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Abstract 

Deep learning techniques are very common and mostly used in the last few years 

because it has a good ability for feature extraction. Convolution Neural Network (CNN) 

is a deep learning technique, which concerns with classification problems. In this work, 

the transfer learning technique is applied in training a CNN to classify images of knee 

to their respective classes. The proposed method uses the NASNet Mobile Network pre-

trained Convolution Neural Network. 

1 Introduction 

The goal of learning techniques is to train a CNN [1] that would be able to classify knee diseases into 

these two classes Norm or not norm. The Magnetic Resonance Imaging (MRI) of the knee images [2], 

collected by Stanford ML [3], is used in this work. Each MRI image has three scans taken from three 

different planes e.g. sagittal, coronal and axial. Each scan consists of a number of slices [4] with fixed 

size 256X256 pixel. The number of scan slices is not necessary to be fixed even if for the same MRI 

image. The dataset classifies the knee injuries [5] into three main categories for each plan: abnormal, 

Anterior Cruciate Ligament (ACL) [6] and meniscus [7]. 

The main problem in medical research field is the lack of datasets [8] and the time taken for data 

processing which is always making a problem to build up a high performance system. However, using 

transfer learning, we can overcome this problem. 

Transfer learning [9], [10] is the process that uses the weights from pre-trained networks based on 

large dataset [11].  The pre-trained networks have already learnt how to extract features such as edges, 

lines, curves etc. [12]. 

To train a CNN model from the scratch successfully, we need a huge dataset and a high computational 

power, which is missing in most of the cases. The convolution layers are often the most 

computationally time consuming parts of the process. Using those weights helps the network to 

converge to a good score faster than training from the scratch. 



Each pre-trained CNN has its own characteristics. Choosing a pre-trained CNN is a tradeoff between 

network characteristics; accuracy, speed, and size. Figure 1 shows the validation accuracy versus 

prediction time for most common pre-trained network based on imageNet dataset [13, 14] 

 

 

The rest of the paper is organized as follow.  In section (2), we discuss the general structure of CNN. 

Section (3) discusses briefly some related work, including the use of transfer learning in the medical 

field. Section (4) describes the main methodology followed by algorithm steps and finally the 

proposed system flow chart. Section (5) shows the experimental results and section (6) highlights 

some conclusions and proposes some ideas for future work to improve the system. 

 

2 Convolution Neural Network 

In this section, we will discuss the general structure of CNN then describe the main concept of the 

transfer learning. CNN consists of many sequential layers [12] e.g. stack of layers that are connected 

together like the bricks assemble. These layers allow sequence of transformations for the input data. 

One can classify these layers to: the input layer, the convolutional layer, the batch normalization 

layer, the ReLU layer, the cross channel normalization, the max and average pooling layers, the 

dropout layer, the fully connected layer and the output layer. Figure 2 shows the main CNN layers 

[15] 

The input layer deals with images as arrays of pixels with three dimensions; height, width and 

depth which takes only two values 1 for gray image and 3 for colored images. A convolution layer 

[16] contains a set of filters used to extract the image features. The hyper-parameters of these filters 

are learned during the training process. All the features obtained by all filters construct a fully feature 

map for each image [17]. Equation 2 gives a formula that calculates the number of learnable 

parameters for a certain convolution layer [18]. 

Paramters number = ((shape of width of the filter ∗  shape of height of the filter ∗
                                                      number of  filters in the previous layer + 1) ∗ number of filters)  (1) 

Figure 1: Relative Prediction Time Using GPU 



 
 

Figure 2: The main CNN layers 

 

The batch normalization layer is used to normalize the input between convolutional layers and 

nonlinearities, such as ReLU layers [19]. In general, features may take scale values; for example, one 

can have features from 0 to 1 and some from 1 to 1000 for example. By normalization, the input value 

is changed between 0 and 1. Batch normalization is important to solve the internal covariate shift 

problem [18]. Also it speeds up training of convolutional neural networks and reduce the sensitivity to 

network [20]. The Rectified Linear Unit or ReLU layer is a linear function that will output the input 

directly if it is positive and otherwise, it will output zero [21]. It is the default activation in CNN as it 

solves the vanishing gradient problem [22]. Equation 2 gives the ReLU activation function: 

 

𝑅(𝑧) = {
𝑧         𝑧 > 0

  0         𝑧 ≤= 0
       (2) 

 

The local response normalization layer is used to solve the lateral inhibition problem; the excited 

neuron capacity subdues its neighbors. This problem occurs as ReLU activation layer has unbounded 

activations. Therefore, the high frequency features will control neighbors. The function of this layer is 

to make normalization around the local neighborhood of the excited neuron [23]. 

The Max and average pooling layer, or down-sampling layer, reduces the dimensionality of each 

feature map and retains the most important information of an image. Thus, it reduces the number of 

parameters to learn. This will reduce the computation cost [24]. The most two common methods used 

in pooling are the average pooling and the max pooling that summarize the average presence of a 

feature and the most activated presence of a feature respectively. The dropout layer (optional) is used 

to drop out a random set of activation layers setting them to zero. This dropout makes sure that the 

network is not getting too “fitted” to the training data and thus helps alleviate the over fitting problem 

[25]. 

The flatten layer takes the features obtained from the previous layers then converts them to one 

dimensional vector that can be an input to the next stage [26]. The fully connected layer is a fully 

connected NN, which receives a single row of features, calculates the NN weights, and finally applies 

the activation function to predict the correct label [27]. The transfer learning refers to taking a model, 

trained before on large dataset, and transfers the knowledge to a smaller dataset. Knowledge transfer 

means using the same model features extractor for the new smaller dataset after making some tuning 

on the pre-trained model. The tuning is accomplished by removing the last predicting layer of the pre-

trained model as shown in Figure 3. 

This work is based on pre-trained model NASNet Mobile. The NASNet Mobile is a CNN, which 

is trained on more than a million images from the ImageNet dataset [28]. This network can classify 



images into 1000 object categories; pen, many animals, etc. The network accepts images with size 

(3,224,224) and the size of feature at last layer equals 1056. 

 
Figure 3: The pre-trained NasNetMobile on imagenet data set 

3 Literature Review 

In this section, we briefly consider some of the related work that is most relevant to our approach e.g. 

using of transfer learning in medical field. Sonit Singh et. al. tried to use pre-trained network in 

medical image classification and compared the performance of the traditional pipeline of handcrafted 

features with multi-label learning algorithms with end-to-end deep learning features for the concept 

detection task [29]. Sihong Chen et. al. built a large-scale 3D medical dataset 3DSeg-8 using transfer 

learning [30]. Paras Lakhani et. al. applied the transfer learning in the medical field for a small dataset 

and got a good accuracy which is difficult to obtains if we train network from the scratch because 

building the network from the scratch requires a huge dataset. In this work, authors use pertained 

InceptionV3 [31]. Hak Gu Kim et. al. introduced a new approach based on transfer learning.  Their 

work proposed a modality-bridge transfer learning which employs the bridge database in the same 

medical imaging acquisition modality as the target database [32]. 

4 Methodology 

The main idea of this work is to use the pertained  NASNet Mobile instead of building new CNN 

classifier from the scratch to extract 1056 features from the last layer after removing the top layer then 

designing the classifier for the images into two classes normal or not normal as follows: 

1) Extract the slices for each image, extract the feature for each slice using pertained CNN NASNet 

Mobile. 

2) Calculate the max pooling for all slices features for the same image to get one feature for each 

image to reduce the processing time e.g. reduce the features for each image from image slice number 

X 1056 to 1056. 

3) Gather the features for each plane e.g. in the used data set we have 1130X1056 feature for the 

training dataset and 120X1056  features for the test dataset. 

4) Classify the images into two classes (norm/not-norm) for each plane. In this work, two approaches 

are introduced as shown in Figure 5; 

 

https://ieeexplore.ieee.org/author/37086617299


Figure 4: The proposed system block diagram 

 

 
Figure 5: The proposed system 

 

The first approach works by tuning the weights of the pre-trained top layer; e.g. modify the fully 

connected neural network weights to match with image features. The second approach works by 

storing the image features produced from the pre-trained network after removing top layer, then using 

a new different layer to classify the dataset. In this work, we use three classifiers: Support Vector 

Machine (SVM), random forest and K nearest neighbors. In the following we give the algorithm we 

apply in this work. 

 

Algorithm steps: 

1- Define Pre-trained Model NASNet. 

2- Determine MRI images folder paths for each plane; sagittal_image_path, coronal_image 

_path and axial_image _path. 

3- Read the training data labels e.g. train_abnormal_labels, train_ acl_labels, train_ meniscus 

_labels. 

4- Read the test data labels e.g. test_abnormal_labels, test_ acl_labels, test_meniscus_labels. 

5- Loop 1 : for each MRI images paths which defined in step 2 

6- Loop 2: for each image 

7- Store each image slices into array, each array has size (Number of slicesX256X256). 

8- Resize the image size to be fit with Pre-trained Model NASNet e.g. each image has size will 

be (Number of slicesX224X224). 



9- Adding Extra Dimensions for red, green and blue channels to fit with  Pre-trained Model 

NASNet  e.g. each image size will be (Number of slicesX224X224X3) 

10- Extract the feature for all images slices using Pre-trained Model NASNet  last layer e.g. 

feature size for each image will be (Number of slicesX1056). 

11- Apply max pooling for each image slices to reduce the feature size from (Number of 

slicesX1056) to be 1056  e.g. feature size for each image will be (1056) 

12- End Loop 2 

13- Store features for all MRI images for sagittal, coronal and axial plane e.g.  

train_abnormal_features, train_ acl_ features, train_ meniscus _ features. 

14- End Loop 1 

15- Perform the model training by using 

15.1- Perform the model training by tunning pre-trained fully connected NN for each plane. 

15.2- Replace fully connected top layer with different classifier e.g. SVM, Random forest 

and K nearest neighbors 

 

 

5 Results 

After getting the features using pertained CNN NASNet Mobile, one can classify the features by 

two methods: 

5.1 Method 1: Using fully connected neural network’s top layer for 

classification after tuning: 

In this approach, a pre-trained model is used to extract the features form images, then to tune the 

fully connected layer to match with the size of features. Use a neural network with 256 neurons in the 

input layer with 0.5 dropout out rate and finally one output layer with Sigmoid activation function to 

classify the image. Figures 7 - 9 show the training and validation accuracy/loss in the three planes e.g. 

Axial, Coronal and sagittal when we classify knee abnormal disease, Meniscus and ACL respectively 

according to the used dataset. Also from these figures, one can notice that the maximum obtained 

accuracy for all planes is nearly 91%, 85% and 88% for knee abnormal disease, Meniscus and ACL 

respectively. 

 

5.2 Method 2: Storing features then classifying them 

In this approach, the extracted features from a pre-trained model are first stored into an external 

file then classified by a different classifier instead of using fully connected neural network. In this 

work, we use three classifiers: SVM, random forest and k nearest. 

Table 1 A compares between the confusion matrix for the SVM, Random forest and K nearest 

neighbor algorithms. Class 0 represents normal cases and class 1 represents abnormal cases. Table 2 

compares the total accuracy obtained for the SVM, Random forest and K nearest neighbor’s 

algorithms; from the results, it is clear that the best algorithm is Random forest 

 

 

 

 



Figure 6: The proposed algorithm flow chart 

 

Start

Create Pre-trained Model NASNet for image 
classification

Determine MRI images folder paths for which contains image e.g. .npy files 
for sagittal, coronal and axial planes 

For each image in folder

Read image into array 
E.g. each image has size(Number of slicesX256X256)

Resize the image size to fit with Pre-trained Model NASNet
E.g. each image has size(Number of slicesX224X224) 

Adding Extra Dimensions for red, green and blue channels to fit with  Pre-trained Model NASNet   to 
E.g. each image has size(Number of slicesX224X224X3) 

Generate predictions (probabilities -- the output of the last layer)
E.g. feature size for each image has size(Number of slicesX1056) 

Apply max pooling 
 E.g. feature size for each image has size(1056)

End

For each plane

End

Store features for all MRI images for sagittal, coronal and axial 
planes  in .csv file

Store classification labels for abnormal, Anterior Cruciate Ligament 
and meniscus into .csv files

Train the model

Evaluate the model

End



Table 1: The confusion matrix for Abnormal, meniscus and ACL diseases in all planes for SVM, 

Random forest and k nearest classifiers 

 
 

Table 2: The classification accuracy for abnormal, meniscus and ACL diseases in all planes for 

SVM, random forest and  k nearest classifiers 

 

6 Conclusions and Future work 

This work we use the NASNetMobile pre-trained deep learning model to classify knee diseases. In 

this work also we reduce the amount of data used in training by taking the max pooling for each 

image slices Instead of  training all image slices but gained good accuracy due to the power of 



retrained CNN. In this work, also we classify the features obtained from model and classify it by two 

methods; tuning the top layer and using external classifier. From the results we find that, classification 

using external classifier gives the highest accuracy for random forest classifier. 

As future work, we would want to use all image slices and performing data augmentation 

techniques. In addition, perform image segmentation according to the diseases before performing 

training. 

 

 
Figure 7: The Train and validation accuracy/loss in all planes for abnormal disease 

 

 

 

 

 

 

 



Figure 8: The Train and validation accuracy/loss in all planes for meniscus disease 

 

 

 

 

 

 

 

 

 

 

 



Figure 9: The Train and validation accuracy/loss in all planes for ACL disease 
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