
EasyChair Preprint
№ 6880

Monitoring Employees Entering and Leaving the
Office with Deep Learning Algorithms

Viet Tran Hoang, Khoi Tran Minh, Nghia Dang Hieu and
Viet Nguyen Hoang

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

October 19, 2021

Monitoring Employees Entering and Leaving the Of-

fice with Deep Learning Algorithms

Tran Hoang Viet
1

, Tran Minh Khoi
2

, Dang Hieu Nghia
3

, and Nguyen Hoang Viet
4

Can Tho University, Vietnam
1

thviet@ctu.edu.vn
2

khoim3721005@gstudent.ctu.edu.vn
3

dhnghia@ctu.edu.vn
4

nhviet@ctu.edu.vn

Abstract. This study attempts to create a system to monitor employees

entering and leaving the office using face recognition. In addition, the system

also signals by LED when recognizing a staff who has clearance to enter or

notifies those who do not in the area. Events of entering and leaving from

staff are written into a log file for management purposes. The face-detection

and image preprocessing utilize Multi-task Cascaded Convolutional

Network. Feature data is then extracted from the processed images by

FaceNet, which is classified by the Support Vector Machine algorithm into a

model. Information of employees and logs are saved in MySQL database,

which is also used in a web application using Python and Django web

framework.

Keywords: Face, face recognition, feature extraction, training, learning

(artificial intelligence), face detection, detectors, convolutional neural nets,

databases, cameras, real-time systems, facenet, python, support vector

machine, mysql, django, raspberry pi.

1 Introduction

As a part of facial image processing applications, face recognition systems’

significance as a research area are increasing recently. They are usually applied and

preferred for people and security cameras in modern life. These systems can be used

for person verification, video surveillance, crime prevention, and other similar

security activities.

Nowadays, with the non-stop growing quality of hardware like cameras, CPUs,

or especially GPUs, the computing time for training process in machine learning,

has reduced significantly. Face recognition, which is a case of machine learning,

uses some algorithms to extract features from the input face, converting them into

mathematical vectors to classify them.

2

Face recognition system is a complicated image-processing problem with many

affecting factors like pose, angle, facial expression, illumination, occlusion,

imaging conditions, and time delay (for recognition). It is a combination of face

detection and recognition applications in image analysis. Detection techniques are

used to find the position of the faces in a given image, while recognition techniques

are used to classify said faces base on extracted facial feature components.

There are many methods to develop a face recognition application with many

training algorithms and models. The applications related to this technology haven’t

been very popular in our city yet. Therefore, more attention should be spent on

learning and practicing face recognition technology. Thus, in this work we

developed a system utilizing the technology to apply in practice.

In the rest of the introduction we briefly review the related work and the main

topics necessary to understand our system discussed in Section 2. Section 3 details

the results of our system before drawing some conclusions and discussing further

directions in Section 4.

1.1 Related Work

An attempt to tackle the task of checking attendance automatically has been

proposed in [1], where the idea is to use face recognition technique, with Eigenface

values, Principle Component Analysis (PCA), and Convolutional Neural Network

(CNN) to implement an automated attendance management system for students of

a class.

Multiple approaches have been proposed in order to overcome some of the

critical challenges of face recognition under difficult conditions. A system for real-

time video-based face recognition has been introduced in [2], which tackled three

key challenges: computational complexity, in the wild recognition, and multi-

person recognition.

Since face recognition in real-time has been a rapidly growing challenge,

another work [3] has proposed the PCA facial recognition system, where the PCA

is a statistical method under the broad heading of factor analysis, which aims to

truncate the substantial quantity of data storage to the size of the feature space that

is required to represent the data economically. However, differently from [1], this

work’s system has been built with OpenCV, Haar Cascade, Fisher Face, Local

Binary Pattern Histogram (LBPH), and Python.

After taking notes from the mentioned works and considering among many new

algorithms as well as technologies, we introduce our own approach to develop a

system in this work, using multi-task Cascaded Convolutional Network (MTCNN)

and Facenet.

3

1.2 Convolutional Neural Network

A CNN is a Deep Learning algorithm that takes an input image, assigns parameters

(weights and biases) to several aspects in it, and can recognize one from the rest.

The pre-processing required in a CNN is lower than other classification algorithms.

With enough training, CNNs have the ability to learn these characteristics.

The architecture of a CNN is analogous to that of the connectivity pattern of

Neurons within the Human Brain and was inspired by biological processes in which

the connectivity pattern between neurons imitates the organization of the animal

visual cortex. Individual cortical neurons respond to stimuli only in a restricted

region of the visual field called the Receptive Field. The receptive fields of various

neurons partially overlap so that they cover the whole visual area.

Thanks to the reduction in the number of parameters involved and the reusability

of weights, CNN’s architecture performs a better fitting to the image dataset. In

other words, the network can be trained to grasp the sophistication of the image

better.

1.3 Multi-task Cascaded Convolutional Networks

The MTCNN model consists of three separate convolutional networks: the P-Net,

the R-Net, and the O-Net:

Fig. 1. MTCNN structure (Source: [5])

For every image passed in, the network creates an image pyramid, to detect faces of

all different sizes. In other words, it creates multiple different copies of the same

image in different sizes to search for different sized faces within the image.

For each scaled copy, a 12x12 kernel will go through every part of the image,

scanning for a face. It starts in the top left corner, a section of the image from (0,0)

to (12,12). This portion of the image is passed to Proposal Network (P-Net), which

returns the coordinates of a bounding box if it notices a face. Then, it will repeat

that process after shifting the 12x12 kernel sideways (or downwards), and it

continues doing that until it has gone through the entire image. How many pixels

the kernel moves by every time is known as the stride.

4

Each kernel would be smaller relative to a large image, so it would be able to

find smaller faces in the larger-scaled image. Similarly, the kernel would be bigger

relative to a smaller image, so it would be able to find bigger faces in the smaller-

scaled image.

With each of these 12x12 kernels, 3 convolutions are run through with 3x3

kernels. After every convolution layer, a PReLU layer is implemented (when you

multiply every negative pixel with a certain number α, which is to be determined

through training). In addition, a Maxpool layer is put in after the first PReLU layer

(Maxpool takes out every other pixel, leaving only the largest one in the vicinity).

After the third convolution layer, the network splits into two layers. The

activations from the third layer are passed to two separate convolution layers, and a

Softmax layer after one of those convolution layers (Softmax assigns decimal

probabilities to every result, which all add up to 1. In this case, it outputs two

probabilities: the probability that there is a face in the area and the probability that

there isn’t a face).

Refinement Network (R-Net) has a similar structure, but with even more layers.

It takes the P-Net bounding boxes as its inputs and refines its coordinates.

Similarly, R-Net splits into two layers in the end, giving out two outputs: the

coordinates of the new, more accurate bounding boxes, as well as the machine’s

confidence level of each of these bounding boxes.

Finally, Output Network (O-Net) takes the R-Net bounding boxes as inputs and

marks down the coordinates of facial landmarks.

O-Net splits into three layers in the end, giving out three different outputs: the

coordinates of the bounding box, the coordinates of the five facial landmarks

(locations of the eyes, nose, and mouth), and the confidence level of each box.

1.4 FaceNet

FaceNet is a face recognition system introduced by Google in June 2015. The

system directly learns a mapping from face images to a compact 128-dimension

Euclidean space. The L2 distance (or Euclidian norm) between two faces

embeddings directly corresponds to its similarity: faces of the same person have

small distances and faces of distinct people have large distances, which is exactly

like measuring the distance between two points in a line to know if they are close

to each other. In an 𝑛-dimension Euclidean space, the L2 distance between two

points can be expressed as

𝑑𝐿2(𝑥, 𝑦) = √∑(𝑥𝑖 − 𝑦𝑖)2

𝑛

𝑖=1

Once this space has been produced, tasks such as face recognition, verification, and

clustering can be easily implemented using standard techniques with FaceNet

embeddings as feature vectors.

5

FaceNet system uses a deep convolutional network trained to directly optimize

the embedding itself, instead of an intermediate bottleneck layer used by previous

deep learning approaches, resulting in much higher efficiency. The system also

introduces the concept of harmonic embeddings, and a harmonic triplet loss, which

describes different versions of face embeddings (produced by different networks)

that are compatible with each other and allow for direct comparison between each

other.

1.5 Support Vector Machines

SVM is a class of machine learning algorithms, belongs to the area of supervised

learning methods, which need labeled, known data to classify new unseen data.

Using the idea of kernel substitution, it can deal with many tasks such as

classification, regression, and novelty detection. Besides face recognition, SVM

also has applications in handwritten characters recognition, text classification,

bioinformatics, etc.

Its approach to classifying the data starts by trying to create a function that splits

the data points into the corresponding labels with (a) the least possible amount of

errors and (b) with the largest possible margin. This is so because larger empty

spaces around the splitting function result in fewer errors because the labels are

better distinguished from one another overall.

Fig. 2. Visualization of an SVM

6

Figure 2 shows that a data set may be separable by multiple functions without any

error. Therefore, the margin around a separation function is used as an additional

parameter to evaluate the quality of the separation. In this case, the separation 𝑝2 is

the better one, since it distinguishes the two classes in a more precise manner.

Formally, SVM tries to find one or multiple optimal hyperplanes in an 𝑛-

dimensional space. The first attempt in the process of splitting the data is to try to

linearly separate the data into the corresponding labels. For example, for a task of

predicting if a day is rainy or sunny uses a data set with 𝑛 data points, where each

data point consists of a label 𝑦 ∈ {𝑟𝑎𝑖𝑛𝑦, 𝑠𝑢𝑛𝑛𝑦} and an attribute vector �⃗�

containing the data values for the specific session. The SVM now tries to find a

function that separates all the data points (�⃗�, 𝑦) with 𝑦 = 𝑟𝑎𝑖𝑛𝑦 from all the data

points (�⃗�, 𝑦) with 𝑦 = 𝑠𝑢𝑛𝑛𝑦.

If the data is completely separable linearly, the separating function can be used

to classify future events.

The data may not be well linearly separable or not linearly separable at all, which

is often the case for real-world data. In the example given above, it can happen for

example that two days have the exact same weather attributes such as temperature,

humidity, etc. but it only rains on only one of them. This leads to inseparable data

since the same attribute vector has different labels. This can be resolved by mapping

the n-dimensional input data to a higher-dimensional space, where the data can be

separated linearly.

In order to avoid overfitting in SVM, the data has to be preprocessed to identify

noise and accept some misclassifications. Otherwise, the accuracy values of the

SVM will be flawed and result in more erroneous classification for future events.

2 Work Details

In this section we present the design of our Monitoring employee entering and

leaving the office system. As a first step, we need to identify what the users require

from the system, which are the following tasks:

• Registration: new user can register to be recognized by the system in the future,

this procedure must have the system taking photos of the user’s face and letting

the user input their personal information.

• Model training: the system processes and learns the face images from registered

users to output a trained model that can recognize them.

• Face recognition and Door opening: the system can detect a person’s face in

front of the camera and recognize their identity, if they are a user who is author-

ized to enter, the system will automatically open the door and save the event to

log. An announcement can be played by voice as an optional step.

• Web application: the system also provides a website for both users and admin

to access, view information, and perform tasks from their own device, as long

as it is connected to the same network as the server’s.

7

With these requirements in mind, after discussing many possible approaches,

we have decided to come up with the system design as follows:

Fig. 3. System design

This system design consists of 4 main parts:

• Training module: This part handles new user registration, taking raw images,

preprocessing them which outputs face images to train into the recognition

model.

• Recognition module: Using the trained model, this part detects and recognizes

faces from live-acquired images then performs accordingly

• Database: Storing personal data from users, as well as other necessary infor-

mation for the Django web application to run.

• Web application: Providing users and admin a place to view their personal in-

formation and logs from the database, as well as performing some other tasks

depending on permission.

In the rest of this section, we will go into detail about each part, explaining the

components involved in them, how they operate together to reach their own goal,

and the general workflow when the system is running.

8

2.1 Training module

Fig. 4. Training module design

The training module is the first part of the system, which is usually installed in the

administrator’s office. Here new employees can register into the system by inputting

their ID, name, and other required information, which are input into the database

and used to create a class name for the classification model later.

The next step is to take raw face images from staff. By default, the system will

take up to 50 images, one shot every 5 frames (by default), unless terminated

prematurely by the administrator. During this process, the staff is advised to move

their face around in front of the camera so it can take pictures from multiple angles.

The 5 skipped frames by default is to give time for the staff to move their face,

preventing multiple similar images. The more various face angles captured in the

images, the better the data is. The images then will be saved into a created folder

with a name generated from the staff’s name and ID.

The administrator can repeat this registration step for multiple staff members.

Until everyone is registered, the image preprocessing and model training can begin,

using the technologies that are discussed in the previous chapter. This results in a

model, which is uploaded to the server.

In the training process, however, with new data and a previously trained model,

instead of having to retrain the entire dataset over again, a tweak was made to the

original SVM to reuse the classified data in the model so it can reduce the training

time for the new data. An option to retrain the entire model is still available, just in

case.

9

2.2 Recognition module

Fig. 5. Recognition module design

This module is installed on every door of the system. It consists of the following

components: an LED, a camera, and a speaker, all connected to a Raspberry Pi,

which has to connect to the same network as the server’s.

When the system is running, the camera will open and look for faces in front of

it. The live acquired images are constantly streamed to the server, where the face

detection and recognition computations take place. This process uses the model

which is the result of the training module mentioned in the previous section. Once

at least a face is detected in the frame, if the person is a staff and has clearance to

the area, a log is automatically written into the database with the staff’s identity,

current timestamp, in/out status, and door’s identity.

At the same time, the log’s data will also be written down into a local text file,

which will be read by the API view and returns the data in form of JSON. After

reading and returning the JSON to API view, the local text file will be reset.

The Raspberry Pi is programmed to constantly access the API view, if it reads a

log data, the speaker will announce their name and the LED will be lit if they have

clearance to enter.

10

2.3 Database

In order to support running the system on multiple doors at once, besides the two

tables Staff and Log to save data mentioned previously, a table Gate is also created

to store every gate’s name, IP address, and voice option.

In addition to that, several tables are also generated automatically by the Django

framework to support its web application, which will be discussed later.

Fig. 6. System database diagram

In total, our system has 13 tables and 12 relational references. MySQL is used to

store all the data, and the database’s design can be seen in Figure 6 above.

2.4 Web application

Once the previous three modules work, a requirement from the admin to access the

database for management and administrative tasks has arisen, as well as staff users

also want access the database to view their own entering/leaving logs and personal

information. To solve this requirement, a web application is created so that admin

and users can access from their device’s browser directly without downloading any

extra applications.

When a staff registers into the system (the process in section 3.1), an account of

this web application is also created with their ID and a default password, which can

be changed later after login. An admin account was already created when

developing the application, extra admin accounts can be created if the need arises.

Because Django’s authentication is used, the Staff table described in Figure 3.4

has a one-to-one relationship with Django’s generated Auth_user table. Its purpose

is to extend Django’s default User model so more related information like phone

number, clearance, and avatar can be stored.

11

By fetching data from the database described in section 3.3, the web application

can render and display plenty of useful information as well as providing the user

with some functions they can use.

For admin, this application allows them to manage all users and gates, including

create, update, view, delete. They can also view and delete log records from

everyone, but not editing them. New admin accounts can also be added.

For users, this application allows them to view and edit their personal

information except for their ID, change their account password, and only view their

own log records. They can also upload an avatar that will be displayed when they

log in, the image will be saved in folder media.

3 Results

Following the design as discussed in section 2, with the technology and knowledge

introduced in section 1, we have succeeded in developing and implementing a

complete hardware and software system in Cantho University Software Center. The

developed system has been tested for many live acquired images and the results are

satisfactory for prototype work, with requirements that are set out in the starting of

section 2. Testing conditions and results are discussed in this section.

The computer is the brain of the system, which processes acquired images,

analyzes images, and determines the person’s name. It also acts as a server for the

web application. The computer used in the test is a typical laptop with the following

specifications:

• Operating System: Windows 10 Pro 64-bit (10.0, Build 18363)

• Processor: Intel® Core™ i7-6500U CPU @ 2.50GHz (4CPUs), ~2.6GHz

• Memory: 8192MB RAM

3.1 Training module

The registration procedure starts by letting the user enter their name, id, and other

information. This data is saved into the database and used to create a class name for

the classification model later.

The next step is taking raw images. By default, the system takes 50 raw images

in size 640x480, which are saved in folder DataSet\FaceData\raw\

<fullname>_<id> with <fullname> and <id> taken from user input. For each staff,

this step takes about 1 minute at max, which can be quickened by reducing the

number of frames it skips in between shots (as explained in section 2.1).

12

Fig. 7. List of folders for each user's raw images

This registration step can happen at any point of time and multiple times, even when

the system is running live since it only uploads information from user to database

and saves taken raw images in the server’s folder.

Once all the staffs’ raw images are taken, the admin can decide to preprocess

and train the data at any time, preferably when the system is not running.

Image preprocessing is handled by MTCNN, it detects the face area and crops

it, resizing to 160x160 and save in folder DataSet\FaceData\processed\

<fullname>_<id> (similar structure as Figure 7, but for folder processed instead of

raw). For an example of 50 raw images, this step takes about 30 seconds.

3.2 Recognition module

The recognition procedure starts by loading the model and opening the camera(s).

This process takes about 30 seconds to a minute, depending on the computer’s CPU,

GPU (unavailable in this testing computer), and memory. Once opened, the

camera(s) will stream live acquired images back to the computer, which will be

presented on screen in the separated window(s).

Fig. 8. Live acquired image from the webcam without a face

13

It only takes 2 seconds max for the system to recognize a face when it’s on-screen,

but it will only announce the result when the same face is recognized at least 5 times

within 50 frames, in order to avoid false recognition. Due to the small number of

data collected, it is difficult to fully test the system’s accuracy, but it is estimated to

be around 80% on the first try for the system to recognize the correct person.

Fig. 9. Live acquired image from the webcam with a recognized face

Once the user's face is recognized like in Figure 9, one of the following three cases

happen:

• If they are staff and have clearance to enter, a log record is created with the

user’s ID, the gate they’re seen at, current timestamp, and in/out status depend-

ing on the latest log record of the user in the database. Then, this new log record

is then inserted into the database while the system writes its content down to a

local file for the API view to read, which later will be accessed by the Raspberry

Pi (as explained in section 2.2)

• If they are staff but don’t have clearance to enter, no log record is created while

the system writes down the staff’s ID and name to a local file for the API view.

• If they are strangers, no log record is created while the system writes down

‘stranger’ to the local file for the API view.

Depending on the three previous cases, the API view will read the content of the

local file and the Raspberry Pi will act accordingly once accessing it:

• If they are staff and have clearance to enter, the Raspberry Pi will greet/say

goodbye (according to the record’s in/out status) to the staff’s name and light up

the LED light.

• If they are staff but don’t have clearance to enter, the Raspberry Pi will greet the

staff’s name and tell them they are not allowed to enter the area.

• If they are strangers, the Raspberry Pi will greet them in general and tell them

they are not allowed to enter the area.

14

3.3 Web application

For users, after logging in the web application, the first page user sees is their logs,

with the timestamp sorted in descending order.

Fig. 10. User Logs view

By clicking on the link on the left side, user can access their personal info page,

which displays the user’s first name, last name, email, phone number, and avatar

that can be changed if they want.

Fig. 11. User Info view

15

For admin, they can log in the web application to do a variety of management tasks

that will be described in the following.

On the Users page, the admin can view the list of current users with summarized

details and filters as in Figure 11.

Fig. 12. Admin users management

When clicking on a user, the admin can view more information about them in de-

tails, and edit each of them, including their account’s password.

Fig. 13. Admin user edit

16

On the Gates page, since each Gate has less information than each User, its listing

table is also simpler.

Fig. 14. Admin gates management

When clicking on a gate, the admin can view and edit its information.

Fig. 15. Admin gate edit

17

On the Logs page, the admin can view all the log records available and filter them

base on many options on the right side. Notice that with log records admin can

only view or delete, editing them is not an option.

Fig. 16. Admin logs management

4 Conclusions

The main theme of this study is to provide solutions to address some of the

challenges that arise in developing and deploying a system to monitor employees

entering and leaving the office using deep learning. In this section, we describe the

main contributions and discuss some further research directions.

4.1 Summary of Contributions

After researching deep learning in general as well as face recognition in particular,

referencing many other articles and examples that had tackled this problem before,

we have managed to build a system to monitor employees entering and leaving the

office in my own set of conditions. The system’s benefits are described as

following:

• With the currently complicated Covid-19 situation, practicing social distancing

is crucial, with this system, employees can check attendance without directly

interacting with other people or touching any surface.

• The system can take images continuously for multiple employees without inter-

ruption in between any two.

18

• The system can detect people’s faces from a distance, ideally within three meters

from the camera for better image quality, which will provide better recognition

results.

• The system can perform tasks automatically like playing announcements ac-

cordingly, opening doors, and logging events without any further input.

• User can access their own log history from anywhere, as long as they are con-

nected to the server’s network, they can view when and where they entered or

left the area.

• Admin can manage various information on the system, especially controlling

the users’ permission to enter the area and enabling a door’s announcement.

• Admin can use the log information from the system to monitor staff’s perfor-

mance at work as a reference to evaluate their KPI.

• The logs that are saved in the database can be accessed at any point in the future

if a situation requires them.

4.2 Future Directions

The system is designed, implemented, and tested. Test results show that the system

has acceptable performance. On the other hand, the system has some future works

for improvements and extended functionality.

Using another model implementation. Facenet using Keras instead of Tensorflow

and Similarity learning supports training only new user data without retraining the

entire dataset again or interrupting the system, which reduces the training time.

Extending to other field applications. This system can be applied to other

applications like at parking lot where you can automatically check-in and out; or in

the dormitory where you can monitor the students entering or leaving the area and

some other management tasks.

Including body temperature check. By integrating this system with a thermal

camera, it can be very useful in the current pandemic situation where it can check

the person’s body temperature in addition to their face before letting them enter.

19

Acknowledgements. We would like to express our sincere gratitude to the College

of Information and Communications Technology for assisting us with techinical

expertise, as well as Can Tho University Software Center for facilitating our work

with equipment and testing environment. Without their support, carrying out this

research would not have been possible.

References

1. S. Sawhney, K. Kacker, S. Jain, S. N. Singh and R. Garg, "Real-Time Smart Attendance

System using Face Recognition Techniques," 2019 9th International Conference on

Cloud Computing, Data Science & Engineering (Confluence), Noida, India, pp. 522-

525, doi: 10.1109/CONFLUENCE.2019.8776934, 2019.

2. S. W. Arachchilage and E. Izquierdo, "A Framework for Real-Time Face-Recognition,"

2019 IEEE Visual Communications and Image Processing (VCIP), Sydney, Australia,

pp. 1-4, doi: 10.1109/VCIP47243.2019.8965805, 2019.

3. M. Khan, S. Chakraborty, R. Astya and S. Khepra, "Face Detection and Recognition

Using OpenCV," 2019 International Conference on Computing, Communication, and

Intelligent Systems (ICCCIS), Greater Noida, India, pp. 116-119, doi:

10.1109/ICCCIS48478.2019.8974493, 2019.

4. S. Saha, "A Comprehensive Guide to Convolutional Neural Networks — the ELI5 way,"

16 December 2018. [Online].

Available: https://towardsdatascience.com/a-comprehensive-

guide-to-convolutional-neural-networks-the-eli5-way-

3bd2b1164a53. [Accessed 2 January 2021].

5. K. Zhang, Z. Zhang, Z. Li and Y. Qiao, "Joint Face Detection and Alignment Using

Multitask Cascaded Convolutional Networks," IEEE Signal Processing Letters, vol. 23,

no. 10, pp. 1499-1503, doi: 10.1109/LSP.2016.2603342, October 2016.

6. F. Schroff, D. Kalenichenko and J. Philbin, "FaceNet: A unified embedding for face

recognition and clustering," 2015 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), Boston, MA, pp. 815-823, doi: 10.1109/CVPR.2015.7298682,

2015.

7. D. Sandberg, "Face recognition using Tensorflow," 17 April 2018. [Online]. Available:

https://github.com/davidsandberg/facenet. [Accessed 2 January

2021].

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://github.com/davidsandberg/facenet

