
EasyChair Preprint
№ 4588

Knee Images Classification Using Transfer
Learning

Kamel Rahouma and Ahmed Salama

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

November 18, 2020

Knee Images Classification using Transfer

Learning

Kamel Rahouma
1
 and Ahmed Salama

2

1
Faculty of Engineering, Minia University, Minia, Egypt

2
Egyptain Space Agency, Cairo, Egypt.

kamel_rahouma@yahoo.com, ah_salama_eng_eg@yahoo.com

Abstract

Deep learning techniques are very common and mostly used in the last few years

because it has a good ability for feature extraction. Convolution Neural Network (CNN)

is a deep learning technique, which concerns with classification problems. In this work,

the transfer learning technique is applied in training a CNN to classify images of knee

to their respective classes. The proposed method uses the NASNet Mobile Network pre-

trained Convolution Neural Network.

1 Introduction

The goal of learning techniques is to train a CNN [1] that would be able to classify knee diseases into

these two classes Norm or not norm. The Magnetic Resonance Imaging (MRI) of the knee images [2],

collected by Stanford ML [3], is used in this work. Each MRI image has three scans taken from three

different planes e.g. sagittal, coronal and axial. Each scan consists of a number of slices [4] with fixed

size 256X256 pixel. The number of scan slices is not necessary to be fixed even if for the same MRI

image. The dataset classifies the knee injuries [5] into three main categories for each plan: abnormal,

Anterior Cruciate Ligament (ACL) [6] and meniscus [7].

The main problem in medical research field is the lack of datasets [8] and the time taken for data

processing which is always making a problem to build up a high performance system. However, using

transfer learning, we can overcome this problem.

Transfer learning [9], [10] is the process that uses the weights from pre-trained networks based on

large dataset [11]. The pre-trained networks have already learnt how to extract features such as edges,

lines, curves etc. [12].

To train a CNN model from the scratch successfully, we need a huge dataset and a high computational

power, which is missing in most of the cases. The convolution layers are often the most

computationally time consuming parts of the process. Using those weights helps the network to

converge to a good score faster than training from the scratch.

Each pre-trained CNN has its own characteristics. Choosing a pre-trained CNN is a tradeoff between

network characteristics; accuracy, speed, and size. Figure 1 shows the validation accuracy versus

prediction time for most common pre-trained network based on imageNet dataset [13, 14]

The rest of the paper is organized as follow. In section (2), we discuss the general structure of CNN.

Section (3) discusses briefly some related work, including the use of transfer learning in the medical

field. Section (4) describes the main methodology followed by algorithm steps and finally the

proposed system flow chart. Section (5) shows the experimental results and section (6) highlights

some conclusions and proposes some ideas for future work to improve the system.

2 Convolution Neural Network

In this section, we will discuss the general structure of CNN then describe the main concept of the

transfer learning. CNN consists of many sequential layers [12] e.g. stack of layers that are connected

together like the bricks assemble. These layers allow sequence of transformations for the input data.

One can classify these layers to: the input layer, the convolutional layer, the batch normalization

layer, the ReLU layer, the cross channel normalization, the max and average pooling layers, the

dropout layer, the fully connected layer and the output layer. Figure 2 shows the main CNN layers

[15]

The input layer deals with images as arrays of pixels with three dimensions; height, width and

depth which takes only two values 1 for gray image and 3 for colored images. A convolution layer

[16] contains a set of filters used to extract the image features. The hyper-parameters of these filters

are learned during the training process. All the features obtained by all filters construct a fully feature

map for each image [17]. Equation 2 gives a formula that calculates the number of learnable

parameters for a certain convolution layer [18].

Paramters number = ((shape of width of the filter ∗ shape of height of the filter ∗
 number of filters in the previous layer + 1) ∗ number of filters) (1)

Figure 1: Relative Prediction Time Using GPU

Figure 2: The main CNN layers

The batch normalization layer is used to normalize the input between convolutional layers and

nonlinearities, such as ReLU layers [19]. In general, features may take scale values; for example, one

can have features from 0 to 1 and some from 1 to 1000 for example. By normalization, the input value

is changed between 0 and 1. Batch normalization is important to solve the internal covariate shift

problem [18]. Also it speeds up training of convolutional neural networks and reduce the sensitivity to

network [20]. The Rectified Linear Unit or ReLU layer is a linear function that will output the input

directly if it is positive and otherwise, it will output zero [21]. It is the default activation in CNN as it

solves the vanishing gradient problem [22]. Equation 2 gives the ReLU activation function:

𝑅(𝑧) = {
𝑧 𝑧 > 0

 0 𝑧 ≤= 0
 (2)

The local response normalization layer is used to solve the lateral inhibition problem; the excited

neuron capacity subdues its neighbors. This problem occurs as ReLU activation layer has unbounded

activations. Therefore, the high frequency features will control neighbors. The function of this layer is

to make normalization around the local neighborhood of the excited neuron [23].

The Max and average pooling layer, or down-sampling layer, reduces the dimensionality of each

feature map and retains the most important information of an image. Thus, it reduces the number of

parameters to learn. This will reduce the computation cost [24]. The most two common methods used

in pooling are the average pooling and the max pooling that summarize the average presence of a

feature and the most activated presence of a feature respectively. The dropout layer (optional) is used

to drop out a random set of activation layers setting them to zero. This dropout makes sure that the

network is not getting too “fitted” to the training data and thus helps alleviate the over fitting problem

[25].

The flatten layer takes the features obtained from the previous layers then converts them to one

dimensional vector that can be an input to the next stage [26]. The fully connected layer is a fully

connected NN, which receives a single row of features, calculates the NN weights, and finally applies

the activation function to predict the correct label [27]. The transfer learning refers to taking a model,

trained before on large dataset, and transfers the knowledge to a smaller dataset. Knowledge transfer

means using the same model features extractor for the new smaller dataset after making some tuning

on the pre-trained model. The tuning is accomplished by removing the last predicting layer of the pre-

trained model as shown in Figure 3.

This work is based on pre-trained model NASNet Mobile. The NASNet Mobile is a CNN, which

is trained on more than a million images from the ImageNet dataset [28]. This network can classify

images into 1000 object categories; pen, many animals, etc. The network accepts images with size

(3,224,224) and the size of feature at last layer equals 1056.

Figure 3: The pre-trained NasNetMobile on imagenet data set

3 Literature Review

In this section, we briefly consider some of the related work that is most relevant to our approach e.g.

using of transfer learning in medical field. Sonit Singh et. al. tried to use pre-trained network in

medical image classification and compared the performance of the traditional pipeline of handcrafted

features with multi-label learning algorithms with end-to-end deep learning features for the concept

detection task [29]. Sihong Chen et. al. built a large-scale 3D medical dataset 3DSeg-8 using transfer

learning [30]. Paras Lakhani et. al. applied the transfer learning in the medical field for a small dataset

and got a good accuracy which is difficult to obtains if we train network from the scratch because

building the network from the scratch requires a huge dataset. In this work, authors use pertained

InceptionV3 [31]. Hak Gu Kim et. al. introduced a new approach based on transfer learning. Their

work proposed a modality-bridge transfer learning which employs the bridge database in the same

medical imaging acquisition modality as the target database [32].

4 Methodology

The main idea of this work is to use the pertained NASNet Mobile instead of building new CNN

classifier from the scratch to extract 1056 features from the last layer after removing the top layer then

designing the classifier for the images into two classes normal or not normal as follows:

1) Extract the slices for each image, extract the feature for each slice using pertained CNN NASNet

Mobile.

2) Calculate the max pooling for all slices features for the same image to get one feature for each

image to reduce the processing time e.g. reduce the features for each image from image slice number

X 1056 to 1056.

3) Gather the features for each plane e.g. in the used data set we have 1130X1056 feature for the

training dataset and 120X1056 features for the test dataset.

4) Classify the images into two classes (norm/not-norm) for each plane. In this work, two approaches

are introduced as shown in Figure 5;

https://ieeexplore.ieee.org/author/37086617299

Figure 4: The proposed system block diagram

Figure 5: The proposed system

The first approach works by tuning the weights of the pre-trained top layer; e.g. modify the fully

connected neural network weights to match with image features. The second approach works by

storing the image features produced from the pre-trained network after removing top layer, then using

a new different layer to classify the dataset. In this work, we use three classifiers: Support Vector

Machine (SVM), random forest and K nearest neighbors. In the following we give the algorithm we

apply in this work.

Algorithm steps:

1- Define Pre-trained Model NASNet.

2- Determine MRI images folder paths for each plane; sagittal_image_path, coronal_image

_path and axial_image _path.

3- Read the training data labels e.g. train_abnormal_labels, train_ acl_labels, train_ meniscus

_labels.

4- Read the test data labels e.g. test_abnormal_labels, test_ acl_labels, test_meniscus_labels.

5- Loop 1 : for each MRI images paths which defined in step 2

6- Loop 2: for each image

7- Store each image slices into array, each array has size (Number of slicesX256X256).

8- Resize the image size to be fit with Pre-trained Model NASNet e.g. each image has size will

be (Number of slicesX224X224).

9- Adding Extra Dimensions for red, green and blue channels to fit with Pre-trained Model

NASNet e.g. each image size will be (Number of slicesX224X224X3)

10- Extract the feature for all images slices using Pre-trained Model NASNet last layer e.g.

feature size for each image will be (Number of slicesX1056).

11- Apply max pooling for each image slices to reduce the feature size from (Number of

slicesX1056) to be 1056 e.g. feature size for each image will be (1056)

12- End Loop 2

13- Store features for all MRI images for sagittal, coronal and axial plane e.g.

train_abnormal_features, train_ acl_ features, train_ meniscus _ features.

14- End Loop 1

15- Perform the model training by using

15.1- Perform the model training by tunning pre-trained fully connected NN for each plane.

15.2- Replace fully connected top layer with different classifier e.g. SVM, Random forest

and K nearest neighbors

5 Results

After getting the features using pertained CNN NASNet Mobile, one can classify the features by

two methods:

5.1 Method 1: Using fully connected neural network’s top layer for

classification after tuning:

In this approach, a pre-trained model is used to extract the features form images, then to tune the

fully connected layer to match with the size of features. Use a neural network with 256 neurons in the

input layer with 0.5 dropout out rate and finally one output layer with Sigmoid activation function to

classify the image. Figures 7 - 9 show the training and validation accuracy/loss in the three planes e.g.

Axial, Coronal and sagittal when we classify knee abnormal disease, Meniscus and ACL respectively

according to the used dataset. Also from these figures, one can notice that the maximum obtained

accuracy for all planes is nearly 91%, 85% and 88% for knee abnormal disease, Meniscus and ACL

respectively.

5.2 Method 2: Storing features then classifying them

In this approach, the extracted features from a pre-trained model are first stored into an external

file then classified by a different classifier instead of using fully connected neural network. In this

work, we use three classifiers: SVM, random forest and k nearest.

Table 1 A compares between the confusion matrix for the SVM, Random forest and K nearest

neighbor algorithms. Class 0 represents normal cases and class 1 represents abnormal cases. Table 2

compares the total accuracy obtained for the SVM, Random forest and K nearest neighbor’s

algorithms; from the results, it is clear that the best algorithm is Random forest

Figure 6: The proposed algorithm flow chart

Start

Create Pre-trained Model NASNet for image
classification

Determine MRI images folder paths for which contains image e.g. .npy files
for sagittal, coronal and axial planes

For each image in folder

Read image into array
E.g. each image has size(Number of slicesX256X256)

Resize the image size to fit with Pre-trained Model NASNet
E.g. each image has size(Number of slicesX224X224)

Adding Extra Dimensions for red, green and blue channels to fit with Pre-trained Model NASNet to
E.g. each image has size(Number of slicesX224X224X3)

Generate predictions (probabilities -- the output of the last layer)
E.g. feature size for each image has size(Number of slicesX1056)

Apply max pooling
 E.g. feature size for each image has size(1056)

End

For each plane

End

Store features for all MRI images for sagittal, coronal and axial
planes in .csv file

Store classification labels for abnormal, Anterior Cruciate Ligament
and meniscus into .csv files

Train the model

Evaluate the model

End

Table 1: The confusion matrix for Abnormal, meniscus and ACL diseases in all planes for SVM,

Random forest and k nearest classifiers

Table 2: The classification accuracy for abnormal, meniscus and ACL diseases in all planes for

SVM, random forest and k nearest classifiers

6 Conclusions and Future work

This work we use the NASNetMobile pre-trained deep learning model to classify knee diseases. In

this work also we reduce the amount of data used in training by taking the max pooling for each

image slices Instead of training all image slices but gained good accuracy due to the power of

retrained CNN. In this work, also we classify the features obtained from model and classify it by two

methods; tuning the top layer and using external classifier. From the results we find that, classification

using external classifier gives the highest accuracy for random forest classifier.

As future work, we would want to use all image slices and performing data augmentation

techniques. In addition, perform image segmentation according to the diseases before performing

training.

Figure 7: The Train and validation accuracy/loss in all planes for abnormal disease

Figure 8: The Train and validation accuracy/loss in all planes for meniscus disease

Figure 9: The Train and validation accuracy/loss in all planes for ACL disease

References

[1] H.-C. Shin et al., “Deep convolutional neural networks for computer-aided detection: CNN

architectures, dataset characteristics and transfer learning,” IEEE Trans. Med. Imaging, vol.

35, no. 5, pp. 1285–1298, 2016.

[2] Wradiology, “web,” Atlas of Knee MRI Anatomy, 2005. https://w-radiology.com/knee-mri/.

[3] S. M. Group, “web,” A knee MRI Dataset.

https://stanfordmlgroup.github.io/competitions/mrnet/.

[4] Wikipedia, “web,” Magnetic resonance imaging.

https://en.wikipedia.org/wiki/Medical_imaging.

[5] D. of O. S.-S. University, “web,” Acute Knee Injuries. http://www0.sun.ac.za/ortho/webct-

ortho/plateau/knee.html.

[6] S. P. Arnoczky, “Anatomy of the anterior cruciate ligament,” Clin. Orthop. Relat. Res., vol.

172, pp. 19–25, 1983.

[7] R. Śmigielski, R. Becker, U. Zdanowicz, and B. Ciszek, “Medial meniscus anatomy—from

basic science to treatment,” Knee Surgery, Sport. Traumatol. Arthrosc., vol. 23, no. 1, pp. 8–

14, 2015.

[8] T. data Science, “web,” Breaking the curse of small datasets in Machine Learning.

https://towardsdatascience.com/breaking-the-curse-of-small-datasets-in-machine-learning-

part-1-36f28b0c044d.

[9] L. Torrey and J. Shavlik, “Transfer learning,” in Handbook of research on machine learning

applications and trends: algorithms, methods, and techniques, IGI global, 2010, pp. 242–264.

[10] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Trans. Knowl. Data Eng., vol.

22, no. 10, pp. 1345–1359, 2009.

[11] M. M. Najafabadi, F. Villanustre, T. M. Khoshgoftaar, N. Seliya, R. Wald, and E.

Muharemagic, “Deep learning applications and challenges in big data analytics,” J. Big Data,

vol. 2, no. 1, p. 1, 2015.

[12] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep

convolutional neural networks,” in Advances in neural information processing systems, 2012,

pp. 1097–1105.

[13] M. MathWorks, “Web,” Pretrained Deep Neural Networks.

https://se.mathworks.com/help/deeplearning/ug/pretrained-convolutional-neural-

networks.html.

[14] Stanford Vision Lab, “Web,” ImageNet DataSet, 2016. http://www.image-net.org.

[15] T. data Science, “web,” A Comprehensive Guide to Convolutional Neural Networks.

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-

the-eli5-way-3bd2b1164a53.

[16] E. at F. | U. C. ’19, “web,” A Beginner’s Guide To Understanding Convolutional Neural

Networks. https://adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-

Convolutional-Neural-Networks/.

[17] “Layers-of-a-Convolutional-Neural-Network @ Www.Mathworks.Com.” .

[18] T. data Science, “web,” Understanding and Calculating the number of Parameters in

Convolution Neural Networks (CNNs). https://towardsdatascience.com/understanding-and-

calculating-the-number-of-parameters-in-convolution-neural-networks-cnns-

fc88790d530d#:~:text=Number of parameters in a CONV layer would be %3A ((,1)*number

of filters.

[19] T. data Science, “web,” Batch normalization in Neural Networks.

https://towardsdatascience.com/batch-normalization-in-neural-networks-1ac91516821c.

[20] M. MathWorks, “web,” batchNormalizationLayer.

https://www.mathworks.com/help/deeplearning/ref/nnet.cnn.layer.batchnormalizationlayer.html

.

[21] M. L. Mastery, “web,” A Gentle Introduction to the Rectified Linear Unit (ReLU), 2020.

https://machinelearningmastery.com/rectified-linear-activation-function-for-deep-learning-

neural-networks/.

[22] M. L. Mastery, “web,” How to Fix the Vanishing Gradients Problem Using the ReLU.

https://machinelearningmastery.com/how-to-fix-vanishing-gradients-using-the-rectified-

linear-activation-function/.

[23] P. ENIGMA, “web,” What Is Local Response Normalization In Convolutional Neural

Networks. https://prateekvjoshi.com/2016/04/05/what-is-local-response-normalization-in-

convolutional-neural-networks/.

[24] MachineCurve, “web,” What are Max Pooling, Average Pooling, Global Max Pooling and

Global Average Pooling? https://www.machinecurve.com/index.php/2020/01/30/what-are-

max-pooling-average-pooling-global-max-pooling-and-global-average-pooling/.

[25] M. L. Mastery, “No Title,” A Gentle Introduction to Dropout for Regularizing Deep Neural

Networks. https://machinelearningmastery.com/dropout-for-regularizing-deep-neural-

networks/.

[26] J. Jin, A. Dundar, and E. Culurciello, “Flattened convolutional neural networks for

feedforward acceleration,” arXiv Prepr. arXiv1412.5474, 2014.

[27] M. Marchesi, G. Orlandi, F. Piazza, G. Pignotti, and A. Uncini, “Dynamic topology neural

network,” 1990.

[28] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale

hierarchical image database,” in 2009 IEEE conference on computer vision and pattern

recognition, 2009, pp. 248–255.

[29] S. Singh, K. Ho-Shon, S. Karimi, and L. Hamey, “Modality classification and concept

detection in medical images using deep transfer learning,” in 2018 International Conference

on Image and Vision Computing New Zealand (IVCNZ), 2018, pp. 1–9.

[30] S. Chen, K. Ma, and Y. Zheng, “Med3d: Transfer learning for 3d medical image analysis,”

arXiv Prepr. arXiv1904.00625, 2019.

[31] P. Lakhani, D. L. Gray, C. R. Pett, P. Nagy, and G. Shih, “Hello world deep learning in

medical imaging,” J. Digit. Imaging, vol. 31, no. 3, pp. 283–289, 2018.

[32] H. G. Kim, Y. Choi, and Y. M. Ro, “Modality-bridge transfer learning for medical image

classification,” in 2017 10th International Congress on Image and Signal Processing,

BioMedical Engineering and Informatics (CISP-BMEI), 2017, pp. 1–5.

