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Abstract. Over the last two decades, with advances in computational availability and power, we have seen a 

rapid increase in the development and use of Machine Learning (ML) solutions applied to a wide range of 

applications including their use within agent-based models. However, little attention has been given to how 

different ML methods alter the simulation results. Within this paper, we discuss how ML methods have been 

utilized within agent-based models and explore how different methods affect the results. We do this by extending 

the Sugarscape model to include three ML methods (evolutionary computing, and two reinforcement learning 

algorithms (i.e., Q-Learning, and State→Action→Reward→State→Action (SARSA)). We pit these ML methods 

against each other and the normal functioning of the rule-based method (Rule M) in pairwise combat. Our results 

demonstrate ML methods can be integrated into agent-based models, that learning does not always mean better 

results, and that agent attributes considered important to the modeler might not be to the agent. Our paper's 

contribution to the field of agent-based modeling is not only to show how previous researchers have used ML but 

also to directly compare and contrast how different ML methods used in the same model impact the simulation 

outcome. Since this is rarely discussed, doing so will help bring awareness to researchers who are considering 

using intelligent agents to improve their models. 

Keywords: Agent-Based Modeling, Evolutionary Computing, Machine Learning, Reinforcement Learning, 

Sugarscape. 

1 Introduction 

Advances in computational availability and power have permitted a rapid increase in the development and use of 

machine learning (ML) solutions in a wide variety of applications (Batty et al., 2012). With this growth there is 

growing interest utilizing ML within agent-based models as it has the potential to move from simple agents to 

complex ones (see Crooks et al., 2020; Rand, 2006). Broadly speaking, agent-based modeling can be considered to 

have three major steps: 1) design of the model, 2) execution of the model, and 3) evaluation of the model. Machine 

learning techniques have been applied to all three of these phases (see Abdulkareem et al., 2019). For example, 

Kavak et al. (2018) used ML to derive parameter values for an agent-based model such as human mobility. Others 

have used ML during the running of the model, allowing agents to learn from past experiences and make more 

informed decisions via reinforcement learning (Ramchandani et al., 2017). With respect to using ML algorithms to 

analyze model outputs, Heppenstall et al. (2007) used a genetic algorithm to validate outcomes of an agent-based 

model which simulates the retail petrol market. 

In the ML community at large, it is common to compare different approaches and take the one that gives the best 

result (e.g. Yuan et al., 2019), but this is not the case within the social simulation community. While there is 

growing interest in ML within the agent-based modeling community, little has been written with respect to why one 

ML method was chosen over another, or how the simulation results might be different if different ML methods are 

used. The purpose of this paper is therefore to demonstrate the integration of three machine learning methods into a 

well-known agent based model (i.e., the Sugarscape model (Epstein and Axtell, 1996)) and to demonstrate how 

different methods alter the outcomes of a simulation. In the remainder of this paper, we first provide a brief 

overview of Machine Learning (ML) and its utilization within agent-based models (Section 2) before presenting our 

methodology in Section 3. Section 4 shows the results of different ML methods and Section 5 concludes the paper 

with some thoughts on future directions on using machine learning with agent-based models. 
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2 Background 

Machine learning, a subfield of artificial intelligence, is a large subject area and to cover all types of methods is 

beyond the scope of this paper (interested readers are referred to Russell and Norvig, 2016). Therefore, this paper 

focuses on two major types of ML: Evolutionary Computing (EC), and Reinforcement Learning (RL). Scope is 

further limited to agent-based models that support social science research and enhance the capability of individual 

agents during the execution of the model. In contrast, ML used specifically to optimize model parameters (e.g., 

Junges and Klügl, 2011; Ma et al., 2014) or explore model outputs (e.g., Heppenstall et al., 2007) are not considered 

within this paper since these processes enhance the modeler rather than the model. 

Our rationale for focusing on learning within the agents echoes that of Samuel (1959) who coined the phrase 

"Machine Learning" for a computer program capable of improving itself "to play a better game of checkers than can 

be played by the person who wrote the program." The ability to exceed its original program is a key facet of ML. 

Feedback to decisions made by the program, based on the program's observations of its environment, allows it to 

adjust its internal representations to make better future decisions (Russell and Norvig, 2016). Thus, the computer 

improves its ability to accomplish a task or achieve a goal.  

One key element of agent-based models is that of the agent's ability to learn from past decisions and improve 

their decision making. Many agent-based models utilize simple rules (e.g. Crooks, 2010; Schelling, 1971) that are 

capable of creating complex, system level results. The simple rules, however, do not always provide the desired 

results. For example, Macy and Flache (2002) stated that the focus of modeling cooperation might need to move 

away from population level dynamics to, "cognitive dynamics at the level of the individual." Also Devezer et al. 

(2019) noted that a limitation of their agent-based model was the inability of their simple agents to learn and 

remember previous decisions. To correct this, agents may need a capability to create dynamic rules that adapt to 

individual experiences: a memory of previous decisions and their consequences. Without experience to guide them, 

agents may be reduced to random decisions or encounters. People largely do not conduct themselves randomly 

(Kennedy, 2012), so incorporating experiences may lead to more accurate social science models.  

In order for agents to learn we can turn to two of the most widely used ML methods, that of EC and RL. With 

respect to EC, probably the most well known subclass is that of Genetic Algorithms (GAs). GAs were first 

introduced by Holland (1975) and provide a means for the future agent behaviors to change when successful agents 

share their knowledge, represented as a feature set (genes), with their offspring. Offspring agents are created by 

selecting successful parents, combining portions of the parent’s features, and then randomly changing a small 

percentage of the offspring’s features (Reproduction, Crossover, and Mutation). Over time the agent Collective 

moves toward an optimal solution. Holland’s (1975) original structures have been adapted from a variety of fields as 

shown in Table 1. Another subclass of EC is Genetic Programming (GP) which was introduced by Koza (1992) and 

is similar to GA, the focus, however, is on code segments that are available for reproduction, crossover, and 

mutation rather than agent features (i.e., attributes). Holland (1975) and Koza's (1992) use of the word "genetic" to 

describe their ideas show the link to biological evolution. Social scientists first questioned whether it was valid to 

employ biological evolution concepts to social processes (see Chattoe-Brown, 1998). This initial skepticism has 

been overcome and EC has been used within agent-based models to study a variety of social problems ranging from 

economics, social dynamics to that of teamwork (see Appendix A and Table A1 and Revay and Cioffi-Revilla 

(2018) for further details). 

 

Table 1: A historical look at the fields of study utilizing adaptive structures (operators + structure) and performance 

measures which inspired the beginning of GA study (adapted from Holland, 1975). 

Field Structure Operators (Processes) Performance Measure 

Genetics Chromosomes Mutation, recombination, etc. Fitness 

Economic planning Mixes of goods Production activities Utility 

Control Policies Bayes’s rule, successive approximation, etc. Error functions 

Physiological psychology Cell assemblies Synapse modification Performance rate 

Game theory Strategies 
Rules for iterative approximation of optimal 

strategy 
Payoff 

Artificial Intelligence Programs “Learning” rates Comparative efficiency 
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As noted above, another widely used approach in ML is RL, which originated from behavioral psychology and 

neuroscience (Sutton and Barto, 2018). RL provides a framework for agents to learn by sequential interaction with 

their environment and other agents in much the same way humans learn. These agents develop decision-making 

sequences that maximize a reward for a future goal. The frameworks do not require any prior knowledge, although 

such knowledge is sometimes included (e.g., the transfer of agent knowledge between models (Takadama et al., 

2008)), and agents can learn by playing against themselves (e.g. a Markov game with teams of competing agents 

(Nowé et al., 2006)). Agents decide to move from a current state to a new state using a type of learned Markov 

decision process (Sutton and Barto, 2018). Similar to ML, RL is not a single methodology, but encompasses a 

number of approaches. Table 2 provides examples of RL types that we have found to be used in agent-based 

modeling (see Appendix B for more details), along with abbreviations used in this paper. This is not, however, a full 

list of RL methods, and such a list and detailed explanation of these are beyond the scope of this paper. We refer 

readers to Sutton and Barto (2018) for further examples. As with EC, RL has gained interest in the agent-based 

modeling community to explore a wide variety of applications from economics to the social dynamics of societies 

(examples of which are presented Table A2). 

 

Table 2: Examples of different reinforcement learning types. 

Reinforcement Learning 

Type 

Description Reference 

Bush–Mosteller (BM) 
A type of statistical learning where a predictive function is derived 

from data. 

Bush & Mosteller 

(1955) 

Learning Automata (LA) 
Simple algorithm operating in a stochastic environment where agents 

can improve their actions during operation. 

Narendra & 

Thathachar (1974) 

Q-Learning (QL) 

Learns a policy, expressed as a matrix of values for states and actions, 

thus telling an agent what to do in different circumstances. It does not 

require a model of the problem to be solved. (State→Action→Reward) 

Watkins (1989) 

State→Action→Reward 

→State→Action (SARSA) 

Extends Q-Learning by also considering the future selected state-

action. Uses a model it builds. 

Rummery & 

Niranjan (1994) 

Temporal-Difference (TD) 
Learns from experience without an environmental model and updates 

estimates before final outcome is known. 
Sutton (1988) 

3 Methodology 

In order to demonstrate the differences between rule-based and learning agents, and show how learning agents can 

be integrated into an agent-based model, we adapted the "Sugarscape 2 Constant Growback" (Li and Wilensky, 

2009) model, which is included in the NetLogo (Wilensky, 1999) models library. Our rationale for choosing this 

model was that it is well known within the social sciences, and the purpose of this paper was not to solve or explore 

social issues, but to test the usability of EC and RL within an agent-based model. Using a well-known model seemed 

the logical choice. Sugarscape (Epstein & Axtell, 1996) has been used to demonstrate migration, trade, wealth 

inequality, disease processes, sex, culture, and conflict. It is on conflict, in the form of combat that we focus on 

within this paper as will be shown with the results in Section 4. Within the Sugarscape model there are two groups 

of agents (i.e., red and blue), where individual agents are allowed to move to the nearest unoccupied location with 

the most sugar and consume sugar at the location, metabolize sugar, and die if it runs out of sugar. Our model adds 

combat with agents that can attack and retreat. The basic logic of the model is presented in Figure 1 while Table 3 

specifies the differences between the “original” Sugarscape model and the one presented in this paper. Much of the 

model is similar to the original model but with the additions to support EC and RL that are highlighted in Table 4. 

Due to word limitations, readers are referred to supplementary material provided at https://tinyurl.com/ML-Agents. 

At this link the model presented in this paper along with a full description of it following the Overview, Design 

concepts, and Details (ODD, Grimm et al., 2020) protocol can be found. We do this to allow others to replicate the 

results and adapt the ML methods for their own applications if they so desire.  

 

https://tinyurl.com/ML-Agents
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Figure 1: Model execution flowchart. 

 

As the focus of this paper is to demonstrate, compare, and contrast different ML methods for agent learning, we 

now provide a brief description of the ML utilized within this paper, along with the original model's rule-based 

method, Rule M. We have created agent learning types (i.e., Q-Learning, SARSA, and EC) and the actions that can 

be taken are shown in Figure 1. Figure 1 also shows how these sub-models are positioned in the process flow and 

below we provide a brief discussion of each one (further details can be found in the online supplementary material): 

 

 Rule M type agents use explicit knowledge in the form of a priori rules imposed by the modeler to 

determine actions (i.e., as in the original model) given its state. These agents do not learn.   

 EC type agents use explicit knowledge in the form of a priori rules imposed by the modeler to determine 

actions given its state. The EC agents learn as a Collective (i.e., red or blue groups) using evolutionary 

computing (Holland, 1975). As EC agents die and are replaced, the new agent's metabolism and vision 
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attribute values are initialized based on those agents in their Collective that have the most wealth rather 

than a random value. The mean vision and metabolism attributes for the Collective converge to a local 

maximum that represents a best choice for wealth accumulation. 

 Q-Learning and SARSA type agents uses reinforcement learning (Sutton, 1988; Sutton and Barto, 2018) 

to gather tacit knowledge over time and store their experience in a Q-Value (Quality Value) matrix. 

Initially, these agents explore their world randomly while updating their experience. As they age, they 

increasingly use their experience to make decisions until doing so 95% of the time for the remainder of 

their life as shown in Figure 2. In a sense, as the agents get older, they explore less and follow their tacit 

knowledge more. The difference between these two agent types is how they update their experience. 

Q-Learning agents make off-policy updates that allow them to follow their existing policy in their Q-Value 

matrix, and then update their experience by looking outside the policy, focusing on the best available 

reward. The SARSA agents make on-policy updates following and updating their experience using their 

existing policy. For a full description, see Sutton and Barto (2018).  

 

 
Figure 2: Age based exploration probability for reinforcement learning agents. The exploration probability ranges from 100% to 

an artificial lower bound of 5% chosen to ensure agents continue to explore during their entire life. 

Table 3: Differences between the “original” Sugarscape and the ML models developed for this paper. 

Attribute Original Base Model ML Model Attribute Type 

Collectives (Breeds) No Group A and Group B Fixed 

Discount Rate (Gamma) No 0.9 Hyper Parameter 

Epsilon-Greedy  No    
 

    
      
    

 Fixed 

Evolutionary Computing No Yes Rule 

Geographic Sugar Distribution Fixed Fixed Fixed 

Grow Back Rate (Sugar) 1 [0.1,1.0], Increment of 0.1 Parameter 

Initial Population [10,1000], Increment of 10 [1,400], Increment of 1 Parameter 

Initial Sugar per Agent [5,25], Increment of 1 [5,25], Increment of 1 Parameter 

Learning Rate (Lambda) No 0.8 Hyper Parameter 

Metabolism [1,4], Increment of 1 [1,4], Increment of 1 Parameter 

Q-Learning No Yes Rule 

Reward No Yes Fixed 

Rule M Yes Yes Rule 

Rule R No Yes Rule 

SARSA Learning No Yes Rule 

Time Limit No 20,001 Fixed 

Vision [1,6], Increment of 1 [1,6], Increment of 1 Parameter 

Vision Neighborhood von Neumann von Neumann Fixed 
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Table 4: List of model attributes and their descriptions. 

Attribute Description 

Collectives (Breeds) Agents are divided into two groups that can compete with each other. 

Discount Rate (Gamma) In reinforcement learning this value diminishes the impact of future rewards. 

Epsilon-Greedy  In reinforcement learning, this changes the probability of exploration versus exploitation of time. 

Evolutionary Computing A rule that creates a new agent via crossover of the Vision and Metabolism attributes between the 

two agents with the most sugar. 

Geographic Sugar 

Distribution 

Provided as a text file that is read into the simulation. Shows the maximum and starting amount of 

sugar on each grid of the spatial map. 

Grow Back Rate (Sugar) The amount of sugar that grows back, up to the maximum allowed, on each grid, each tick. 

Initial Population The starting number of agents for each breed. 

Initial Sugar per Agent The amount of sugar each agent starts with selected from a uniform distribution. 

Learning Rate (Lambda) The smaller the number, the slower the learning rate. 

Metabolism The amount of sugar each agent consumes each time period. 

Q-Learning A rule that permits off-policy learning. 

Reward In reinforcement learning, what an agent receives for taking an action while in some state. 

Rule M Move to the nearest unoccupied location with the most sugar. 

Rule R Provides a replacement agent for each breed when an agent has died. 

SARSA Learning A rule that permits on-policy learning. 

Ticks Discrete temporal intervals of equal value that increase monotonically during model execution. Each 

Tick has no equivalency to wall clock time. 

Time Limit The number of ticks at which the simulation will halt. 

Vision The distance, in grids, an agent can see. 

Vision Neighborhood von Neumann - Can see along the four cardinal directions. 

4 Results 

Before presenting the results for the model, we need to mention our efforts for verification. Here we refer to 

verification as the process of checking that the model matches its design. This included code walkthroughs and 

parameter sensitivity testing. These tests ensured that we made no logical errors in the translation of the model into 

code, and that there were no programming errors. For example, during testing we noticed that the original model 

used a non-symmetric sugar topology that created noticeable differences in some outcomes when testing the model, 

specifically when changing the rule sets between two groups. To reduce this bias, a modified sugar topology was 

created which was symmetrical across the major axis running from the top left to bottom right. In addition, the torus 

feature was removed eliminating the ability of the agents to move off the edge of the map and appear on the 

opposing side. This modified sugar topology accompanies the model and is available at https://tinyurl.com/ML-

Agents. 

Now turning to ascertainment of how the different four rule methodologies (i.e., Rule M, Evolutionary 

Computing, Q-Learning, and SARSA) interplay with each other, Table 5 shows the initial settings used for testing 

while Figures 3 to 9 show pairwise comparisons. Readers should note that the Y-axes for each data graphic in the 

figures use a base 10 log scale while the X-axes represents 20,001 time intervals (0-20,000 ticks) and the results 

presented are the mean of 50 model runs. 

 

Table 5. Initial settings for all model runs. 

Attribute Initial Value Remark 

Corner Start On Breeds will start in bottom left and top right corners. 

Combat On Agents will attack. 

Initial Population  400 Maximum agents for corner start. 

Replace Dead On Generate replacements for dead agents. If Rule EC is used, replacements will have 

their Vision and Metabolism created from top two, high sugar agents for their breed. 

Sugar Growback Rate 1.0 Note: A setting of 0.6 or less "stresses" the agents with low resources and 

encourages them to leave their corners. 

 

https://tinyurl.com/ML-Agents
https://tinyurl.com/ML-Agents
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As can be seen in Figures 3 to 9 there is a general similarity across the main diagonal of each of the data graphics 

(i.e., when comparing the same rule methods) and this is to be expected, as there is no difference between the two 

competing groups other than their name (i.e., A and B). However, EC versus EC was the one exception with Group 

A (Blue) always having the same or slightly better outcomes than Group B (Red). We investigated this and we 

found it was not due to activation order or incorrect code. Within Sugarscape, there are two main functions of the 

agents within the model. The first is to collect sugar and this is reflected in the mean wealth that is shown in Figure 

3. Agents utilizing Rule M, the original methodology, always accumulate more sugar against one of the three 

learning methodologies. Rule M also maintained a higher vision distance (as shown in Figure 4) and a slightly 

higher metabolism (Figure 5). EC learning maintained a significant advantage in wealth (sugar) accumulation over 

the two RL methods (Figure 3) and does so with a near equal metabolism (Figure 5). It does this with a much higher 

vision distance that declines over time (Figure 4). A longer run time might have ultimately eliminated this 

advantage, as the end state is only known to 20,001 ticks. Pitting the two RL methods against each other shows a 

small advantage of Q-Learning's ability to go outside its own policy (i.e., off policy) as the two groups shifted from 

exploration to policy as can be seen in Figure 3. Both maintained almost identical high vision distances (Figure 4) 

and low metabolisms (Figure 5). Compared to the other methods, the agents utilizing the SARSA method do not 

accumulate so much wealth (Figure 3).  

The second main function of this Sugarscape model is conflict in the form of combat and here there are no clear 

winners. The EC method accumulated fewer combat deaths when opposing the two RL methods yet had almost 

equal combat deaths when opposing the Rule M group (Figure 6). This is possibly attributable to the EC group 

maintaining a higher vision distance (Figure 4) against the RL group, enabling better retreat and attack decisions. 

Rule M, however, was able to maintain a very high vision distance relative to EC (Figure 4). The two RL 

methodologies fighting against each other showed a noticeable initial period with very few combat deaths (Figure 

6).  

It should also be noted that in the current version of the model, death causes all sugar and combat experience to 

be lost by the dying agent. The EC method was noticeably superior to the other three methodologies in finding 

sufficient sugar to metabolize and not starve (Figure 7). In addition, mean age (Figure 8) and mean maximum age 

(Figure 9) are indicators of experience and sugar gathering opportunities. As RL agents age their individual Q-Value 

tables reflect their accumulated combat experience and EC agents holding the most sugar become replacement agent 

templates. All methodologies demonstrated a decrease in mean metabolism (Figure 5), a positive outcome given a 

high value could lead to an agent starving to death. Agents utilizing the EC method routinely saw their mean vision 

decrease over time (Figure 4). This was an unexpected evolution as superior vision can lead to better sugar mining, 

defensive actions (retreat in the face of superior numbers), and offensive actions (attacks against an outnumbered 

opponent). It is possible that combat deaths left mostly low sugar holders and they were low because they lacked 

vision, however, further analysis is needed to explain this phenomenon. While not reported in the figures, we would 

like to note that different ML methodologies resulted in variations in model run times. This difference was expected 

as ML methods can be computationally intensive. For example, using Rule M versus Rule M simulation as a 

baseline, the SARSA versus SARSA simulation could take as much as seven times as long to complete a single run. 

5 Summary 

Both agent-based modeling and ML have seen growth over the last two decades, along with the integration of ML 

within agent-based models (as discussed in Section 2). Seldom have agent-based modelers applied different ML 

methods to the same model and then reported how simulation outcomes differ. This paper does just that. By 

adapting the Sugarscape model with three types of learning agents (i.e. EC, Q-Learning and SARSA) and 

contrasting them with Rule M from the original model we found that different learning methods do have an impact 

on the simulation outcome (as discussed in Section 4). While our aim was not to prove which learning method was 

superior, but rather to provide a way to compare and contrast them, it was surprising that Rule M agents were able to 

accumulate more wealth than the ML agents. One possible reason for this is that with the ML agents, we did not 

specifically attempt to tune the simulation. For example, we did not experiment with altering the hyper parameters 

of the RL models (see Table 3). With that being said, our results do suggest that modelers who wish to use ML 

methods for agent learning should pay particular attention and justify why they chose one method over another. 

The question our results bring up, is it worth the effort to add ML to agent-based models? Creating a model using 

agents has always required a firm grasp of the simulation's goal, but ML requires additional thought. In traditional 
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rule-based models (e.g. Rule M), the agents’ actions are designed specifically to match situations the modeler 

anticipates. For example, if the agent sees sugar, move to the location with the sugar and consume it. While with ML 

this is different, taking RL as an example, the modeler needs to consider a range of actions an agent may be tasked 

to perform and the states they may be in because of these actions (as discussed in Section 2). Conversely, the state 

the agent is in can be used to determine what actions could take place. Rewards can be used to tempt the agent 

mathematically for each state-action combination. Positive rewards create an inclination to repeat the action, while 

negative rewards should be like touching a hot stove for the first time. Taking the Sugarscape model presented in 

this paper, combat was an important part of this demonstration and agents are dependent on the presence of their 

enemy (i.e., the other group) for learning. RL agents that do not encounter the enemy, never learn to attack or 

retreat. EC agents evolve based on representative agents with the most accumulated sugar. High sugar EC agents 

that are killed by the enemy cannot pass their attributes onto new agents. For both types of learning agents, enemy 

actions have consequences beyond a single combat action. However, going back to the question posed at the 

beginning of this paragraph, we would argue that the answer is yes, it is worth adding ML to agent-based models, if 

the goal is unachievable by simpler methods or if you want the agents to learn from good and bad experiences. 

Another consideration when it comes to using ML is the increase in computational resources needed for them. 

Today's era of big data and cloud-based computing has increased the availability of such resources, but the cost is 

still a limitation and wasted time cannot be recovered. For example, our RL agents needed time to explore actions 

before beginning to exploit them and SASRA took seven times longer (wall clock time) to execute than Rule M over 

the same number of time steps (ticks). 

While the methods used within this paper are well established within the ML field, it paves the way to exploring 

newer ML methodologies in the social science community. Looking ahead, using deep RL and combining ML 

methodologies in the same agent is worthy of future research. It is not surprising that others (Sutton and Barto, 

2018) have combined RL and an artificial neural network (ANN). The ANN can act as a function to reduce a large 

number of inputs to a smaller set that focuses on critical features. In a different approach, EC could be used as a 

means for two successful RL agents to pass their knowledge to a new agent. Another area of further work would be 

to explore other well know agent-based models and explore the impact that ML would have on their end states. With 

all this being said, our paper's contribution to the field of agent-based modeling is not only to show how previous 

researchers have used ML but also to directly compare and contrast how different ML methods used in the same 

model impact the simulation outcome which is rarely discussed, thus helps bring awareness to researchers who are 

considering using intelligent agents to improve their models. 
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Appendix A: Examples of Utilizing Evolutionary Computing within Agent-based Models to 

Study Social Issues. 
 

In this appendix, readers will find a selection of papers that have utilized EC within agent-based models to study 

social issues. Before presenting Table A1, we provide a brief explanation of column headings to aid the reader: 

 Author: The author(s) and year of publication. 

 Application: All papers fall under the category of Sociology. The sub-category within sociology is listed. 

 Focus: The author's intent in writing the paper leans either toward solving or exploring some sociology issue or 

toward demonstrating how an EC methodology could be applied. 

 Entity: The entity types the agents represent in the model. 

 Behavior: The method used by each agent to model human behavior. This is an extension of Kennedy's (2012) 

typology of mathematical behavior of human agents. All behaviors are mathematical and a type of Machine 

Learning (ML). The types can be evolutionary computing/evolutionary algorithm (EC/EA), evolutionary 

computing/evolutionary programming (EC/EP), artificial neural network (ANN), or reinforcement learning (RL). 

 Agent Scale: The number of agents used in the model shown in a power of ten notations. 

 Spatial Scale: The spatial size used by the model, if any. Network is a special spatial scale where there is no 

distance, but there is adjacency. 
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 Time Scale: Shown as interval or ordinal from Steven's (1946) typology. Interval means the temporal distance 

between units is identical. The unit can be explicit (years) or abstract (steps). Ordinal means the distance 

between units is undefined but is monotonic and usually increasing (generation). 

Table A1: A selection of applications utilizing evolutionary computing to study social science applications.  

Author Application Focus1 Entity Behavior Agent 

Scale 

Spatial Scale Time Scale 

Arifovic (1994) Economics S Firm ML/EC/EA 100 None 
Interval, Steps 

(10,000) 

Chen & Yeh 

(1996) 
Economics M Firm ML/EC/EP 102 None 

Interval, Steps, 

Generations 

(1,000) 

Curran & 

O'Riordan 

(2007) 

Social 

Dynamics 
S Individual 

ML/EC/EA 

ML/ANN 
101 Network 

Interval, Steps 

(400) 

Dionne et al. 

(2019) 

Social 

Dynamics 
S Individual ML/EC/EA 102 Network Interval, Steps (60) 

Edmonds 

(1999) 

Social 

Dynamics 
S Individual ML/EC/EP 100 None 

Interval, Weeks 

(100) 

Fischer (2003) 
Social 

Dynamics 
M Individual ML/EC/EA 100 None 

Interval, Steps 

(10,000) 

Francisco and 

Jorge dos Reis, 

(2008) 

Teamwork M Individual ML/EC/EP 102 
Interval, Grid 

(5,000x5,000) 
Ordinal (100) 

Grefenstette 

(1992) 
Teamwork M Individual ML/EC/EP 100 None 

Interval, Steps, 

Generations (100) 

Haynes & Sen 

(1996) 
Teamwork M Individual ML/EC/EP 100 

Interval, Grid 

(30x30) 

Interval, Steps 

(100) 

Hsu & 

Gustafson 

(2002) 

Teamwork M Individual ML/EC/EP 103 
Interval, Grid 

(20x20) 

Interval, Steps 

(400) 

Jang et al. 

(2019) 

Social 

Dynamics 
S 

Individual, 

Organization 
ML/EC/EA 102 Network Interval 

Jim & Giles 

(2000) 
Teamwork M Individual ML/EC/EA 102 

Interval, Grid 

(30x30) 

Interval, Steps 

(5,000) 

Klüver & 

Stoica (2003) 

Social 

Dynamics 
M Individual 

ML/EC/EA 

ML/ANN 
100 Network Interval 

Kunz (2011) 
Social 

Dynamics 
S Group ML/EC/EA 101 None 

Interval, Steps 

(200) 

Manson (2005) Economics S 
Household, 

Organization 
ML/EC/EP 101 

Interval, Grid 

(cell 28.52 m) 
Interval, Years (9) 

Tanev & 

Shimohara 

(2003) 

Teamwork M Individual ML/EC/EP 100 

Interval, Grid 

[mm] 

(1,600x1,000) 

Interval, Half-

Second (600) 

Vila (2008) Economics S & M Individual ML/EC/EA 103 None 
Interval, Steps 

(500) 

Xianyu (2010) 
Social 

Dynamics 
S Individual 

ML/EC/EA 

ML/RL 
103 Network 

Interval, Steps 

(5,000) 

Yamamoto et 

al. (2019) 

Social 

Dynamics 
S Individual ML/EC/EA 102 None 

Interval, Steps [200 

Rounds x 200 

Generations] 

(40,000) 

 

  

                                                           
1
 M is for Methodology and S is for Solve 
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Appendix 2: Examples of Utilizing Reinforcement Learning within Agent-based Models to 

Study Social Issues. 

In this appendix, readers will find a selection of papers that have utilized RL within agent-based models to study 

social issues. To assist with interpretation of Table A2, the column headings are the same as in Table A1 with the 

exception of behavior. Here behavior refers to the method used by each agent to model human behavior. This is an 

extension of Kennedy's (2012) typology of mathematical behavior of human agents. All behaviors are mathematical 

and a type of Machine Learning (ML). The types can one of the following Q-Learning (QL), Temporal-Difference 

(TD), Bush-Mostellar (BM), State→Action→Reward→State→Action (SARSA), and Learning Automata (LA). 

 

TableA2: A selection of applications utilizing reinforcement learning to study social science applications. 

Author Application Focus2 Entity Behavior 
Agent 

Scale 
Spatial Scale Time Scale 

Chmura & Pitz 

(2007) 

Social 

Dynamics 
S Individual ML/RL/QL 101 None 

Interval, Steps 

(500) 

Christensen & 

Sasaki (2008) 

Social 

Dynamics 
S Individual ML/RL/TD 101 

Square 

Meters 

(4,000) 

Interval, 25 

Milliseconds 

(4,880) 

Claus & Boutilier 

(1998) 

Social 

Dynamics 
M Individual ML/RL/QL 100 None 

Interval, Steps 

(2,500) 

Clempner (2017) 
Social 

Dynamics 
M Individual ML/RL/TD 100 None 

Interval, Steps 

(Unknown) 

Hao & Leung 

(2013) 

Social 

Dynamics 
S Individual ML/RL/QL 102 None 

Interval, 

Rounds 

(5,000) 

Izquierdo et al. 

(2008) 

Social 

Dynamics 
M Individual ML/RL/BM 100 None 

Interval, Steps 

(1,000,000) 

Junges & Klügl 

(2011) 

Social 

Dynamics 
M Individual ML/RL/QL 100 

Continuous, 

Meters 

(20x30) 

Interval, Half-

Second 

(50,000) 

Macy & Flache 

(2002) 

Social 

Dynamics 
M Individual ML/RL/BM 100 None 

Interval, Steps 

(500) 

Mahadevan & 

Connell (1992) 
Task Managing M Individual ML/RL/QL 100 

Interval, Grid 

(37x19) 

Interval, Steps 

(2,000) 

Nowé et al. 

(2006) 

Social 

Dynamics 
M Individual ML/RL/LA 100 None 

Interval, Steps 

(500) 

Ramchandani et 

al. (2017) 
Economics M Individual ML/RL/QL 103 None 

Interval, 

Months (540) 

Sallans et al. 

(2003) 
Economics S 

Firms, 

Traders, & 

Consumers 

ML/RL/ 

SARSA 

Not 

Known 
None 

Interval, Steps 

(4,500) 

Takadama et al. 

(2008) 

Social 

Dynamics 
M Individual ML/RL/QL 100 None 

Interval, Steps 

(10,000,000) 

Tan (1993) Teamwork M Individual ML/RL/QL 100 
Interval, Grid 

(10x10) 

Interval, Steps 

(10,000) 

Tanabe & Masuda 

(2012) 

Social 

Dynamics 
M Individual ML/RL/BM 103 None 

Interval, Steps 

(200) 

Wall (2018) 
Social 

Dynamics 
S 

Organization 

Unit 
ML/RL/BM 100 Network 

Interval, Steps 

(Unknown) 

Wolpert et al. 

(1999) 

Social 

Dynamics 
M Individual ML/RL/QL 102 Network 

Interval, 

Weeks (4,000) 

Zschache (2017) 
Social 

Dynamics 
M Individual ML/RL/QL 104 Network 

Interval, Steps 

(1,000) 

 

                                                           
2 M is for Methodology and S is for Solve 


