing time and resources. The increase in encapsulation and 
payload efficiency highlights the model’s ability to balance potency and safety. Furthermore, the 
computational approach is scalable and adaptable, making it suitable for large-scale screening 
and development. 
 
5.3 Limitations and Computational Challenges 
 The efficiency of the model is another point to be considered, which was a tradeoff that 
had to be made. The model goes through four phases: the combination, the autoencoder, the 
mixability, and the data analysis. Therefore, the pipeline is computationally expensive. The 
combinatorial nature of the lipid formulation brings about an O(n4) complexity. The optimization 
process also required fine-tuning over 100 hyperparameters, necessitating extensive testing to 
ensure optimal performance. Additionally, while in-vitro validation confirmed the model’s 
predictions, in-vivo studies are needed to assess the pharmacokinetics and other relevant 
biological responses of the particles.  
 
 

6. Conclusion 
 This research presents a novel method for optimizing LNPs using VAEs and a 
continuous, accessible input of SMILES. The models eliminate the need to manually select 
compounds by allowing for a hands-free autoencoder neural network to explore a gradient-based 
neural network and decode it further in a SMILES string input. The VAE system accounts for 
exceptional abilities to capture distinctive features from the molecular dataset and also extracts 
features from the latent space. After continuously relearning from the results of the loss 
functions, the model has an improved accuracy with every epoch. By leveraging VAEs, the 
model successfully increased encapsulation efficiency while maintaining stability and high cell 
viability, addressing key challenges in mRNA-based therapeutics. 



 

 Future work in this research involves extending the combinatorial chemistry phase into 
precision medicine. In this work, an optimization system was implemented for current LNPs 
(constructed with previous chemistry) but follows a one-size-fits-all mechanism. Recognizing 
the inherent variability in endosomal escape, delivery kinetics, and dissipation times across 
individual patients—attributes applicable to all pharmaceuticals—an imperative future avenue is 
to consider patient-specific factors during the formulation process. The LNPs will then be 
tailored to individualized specifications encompassing size, composition, and surface properties. 
Such precision customization not only holds promise in ameliorating therapeutic outcomes but 
also serves to mitigate the likelihood of adverse reactions. An additional enhancement entails 
aligning the structural composition of lipid nanoparticles (LNPs) with the specific mRNA 
payload they are intended to deliver. 
 Moving forward, this research endeavor will advance towards rigorous in-vitro and 
in-vivo testing, aiming to validate and refine the findings obtained thus far. By subjecting the 
optimized LNPs to laboratory experimentation, a deeper understanding of the optimization 
process will be gained. Through systematic testing in controlled laboratory settings, the efficacy 
and safety of the optimized LNPs can be comprehensively evaluated, providing valuable insights 
for further optimization and potential therapeutic application. This work underscores the 
transformative potential of AI-driven drug delivery optimization, paving the way for 
next-generation mRNA therapies and precision medicine solutions. 
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