
EasyChair Preprint
№ 8146

Gene Prediction Using Deep Learning

Akhil Chaudhary, Divesh Kumar Singh, Tanmeya Kansal and
Sachin Jain

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

May 31, 2022



Gene Prediction Using Deep Learning 

 

Akhil Chaudhary1,a, Divesh Kumar Singh2,a, Tanmeya Kansal3,a, Sachin Jain4,a* 
aABES Institute of Technology 

 

Abstract: Over the last decade, different genomes have been sequenced in both plants and animals. 

The lower cost of genome sequencing shows that it has a significant impact on the research 

community in terms of genome annotation. Genome annotations help us understand the biological 

function of the sequences of these genomes. Gene prediction is one of the most important aspects 

of genomic annotation and  is an open research issue. This article provides a theoretical overview 

of soft computing technologies for gene prediction. First, I will explain the questions related to the 

problem of gene prediction. Next, before discussing its application to gene prediction, let's take a 

brief look at soft computing technology. A list of various soft computing technologies for gene 

prediction is also available. Finally, some limitations of the direction of current  and future research  

are presented. 

 

Keywords: Gene, Gene prediction, Convolutional Neural Networks, ORF

 

1. INTRODUCTION 
Deciphering the genetic regulatory code that determines gene expression is a key task in molecular 

biology. Deep learning algorithms have changed prediction in a number of fields, and they have 

the capability to do so again in genetics. CNNs and other deep learning and machine learning 

technologies are largely to blame for a revolution in natural language and image processing. These 

techniques are significantly used in modern world artificial intelligence technologies such as facial 

recognition, speech recognition, and self-driving vehicles. Deep learning methods are used in 

molecular biology, agriculture, genetics and medicine. 

 

Essential protein identification is a hot topic and a difficult problem for scientists since essential 

proteins are necessary for cell survival. To overcome this challenge, a number of computational 

techniques have lately been presented. Traditional centralized approaches, on the other hand, do 

not accurately map the topological characteristics of biological networks. Identifying essential 

proteins is also an issue of asymmetry in learning. Few existing approaches based on shallow 

machine learning, on the other hand, are intended to deal with unbalanced attributes. 

 

Essential genes are a group of genes that are required for an organism's survival or reproduction. 

Understanding the basic requirements of an organism, identifying illness genes, and discovering 

novel drug development targets all involve the ability to predict gene thinking. Using experimental 

wet lab approaches to find important genes is time-consuming, labor-intensive, and expensive. 

Many are anticipating essential genes by examining the association between gene essentiality and 



all sorts of biological information, thanks to the accumulation of gene essential data in several 

model species and human cell lines. A technique of calculation has been presented. 

 

1.1. Deep Learning 

1.1.1. Architecture and Algorithm 

Two or two artificial neural networks may readily be described as deep learning architectures 

(ANNs). More hidden layers are being added in order to improve prediction accuracy. DL employs 

more hidden layers than standard artificial neural networks. Weighting is used in classic deep 

neural networks (DNN). To obtain the output[1], A nonlinear activation function is applied to the 

bias-corrected input value. As a result, the goal of DNN training is to optimize the network weights 

so that the loss function is as little as possible. The higher-level characteristic is defined using each 

lower-level feature. In HCS applications, deep learning model technology comprises speech 

recognition [2], [3] , image analysis [4], text mining[5], health monitoring [6], [7], drug discovery 

[8], computer vision [9], object identification[10], and deep learning model technology [11]–[14]. 

The classification of typical deep learning architectures for HCS data processing and HCS-selected 

applications, particularly illness detection. 

One of the applications that has been thoroughly examined utilizing the DL model is the one 

depicted in this diagram. 

 

1.1.2. Convolutional Neural Network 

CNN is a deep learning based architecture that is supervised. It is primarily employed in image 

analysis applications [15], [16]. A CNN is made up of three layers: a convolutional layer, a pooling 

layer, and a fully connected layer. Input picture is given to the kernel or filters in the convolution 

layer to create various feature maps. To keep the number of weights low, the pooling layer shrinks 

each feature map. Downsampling or subsampling is the term for this procedure. Global pooling, 

maximum pooling, and average pooling are examples of diverse pooling strategies. After these 

layers, the 2D feature map is transformed into a 1D vector and then classified using a fully 

connected layer. The Convolutional Neural Networks approach for image categorization is shown 

in Figure 1. 

 

 
Adapted to a [17] Convolutional Neural Networks architecture with two folding layers (Figure 1). 

A pooling / subsampling layer follows each convolution layer. The result of the last pooling layer 

ID is sent to the fully connected layer and the output layer. 



Figure 1 shows a Convolutional Neural Networks design with two folding layers. A pooling / 

subsampling layer follows each convolution layer. The result of the last pooling layer is fully 

connected. supply The last output layer is Layer 35. Deepr was proposed in [18] as an unique end-

to-end DL for extracting key information from medical records and predicting anomalies. To 

forecast unexpected restart after a discharge, convolutional neural networks are used to a collection 

of discrete components. Then, using DL technology, Cheng [19] investigated the temporal aspects 

of the patient's EHR. In the second layer of the suggested DL, the convolution operator was applied 

to the temporal dimension of the patient's EHR matrix. To acquire advantage, the model leverages 

temporal fusion methods such as early fusion, late fusion, and delayed fusion. The EHR's temporal 

smoothness during the learning phase. 

 

 

 

Dataset 

For training and testing the model, two datasets: training and testing datasets were utilized. The 

datasets were utilized by Orphelia [20] and MGC [21]. The data for training yielded seven million 

ORFs from 700 bp segments. Gene annotations were obtained from GenBank [22], and fragments 

were taken from 131 fully sequenced prokaryotic genomes [20]. The data for training was parted 

into 10 mutually incompatible pieces on the basis of preset GC ranges. According to a recent 

research [21], developing many models on the basis of GC content is preferable than establishing 

a single model since fragments with comparable GC content have similar attributes such as codon 

usage. Segments of 700 bp in length were evaluated using three archaeal and eight bacterial 

genomes. The genomes utilized in the tests are listed in Table 1 along with their GenBank 

accession numbers and GC content. The 700 bp pieces were excised at random to provide each 

training genome a 1-fold genome coverage and each genome in the testing dataset a 5-fold genome 

coverage. 

 

The Proposed Method 

Data initialisation, training, Data classification, and Data post-processing are the three primary 

aspects of our suggested method. Before feeding the ORFs into the CNN models, we numerically 

encode them. For the classification step, ten CNN models are created. Finally, the candidate ORFs' 

gene probabilities are approximated using CNN classifiers, and the final gene set is chosen using 

a greedy approach. 

 

 

 

Data Pre-processing 
As in previous studies[23]–[25], character-level one-hot encoding to represent the ORFs were 

used. One-hot encoding is a method for numerically representing categorical data such as 



nucleotides. Each nucleotide is shown as a single-hot vector with all zero entries except one at a 

given position. Each ORF is represented by a L4 matrix of length L. Figure 1 depicts the one-hot 

encoding of a DNA strand. 

 
 

Training 
In 1998, LeCun [27] created CNNs to recognise handwritten characters on bank checks.Natural 

language processing, Image and video recognition, and Computational biology are just a few of 

the domains where CNNs have lately been applied. CNNs are made up of layers of convolutional, 

nonlinear, pooling, and fully connected. The convolutional layer is the most important part of a 

CNN. It processes incoming data using a filter matrix, which is a matrix of parameters that is 

updated by a learning algorithm [26]. Filters with a window size of n glide across the input data to 

form a feature map, and a dot product is created between the input data and filter parameters. The 

first convolutional layer may catch sequence patterns, whereas succeeding convolutional layers 

can capture more intricate patterns [1], [28]. The output is subjected to a non-linear activation 

function known as the rectified linear unit (ReLU). The pooling layer is then utilized to lower the 

computational cost, use of memory and number of parameters by controlling over-fitting. It 

estimates the max result from a small window [15] before calculating the probability of prediction 

using a fully linked layer. 

 

We utilize 1D CNNs because DNA strands are 1D arrays of nucleotides. Holdout validation is 

used to separate data into training and validation sets. The training dataset is utilized for 70% of 

the time, while the validation dataset is used for 30% of the time. The validation set is used to test 

models that have been trained with various hyperparameters. The findings of the GC range one 

validation dataset are used to choose hyper-parameters. The number of layers, filters, and filter 

window size are all depending on the data and application. [25], [29] are two examples. To 

determine the ideal settings for our problem, we use the Zeng et al testing-based method and train 

several models with different configurations. To begin, we'll use 16 filters and try out various filter 

window sizes: 5, 10, 21, 24, and 30. According to our research, a window size of 21 gives a 

maximum accuracy of 97.71 percent. After that, we put 16, 32, 64, 128, and 200 filters to the test. 

The 200 filters are the most precise, with an accuracy of 97.92 percent. Then we test two layers 

with 64 and 200 filters, which result in a 98 percent accuracy. Table 2 shows cross-validation of 

our model with various filter window widths and number of filters. Because it is adequate for most 

applications, we chose a batch size of 256. Finally, as shown in Fig. 2, the model with the best 

performance is picked to build the final CNN models from the whole training dataset. 



 

We calculate the accuracy of CNN-MGP models for each GC range using cross-validation. We 

employ hold-out validation, which is a type of cross-validation method. The training dataset is 

divided into two sections: 70% is for training and 30% is for validation. Both the training and 

validation datasets have the same class percentage as the whole dataset. CNN-MGP is trained on 

a training dataset before being evaluated on a validation dataset. The accuracy of CNN-MGP 

models is shown in Table 3 and varies from 98 to 99.1 percent. CNN models with a larger GC 

range outperform ones with a smaller GC range. 

 

Every model is divided into six tiers. In order to improve CNN performance while reducing 

overfitting, we add a dropout layer that removes parts of its output [30]. We chose a dropout rate 

of 50% as our target. After that, the result is converted to a 1D vector and put into a fully connected 

layer. A 128-neuron fully connected neural network is the fifth layer. Following that, we use a 

dropout layer. Atlast, a softmax output layer is utilized to determine the gene probability. [31], a 

lightweight Python deep learning programme, was used to create the CNN models. It operates on 

GPUs and is built on TensorFlow [32]. 

 

Data Classification and Post-Processing 
For predicting genes for each metagenomics fragment, we get all full and partial ORFs from that 

fragment. Any whole ORF starts with an ATG, CTG, GTG, or TTG start codon, continues with a 

succession of codons, and ends with a stop codon. In an incomplete ORF, there are no start, stop, 

or both codons. After that, using a one-hot encoding approach, the ORFs are numerically encoded. 

We next choose an appropriate CNN model to score each ORF based on the GC content of the 

segment. CNN's output is the chance that an ORF encodes a gene. ORFs having a chance higher 

than 0.5 are considered candidate genes. There may be overlap between certain candidate genes, 

and only one candidate gene can be chosen. Genes in prokaryotes have a maximum overlap of 45 

kb [33]. As a consequence, a greedy algorithm [20], [21] is used as a post-processing step to 

remove any overlapping genes and offer a final list of candidate genes. Because the candidate gene 

with the best likelihood is probably the required gene, we reject any putative ORFs that overlay it 

by more than 60 bp. 

 

Performance Measures 

Gene prediction achieved performance is evaluated by comparing the algorithm's predictions to 

the true gene annotation in fragments acquired from GenBank [22]. When the ORF aligns with at 

least 60 bp of a known gene in the same reading frame, it is considered a true positive (TP). A 

false positive, on the other side, arises when the predicted ORF is incorrectly recognised as a gene 

(FP). A false negative (FN) is also reported when a gene is incorrectly identified as a non-coding 

ORF. The prediction performance is assessed using the sensitivity, specificity, and harmonic mean. 

Sensitivity is a parameter that quantifies the percentage of genes correctly detected and is used to 

determine the likelihood of detection. Meanwhile, specificity is utilised to examine the 



predictability of the findings, which measures the percentage of anticipated genes that are 

annotated. In contrast to the Orphelia and MGC gene prediction methods, The positive probability 

score as a scale of specificity was utilized. The means are calculated by the formulas below: 

 

Sensitivity=TPgene/(TPgene+FNgene) (1) 

Specificity=TPgene/(TPgene+FPgene) (2) 

HarmonicMean=Spec×Sens×2/(Spec+Sens) (3) 

 

Results 

CNN-MGP models have been added to the test on a different dataset. Table 1 exhibits segments 

of 700 bp in length from the testing collection of eight bacterial genomes and three archaeal 

genomes. The CNN-MGP prediction is compared to the genuine gene annotation in GenBank 

[22]. The trials are also repeated ten times per genome. The mean and standard deviation for the 

sensitivity, specificity, and harmonic mean of 10 random replications per genome are computed 

as shown in Table 4. CNN-MGP has an average specificity of 94.87 percent, an average 

sensitivity of 88.27 percent, and an average harmonic mean of 91.36 percent. The average 

standard deviation of the harmonic mean is 0.14 percent. 

 

We compare CNN-MGP against three state-of-the-art gene prediction programmes using the same 

test dataset: Orphelia [20], MGC [21], and Prodigal [34]. The contrast is shown in Table 4. In 

terms of sensitivity and harmonic mean, Prodigal surpasses CNN-MGP, whereas CNN-MGP 

excels Prodigal in terms of specificity. Prodigal, CNN-MGP, and MGC outperform Orphelia. On 

average harmonic mean, CNN-MGP outperforms Orphelia by 10%; nevertheless, its overall 

performance is equivalent to MGC's, with both techniques achieving an average harmonic mean 

of 91% for some genomes and MGC exceeding CNN-MGP for others. 

 

 

Table 1: 

Genomes GC content (%) 

GenBank 

accession no. 

Archaeoglobus fulgidus 48.6 NC_000917 

Methanocaldococcus 

jannaschii 31.4 NC_000909 

Natronomonas pharaonis 63.4 NC_007426 

Buchnera aphidicola 26.3 NC_002528 

Corynebacterium jeikeium 61.4 NC_007164 



Chlorobaculum tepidum 56.5 NC_002932 

Helicobacter pylori 38.9 NC_000921 

Prochlorococcus marinus 31.2 NC_007577 

Wolbachia endosymbiont 34.2 NC_006833 

Burkholderia pseudomallei 67.7 NC_006350 

Pseudomonas aeruginosa 66.6 NC_002516 

 

Table 2: 

No. of filters 

No. of 

convolutional 

layers 

Filter window 

size Accuracy 

16 1 5 97.57 

16 1 10 97.68 

16 1 21 97.71 

16 1 24 97.7 

16 1 30 97.65 

32 1 21 97.81 

64 1 21 97.87 

128 1 21 97.89 

200 1 21 97.92 

-64,200 2 21 98 

 

 

 

 

 

Table 3: 

GC range Accuracy 

0–36.57 98 

36.57–41.57 98.4 

41.57–46 98.5 



46–50.14 98.3 

50.14–54.28 98.3 

54.28–58.14 98 

58.14–61.85 98.3 

61.85–65 98.8 

65–68.28 99 

68.28–100 99.1 

 

Table 4: 

Genom

es 

CNN-

MGP   

Orphel

ia   MGC   

Prodig

al   

 Sp Sn HM Sp Sn HM Sp Sn H.M Sp Sn HM 

A. 

fulgidus 

94.95\(

\pm 

{0.21}\

) 

86.15\(

\pm 

{0.19}\

) 

90.33

\(\pm 

{0.16}

\) 

88.57\(

\pm 

{0.21}\

) 

80.58\(

\pm 

{0.17}\

) 

84.38\(

\pm 

{0.16}\

) 

95.04\(

\pm 

{0.14}\

) 

84.13\(

\pm 

{0.23}\

) 

89.31\(

\pm 

{0.15}\

) 

95.79\(

\pm 

{0.15}\

) 

96.13\(

\pm 

{0.08}\

) 

95.96\(

\pm 

{0.10}\

) 

M. 

jannasc

hii 

96.13\(

\pm 

{0.15}\

) 

93.60\(

\pm 

{0.17}\

) 

94.85 

\(\pm 

{0.16}

\) 

95.20\(

\pm 

{0.17}\

) 

90.46\(

\pm 

{0.16}\

) 

92.77\(

\pm 

{0.14}\

) 

97.19\(

\pm 

{0.12}\

) 

92.63\(

\pm 

{0.19}\

) 

94.85\(

\pm 

{0.13}\

) 

95.14\(

\pm 

{0.14}\

) 

95.15\(

\pm 

{0.15}\

) 

95.15\(

\pm 

{0.12}\

) 

N. 

pharao

nis 

96.17\(

\pm 

{0.12}\

) 

82.99 

\(\pm 

{0.28}\

) 

89.09

\(\pm 

{0.18}

\) 

75.99\(

\pm 

{0.34}\

) 

68.74\(

\pm 

{0.34}\

) 

72.17\(

\pm 

{0.33}\

) 

95.28\(

\pm 

{0.12}\

) 

85.79\(

\pm 

{0.20}\

) 

90.29 

\(\pm 

{0.14}\

) 

97.48\(

\pm 

{0.10}\

) 

95.77\(

\pm 

{0.18}\

) 

96.62\(

\pm 

{0.12}\

) 

B. 

aphidic

ola 

97.03\(

\pm 

{0.20}\

) 

92.67\(

\pm 

{0.41}\

) 

94.80 

\(\pm 

{0.26}

\) 

95.54\(

\pm 

{0.28}\

) 

89.40\(

\pm 

{0.33}\

) 

92.37\(

\pm 

{0.22}\

) 

98.01\(

\pm 

{0.19}\

) 

91.11\(

\pm 

{0.37}\

) 

94.43\(

\pm 

{0.23}\

) 

96.65\(

\pm 

{0.27}\

) 

96.97\(

\pm 

{0.26}\

) 

96.81\(

\pm 

{0.25}\

) 

C. 

jeikeiu

m 

95.72\(

\pm 

{0.11}\

) 

87.37\(

\pm 

{0.15}\

) 

91.35 

\(\pm 

{0.09}

\) 

79.52\(

\pm 

{0.22}\

) 

74.23\(

\pm 

{0.23}\

) 

76.79\(

\pm 

{0.22}\

) 

96.13\(

\pm 

{0.11}\

) 

87.70\(

\pm 

{0.23}\

) 

91.72 

\(\pm 

{0.17}\

) 

95.31\(

\pm 

{0.19}\

) 

94.99\(

\pm 

{0.10}\

) 

95.15\(

\pm 

{0.10}\

) 

C. 

tepidum 

94.46\(

\pm 

{0.14}\

) 

81.09 

\(\pm 

{0.28}\

) 

87.24

\(\pm 

{0.10}

\) 

77.51\(

\pm 

{0.22}\

) 

66.95\(

\pm 

{0.23}\

) 

71.85\(

\pm 

{0.21}\

) 

93.42\(

\pm 

{0.14}\

) 

79.08\(

\pm 

{0.24}\

) 

85.65\(

\pm 

{0.18}\

) 

94.35\(

\pm 

{0.14}\

) 

88.15\(

\pm 

{0.19}\

) 

91.14\(

\pm 

{0.11}\

) 

H. 

pylori 

96.24\(

\pm 

{0.15}\

) 

91.22 

\(\pm 

{0.13}\

) 

93.66

\(\pm 

{0.11}

\) 

94.17\(

\pm 

{0.20}\

) 

88.99\(

\pm 

{0.22}\

) 

91.5\(\

pm 

{0.20}\

) 

97.77\(

\pm 

{0.14}\

) 

89.70\(

\pm 

{0.22}\

) 

93.56\(

\pm 

{0.17}\

) 

95.29\(

\pm 

{0.14}\

) 

93.07\(

\pm 

{0.14}\

) 

94.16\(

\pm 

{0.12}\

) 



P. 

marinus 

98.15\(

\pm 

{0.07}\

) 

89.12\(

\pm 

{0.13}\

) 

93.42

\(\pm 

{0.07}

\) 

94.41\(

\pm 

{0.20}\

) 

84.98\(

\pm 

{0.24}\

) 

89.45\(

\pm 

{0.20}\

) 

97.71\(

\pm 

{0.11}\

) 

87.92\(

\pm 

{0.20}\

) 

92.55\(

\pm 

{0.12}\

) 

97.52\(

\pm 

{0.17}\

) 

91.96\(

\pm 

{0.20}\

) 

94.66\(

\pm 

{0.15}\

) 

W. 

endosy

mbiont 

82.71\(

\pm 

{0.38}\

) 

90.90\(

\pm 

{0.27}\

) 

86.61

\(\pm 

{0.27}

\) 

86.24\(

\pm 

{0.20}\

) 

83.79\(

\pm 

{0.20}\

) 

84.99\(

\pm 

{0.20}\

) 

88.25\(

\pm 

{0.20}\

) 

87.85\(

\pm 

{0.20}\

) 

88.05\(

\pm 

{0.20}\

) 

81.52\(

\pm 

{0.41}\

) 

92.27\(

\pm 

{0.25}\

) 

86.56\(

\pm 

{0.31}\

) 

B. 

pseudo

mallei 

95.31 

\(\pm 

{0.06}\

) 

86.99\(

\pm 

{0.12}\

) 

90.96

\(\pm 

{0.08}

\) 

69.54\(

\pm 

{0.31}\

) 

64.79\(

\pm 

{0.22}\

) 

67.08\(

\pm 

{0.26}\

) 

94.79\(

\pm 

{0.13}\

) 

87.84\(

\pm 

{0.25}\

) 

91.18\(

\pm 

{0.18}\

) 

94.28\(

\pm 

{0.09}\

) 

96.47\(

\pm 

{0.09}\

) 

95.37\(

\pm 

{0.08}\

) 

P. 

aerugin

osa 

96.73\(

\pm 

{0.08}\

) 

88.86\(

\pm 

{0.13}\

) 

92.63

\(\pm 

{0.09}

\) 

71.21\(

\pm 

{0.20}\

) 

68.40\(

\pm 

{0.18}\

) 

69.78\(

\pm 

{0.19}\

) 

96.16\(

\pm 

{0.09}\

) 

91.70\(

\pm 

{0.11}\

) 

93.88\(

\pm 

{0.08}\

) 

96.47\(

\pm 

{0.05}\

) 

97.88\(

\pm 

{0.06}\

) 

97.17\(

\pm 

{0.05}\

) 

Averag

e 94.87 88.27 91.36 84.35 78.3 81.19 95.43 87.76 91.4 94.53 94.44 94.43 

Averag

e SD 0.15 0.21 0.14 0.25 0.24 0.22 0.15 0.22 0.16 0.17 0.15 0.14 

 

2.3.2.Conclusion 

Deep learning has lately received a lot of attention as a potential solution to a variety of 

bioinformatics problems. The aim of this project is to examine how CNNs affect gene 

prediction and how they might be utilized to predict genes in metagenomics fragments. 

CNNs have been successful in predicting DNA binding sites and promoters, among other 

bioinformatics applications. 

 

 

 

 

 

 

2. REFERENCES 

 
[1] J. Schmidhuber, “Deep Learning in neural networks: An overview,” Neural Networks, vol. 

61, pp. 85–117, 2015, doi: 10.1016/j.neunet.2014.09.003. 

 

[2] M. Ravanelli, Signals and Communication Technology Automatic Speech Recognition A 

Deep Learning Approach hm med Related papers the essence of knowledge Deep 

Learning Methods and Applications Foundations and Trends … ritesh patra DEEP 

LEARNING: METHODS AND APPLIC.  



 

[3] A. Graves, A. R. Mohamed, and G. Hinton, “Speech recognition with deep recurrent 

neural networks,” ICASSP, IEEE Int. Conf. Acoust. Speech Signal Process. - Proc., no. 3, 

pp. 6645–6649, 2013, doi: 10.1109/ICASSP.2013.6638947. 

 

[4] G. Litjens et al., “A survey on deep learning in medical image analysis,” Med. Image 

Anal., vol. 42, no. 1995, pp. 60–88, 2017, doi: 10.1016/j.media.2017.07.005. 

 

[5] J. Bian, B. Gao, and T. Y. Liu, “Knowledge-powered deep learning for word embedding,” 

Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes 

Bioinformatics), vol. 8724 LNAI, no. PART 1, pp. 132–148, 2014, doi: 10.1007/978-3-

662-44848-9_9. 

 

[6] E. Gawehn, J. A. Hiss, and G. Schneider, “Deep Learning in Drug Discovery,” Mol. 

Inform., vol. 35, no. 1, pp. 3–14, 2016, doi: 10.1002/minf.201501008. 

 

[7] Y. Guo, Y. Liu, A. Oerlemans, S. Lao, S. Wu, and M. S. Lew, “Deep learning for visual 

understanding: A review,” Neurocomputing, vol. 187, pp. 27–48, 2016, doi: 

10.1016/j.neucom.2015.09.116. 

 

[8] D. Ravi et al., “Deep Learning for Health Informatics,” IEEE J. Biomed. Heal. 

Informatics, vol. 21, no. 1, pp. 4–21, 2017, doi: 10.1109/JBHI.2016.2636665. 

 

[9] X. Chen, S. Xiang, C. L. Liu, and C. H. Pan, “Vehicle detection in satellite images by 

hybrid deep convolutional neural networks,” IEEE Geosci. Remote Sens. Lett., vol. 11, no. 

10, pp. 1797–1801, 2014, doi: 10.1109/LGRS.2014.2309695. 

 

[10] I. Lenz, H. Lee, and A. Saxena, “Deep learning for detecting robotic grasps,” Int. J. Rob. 

Res., vol. 34, no. 4–5, pp. 705–724, 2015, doi: 10.1177/0278364914549607. 

 

[11] M. Längkvist, L. Karlsson, and A. Loutfi, “A review of unsupervised feature learning and 

deep learning for time-series modeling,” Pattern Recognit. Lett., vol. 42, no. 1, pp. 11–24, 

2014, doi: 10.1016/j.patrec.2014.01.008. 

 

[12] S. Gao, Y. Zhang, K. Jia, J. Lu, and Y. Zhang, “Single Sample Face Recognition via 

Learning Deep Supervised Autoencoders,” IEEE Trans. Inf. Forensics Secur., vol. 10, no. 

10, pp. 2108–2118, 2015, doi: 10.1109/TIFS.2015.2446438. 

 

[13] S. E. Kahou et al., “EmoNets: Multimodal deep learning approaches for emotion 

recognition in video,” J. Multimodal User Interfaces, vol. 10, no. 2, pp. 99–111, 2016, 

doi: 10.1007/s12193-015-0195-2. 

 

[14] G. Rostami, M. Hamid, and H. Jalaeikhoo, “Impact of the BCR-ABL1 fusion transcripts 

on different responses to Imatinib and disease recurrence in Iranian patients with Chronic 

Myeloid Leukemia,” Gene, vol. 627, no. 1, pp. 202–206, 2017, doi: 

10.1016/j.gene.2017.06.018. 



 

[15] S. Chen, H. Xu, D. Liu, B. Hu, and H. Wang, “A vision of IoT: Applications, challenges, 

and opportunities with China Perspective,” IEEE Internet Things J., vol. 1, no. 4, pp. 349–

359, 2014, doi: 10.1109/JIOT.2014.2337336. 

 

[16] J. Cong and B. Xiao, “Minimizing in Convolutional Neural Networks,” Int. Conf. Artif. 

Neural Networks, pp. 281–290, 2014. 

 

[17] P. Nguyen, T. Tran, N. Wickramasinghe, and S. Venkatesh, “Deepr: A Convolutional Net 

for Medical Records,” IEEE J. Biomed. Heal. Informatics, vol. 21, no. 1, pp. 22–30, 2017, 

doi: 10.1109/JBHI.2016.2633963. 

 

[18] Y. Cheng, F. Wang, P. Zhang, and J. Hu, “Risk prediction with electronic health records: 

A deep learning approach,” 16th SIAM Int. Conf. Data Min. 2016, SDM 2016, pp. 432–

440, 2016, doi: 10.1137/1.9781611974348.49. 

 

[19] T. K. Ho, “Random decision forests,” Proc. Int. Conf. Doc. Anal. Recognition, ICDAR, 

vol. 1, pp. 278–282, 1995, doi: 10.1109/ICDAR.1995.598994. 

 

[20] K. J. Hoff, M. Tech, T. Lingner, R. Daniel, B. Morgenstern, and P. Meinicke, “Gene 

prediction in metagenomic fragments: A large scale machine learning approach,” BMC 

Bioinformatics, vol. 9, pp. 1–14, 2008, doi: 10.1186/1471-2105-9-217. 

 

[21] A. El Allali and J. R. Rose, “MGC: A metagenomic gene caller,” BMC Bioinformatics, 

vol. 14, no. SUPPL9, 2013, doi: 10.1186/1471-2105-14-S9-S6. 

 

[22] D. A. Benson et al., “GenBank,” Nucleic Acids Res., vol. 41, no. D1, pp. 36–42, 2013, 

doi: 10.1093/nar/gks1195. 

 

[23] M. Antonino and D. Gangi, “for DNA Sequence Classification,” vol. 2, pp. 162–171, doi: 

10.1007/978-3-319-52962-2. 

 

[24] R. K. Umarov and V. V. Solovyev, “Recognition of prokaryotic and eukaryotic promoters 

using convolutional deep learning neural networks,” PLoS One, vol. 12, no. 2, pp. 1–12, 

2017, doi: 10.1371/journal.pone.0171410. 

 

[25] H. Zeng, M. D. Edwards, G. Liu, and D. K. Gifford, “Convolutional neural network 

architectures for predicting DNA-protein binding,” Bioinformatics, vol. 32, no. 12, pp. 

i121–i127, 2016, doi: 10.1093/bioinformatics/btw255. 

 

[26] I. G. and Y. B. and A. Courville, “Deep learning Book pdf,” Nature, vol. 29, no. 7553, pp. 

1–73, 2016. 

 

[27] K. S. Choi, J. S. Shin, J. J. Lee, Y. S. Kim, S. B. Kim, and C. W. Kim, “In vitro trans-

differentiation of rat mesenchymal cells into insulin-producing cells by rat pancreatic 

extract,” Biochem. Biophys. Res. Commun., vol. 330, no. 4, pp. 1299–1305, 2005, doi: 



10.1016/j.bbrc.2005.03.111. 

 

[28] T. F. Gonzalez, “Handbook of approximation algorithms and metaheuristics,” Handb. 

Approx. Algorithms Metaheuristics, pp. 1–1432, 2007, doi: 10.1201/9781420010749. 

 

[29] C. Angermueller, T. Pärnamaa, L. Parts, and O. Stegle, “Deep learning for computational 

biology,” Mol. Syst. Biol., vol. 12, no. 7, p. 878, 2016, doi: 10.15252/msb.20156651. 

 

[30] B. Mele and G. Altarelli, “Lepton spectra as a measure of b quark polarization at LEP,” 

Phys. Lett. B, vol. 299, no. 3–4, pp. 345–350, 1993, doi: 10.1016/0370-2693(93)90272-J. 

 

[31]  et al (2015) K. D. learning library for theano and tensorflow. Chollet F, “download.” 

https://keras.io/ 

 

[32] C. Gerard, “TensorFlow.js,” Pract. Mach. Learn. JavaScript, pp. 25–43, 2021, doi: 

10.1007/978-1-4842-6418-8_2. 

 

[33] A. S. Warren and J. C. Setubal, “The Genome Reverse Compiler: An explorative 

annotation tool,” BMC Bioinformatics, vol. 10, 2009, doi: 10.1186/1471-2105-10-35. 

 

[34] L. J. H. Doug Hyatt, Gwo-Liang Chen, Philip F LoCascio, Miriam L Land, , Frank W 

Larimer, “Integrated nr Database in Protein Annotation System and Its Localization,” Nat. 

Commun., vol. 6, no. 1, pp. 1–8, 2010, [Online]. Available: 

http://dx.doi.org/10.1016/B978-0-12-407863-5.00023-

X%5Cnhttp://www.nature.com/doifinder/10.1038/ismej.2009.79%5Cnhttp://www.nature.

com/doifinder/10.1038/nature09916%5Cnhttp://dx.doi.org/10.1038/srep25982%5Cnhttp://

dx.doi.org/10.1038/ismej.2010.144%5Cnhttp 

 
 

 

 

 

 

 

 

 


