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Abstract. We turn saturation-based theorem proving into an auto-
mated framework for recursive program synthesis. We introduce magic
axioms as valid induction axioms and use them together with answer
literals in saturation. We introduce new inferences rules for induction in
saturation and use answer literals to synthesize recursive functions from
these proof steps. Our proof-of-concept implementation in the VAMPIRE
theorem prover constructs recursive functions over algebraic data types,
while proving inductive properties over these types.
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1 Introduction

Program synthesis is the task of constructing a program P satisfying a given
specification F', ensuring that P is correct by design [17]. In this paper we work
with a functional specification F' of the input-output relation of a program P,
where F is given as a V3 formula in first-order logic [17,1]. Validity of a specifi-
cation formula F' ensures that for every input value there exists an output value
satisfying F', and therefore there is a function which for every input value gives
such an output value. Our goal is to automatically find a (possibly recursive)
program that P computes the output, while preserving F.

As a complementary approach to formal verification, synthesis is inherently
more complex [25]. The complexity is further compounded when we consider
reasoning about — and synthesizing — programs using recursion. As a remedy, in
this paper we advocate for using automated first-order theorem proving as the
reasoning back-end to (recursive) program synthesis.

The work [7] extended the saturation-based first-order theorem proving frame-
work to saturation-based synthesis framework. The approach (i) uses saturation-
based reasoning to prove that a specification F' is valid; (ii) tracks the construc-
tive parts of the proof of F'; (iii) and uses them to synthesize a program P
satisfying F. In this paper we complement [7] with support for recursive pro-
gram synthesis. We use recent developments on automating induction in satura-
tion [4,8,6] and construct recursive programs based on applications of induction.
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axioms: half(0) ~ 0 (H1)
half(s(0)) ~ 0 (H2)

Vz. half(s(s(z))) ~ s(half(z)) (H3)
specification: Vz3y. half(y) ~ (SD)

Fig. 1. Axioms of half and the V3-specification for the function computing double.

Ilustrative Example. Consider the specification (SD) of Figure 1, which de-
scribes the inverse of the half function over natural numbers. Given the axiom-
atization of half in Figure 1, our approach synthesizes the recursive function
double as a solution of (SD), defined as:

double(0) ~ 0

Vx. double(s(z)) ~ s(s(double(z))) @

The framework of [7] fails to synthesize a solution of (SD), as double is a recursive
program. To the best of our knowledge, there exist no automated approach sup-
porting recursive function synthesis from functional input-output specifications
in full first-order logic.

This paper provides a solution in this respect by exploiting the constructive
nature of induction. Intuitively, each case of an induction axiom tells us how
to construct the desired program for the next recursive step using the program
for the previous recursive step. We capture this construction recipe contained
in the applications of induction in saturation-based proof search, by utilizing
answer literals ans(r) [3]. When we use an induction axiom in the proof, we
introduce a special term into the answer literal, serving for tracking the program
corresponding to the induction axiom. As we prove the cases of the induction
axiom, we capture their corresponding programs in the answer literal. Finally,
when we derive a clause C'V ans(r), where C' only contains symbols allowed in
a program, we convert the special tracker terms from r into recursive functions,
and obtain a program for the initial specification conditioned on —C'.

Contributions. We extend saturation-based first-order theorem proving with
recursive program synthesis and bring the following contributions®:

— We introduce induction axioms, dubbed magic arioms, which capture the
constructive nature of induction (Section 5).

— We convert the magic axioms into formulas used by a saturation-based frame-
work to derive programs using recursion over algebraic datatypes, i.e., special
cases of term algebras. We state necessary requirements for the calculus used
in saturation and prove correctness of synthesized programs (Section 6).

— We present an extension of the superposition calculus that fulfills our nec-
essary requirement and advocate for superposition reasoning for recursive
function synthesis (Section 7).

5 proofs are given in the Appendix
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— We show that our approach, illustrated initially for natural numbers, natu-
rally extends to programs over arbitrary term algebras (Section 8).

— We implement our work in the VAMPIRE prover [13] and survey challenging
examples it can synthesize (Section 9).

2 Preliminaries

We assume familiarity with standard multi-sorted first-order logic (FOL) with
equality. We denote variables by z,y, z, w, u, terms by s, ¢, r, atoms by A, literals
by L, clauses by C, D, formulas by F,G, all possibly with indices. Further, we
write o for Skolem constants. We reserve the symbol [0 for the empty clause
which is logically equivalent to L. We write L for the literal complementary
to L. By ~ we denote the equality predicate and write ¢t % s as a shorthand
for =t ~ s. We include a conditional term constructor if —then —else in the
language, as follows: given a formula F' and terms s,t of the same sort, we write
if F' then s else t to denote the term s if F' is valid and ¢ otherwise. An expression
is a term, literal, clause or formula. We write E[t] to denote that the expression
E contains the term t. For simplicity, F[s] denotes the expression E where all
occurrences of ¢ are replaced by the term s. Formulas with free variables are
considered implicitly universally quantified, that is we consider closed formulas.

We use the standard semantics for FOL. For an interpretation function I,
we denote the interpretation of a variable x, function symbol f and a predicate
symbol p by z!, f1, p’, respectively. We use the notation e’, F! also for interpre-
tation of expressions e and formulas F', respectively. Further, for a variable or a
constant a and a value v, we denote by I{a — v} the interpretation function I’
such that a’’ = v and b’ = b’ for any constant or variable b £ a.

We recall the standard notion of A-expressions. Let ¢t be a term and x a
variable. Then Az.t denotes a A-expression. For any interpretation I, we define
(Az.t)! as the function f given by f(v) = t/{#=*} for any value v. Moreover, we
extend the notation of A-expressions to also bind constants. Let ¢ be a constant,
then Ac.t also denotes a A-expression, and its interpretation (Ac.t)! is the function
f given by f(v) = t'{e>v} for any value v.

A substitution 0 is a mapping from variables to terms. A substitution 6 is a
unifier of two expressions F and E' if E§ = E'0; 0 is a most general unifier (mgu)
if for every unifier n of E and E’, there exists substitution u such that n = fu. We
denote the mgu of F and E’ with mgu(E, E'). We write Fy, ..., F, F Gy,...,Gp,
to denote that Iy A... A F,, = G1 V...V G,, is valid, and extend the notation
also to validity modulo a theory T'.

We work with term algebra [24], in particular with the special classes of the
algebraically defined datatypes of the natural numbers N, lists I, and binary
trees BT. For reference we include the definitions of these term algebras in Fig-
ure 6 in Appendix D. We denote the sorts of symbols and terms by : (colon),
e.g., [ : 7 — «is a function symbol with domain 7 and range «. To emphasize
the sort 7 of a quantified variable x, we write Vo € 7 or dx € 7. For a term
algebra sort 7, we denote its constructors with Y. We fix an arbitrary order-
ing on the constructors, and denote the i-th constructor in the order by ¢;, i.e.,
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Superposition (Sup): Binary resolution (BR):

s~tvC L[s]vD AvC -A'VD
(L[t]vC Vv D)6 (Cv D)o

where 6 := mgu(s, s). where 6 := mgu(A, A").

Factoring (F): Equality resolution (ER): Equality factoring (EF):

AVvA vC s2tvC s~tVs ~t'vC
(AVC)e co (s=tVitt V)
where :=mgu(4, A'). where 6 := mgu(s, t). where 6 := mgu(s, s).

Fig. 2. Simplified superposition calculus Sup.

Yr =A{c1,...,¢x,} For each ¢;, we denote its arity with n.,. We denote with P,
the set of argument positions of ¢; of the sort 7. We only consider the standard
models of term algebras. Programs we synthesize may contain terminating re-
cursive functions f : 7 — «, where 7 is a term algebra type. We define such func-
tion f by providing a set of equalities { f(c(Z)) ~ t[Z, f(;,), -, f(zj,p, )} ees,
where P. = {ji,...,d|p,}, and t contains no occurrences of f except for the
distinguished ones. An example of such a definition is (1).

Saturation and Superposition. Saturation-based proof search implements
proving by refutation [13]: validity of F' is proved by establishing unsatisfiability
of =F'. Saturation-based first-order theorem provers work with clauses, rather
than with arbitrary formulas. To prove a formula F', the provers negate F' and
further skolemize it and convert it to clausal normal form (CNF). The CNF of
—F is denoted by cnf(—F'), resulting in a set S of initial clauses. For example,
the CNF of the negated and skolemized (SD) is

half(y) # o, (2)

where o is a fresh constant used for skolemizing x, and y is implicitly universally
quantified. Saturation provers saturate S by computing logical consequences of
S with respect to a sound inference system Z. Whenever the empty clause [J is
derived, the set S of clauses is unsatisfiable and F' is valid. We may extend the
initial set S with additional clauses C', ..., C,. If C is derived from this extended
set, we say C' is derived from S under additional assumptions Cq,...,Cy.

The superposition calculus Sup [19] is the most common inference system
for first-order logic with equality. Figure 2 shows a simplified version® of Sup.
The Sup calculus is sound (if O is derived from F, then F is unsatisfiable) and
refutationally complete (if F' is unsatisfiable, then O can be derived from it).

6 see Appendix A.1 for the full Sup calculus.
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3 Recent Developments in Saturation

In this section we sumiarize recent results relevant to our work.

Program Synthesis in Saturation. Synthesizing (non-recursive) programs in
saturation has been initiated in [7]. Here, computable and uncomputable sym-
bols in the signature are distinguished. Intuitively, computable symbols are those
which are allowed to appear in a synthesized program. An expression is com-
putable if all symbols it contains are computable. A symbol or an expression is
uncomputable if it is not computable.

Let Aq,..., A, be closed formulas. Then

AN NA, = VT F[T, Y] (3)

is a (synthesis) specification with inputs T and output y.

Consider a computable term r[Z] such that A1 A ... A A, — VZ.F[Z,r[T]]
holds. Such an r[Z] is called a program for (3) and a witness for y in (3). If
AN NA, 5 VE(FL A ... A F, — F[z,r[Z]]) holds for computable formulas
Fi,...,Fy,, then (r[@], A\i_, F}) is a program with conditions Fi, ..., F, for (3).

The work of [7] extended saturation-based theorem proving to a saturation-
based program synthesis framework. To this end, the clausified negated specifi-
cation (3) is extended by an answer literal ans:

AL Ao N AL AVy.(enf(=F[a,y]) V ans(y)) (4)

The set of clauses (4) is then saturated. During saturation, upon deriving a clause
Clo] Vv ans(r[a]), where r[7] is computable and C[7] is computable and does
not contain ans, the program (r[z], ~C[Z]) with conditions for (3) is recorded
and the clause is replaced by C[g]. This step is called answer literal removal
within saturation. Once saturation terminates by deriving the empty clause [,
the final program for (3) is constructed by composing the relevant recorded
programs with conditions in a nested if—then—else. To support derivation of such
clauses C[] V ans(r[g]) and to ensure that answer literals only have computable
arguments, the work of [7] extended the superposition calculus Sup with new
inference rules (as shown in Appendix A.2).

Induction in Saturation. Inductive reasoning has been integrated in satura-
tion [23,4,8,6,5]. The main idea in this body of work is to apply induction by
theory lemma generation: based on already derived formulas, generate a suit-
able induction axiom and add it to the search space. To this end, the following
induction rule is used: .

Lit]vC

F ool

where L[t] is a ground literal, C is a clause, and F' — Vx.L[z] is a valid induction
axiom. The conclusion of the Ind rule is clausified, yielding cnf(—F) Vv L[x]. This
clause is resolved with the premise L[t] V C' immediately after applying the Ind
rule and the resulting clause cnf(—=F) Vv C is added to the search space.
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An example of a valid induction schema is the structural induction axiom for
natural numbers, where Gz] is any closed formula:

(GIO] A Yy-(Glyl — Gls(y)])) — Va.Gla] ()

When we instantiate the schema with G[z] := L[x], we obtain an axiom that
can be used in Ind. Since the rule requires L[t] to be ground, this instance of Ind
cannot be applied on (2) and thus is not sufficient for proving (SD) of Figure 1.
To prove formulas with a free variable by induction, we extend Ind in Section 5.
Note that we can also use a complex formula G[t] in place of the literal L|t]
in Ind, obtaining a more involved rule, possibly with multiple premises, similarly
to a mutli-clause induction rule [6] or a induction with arbitrary formulas [5].

4 Saturation with Induction in Constructive Logic

We first summarize the key challenges our work resolves towards recursive syn-
thesis in saturation, and then present our synthesis approach in Sections 5-8.

The idea of extracting programs from proofs originates from results in con-
structive (intuitionistic) logic, starting with Kleene’s realizability [11]. In con-
structive logic, provability of a formula VZ3y.F[Z,y] implies that there is an
algorithm which, given values for T, outputs a value for y satisfying F[Z, y].

We note that the structural induction formula (5) over natural numbers has
computational content, as follows. The program r for Vz.G[z] can be built from
a program rq for G[0] and a program r, for Vy.(G[y] — Gs(y)]) as:

r(0) ~ ro
r(s(y)) ~ rs(r(y))

For this to be useful, we need to first prove G[0], then prove Vz.(G[y] — G[s(y)]),
and then use the induction formula to derive Vz.G[z]. Such an approach towards
constructing programs does not however work in saturation-based theorem prov-
ing, as saturation does not reduce goals to subgoals [2]. Rather, we add the in-
duction formula as a theory lemma to the proof search and continue saturation,
so we do not have proofs of either G[0] or Vy.(G[y] — GI[s(y)]). Constructing
programs during saturation becomes even more complex when using answer lit-
erals, because clauses generated during saturation may contain these literals.
For example, if we try to extract a proof of G[0], we may find a proof with an
answer literal in it.

To capture the constructive nature of induction and address the above chal-
lenges of program synthesis in saturation, we use the the following trick. We
modify the induction formula so that it indirectly stores information about the
programs for G[0] and Vy.(Gly] — G[s(y)]). To do this, instead of adding the
induction axiom (5), in Section 5 we add what we call a magic axiom for (5),
where G has an additional argument for storing the program. In Section 6 we
further convert our magic axioms into formulas to be used to derive recursive
programs in saturation.



Synthesis of Recursive Programs in Saturation 7

5 Induction with Magic Formulas

We first present our approach to proving formulas with a free variable by in-
duction. We further extend this approach to synthesis in Section 6. While our
approach works the same way with arbitrary term algebras, for the sake of clar-
ity we first introduce our work for natural numbers and then for general term
algebras in Section 8.

We use the following magic azxiom:

(Eluo.G[O, o) A Vy. (Fw.Gly, w] — Jus.Gls(y), us])) — Vz.3x.Glz,z]  (6)

Note that all magic axioms are valid, as they are instances of the structural

induction axiom (5) with the quantified formula Jx.G[t, 2] in place of G[t]. The

magicness of (6) stems from its simple, yet powerful expresivness: when used in

proof search, the variables wug, us in the antecedent capture the programs for the

base and step cases, allowing us to construct a program for z in the consequent.
Using axiom (6), we introduce the following variant of the Ind rule:

Lit,z] v C
(Huo.L[O,uo] AVy.(Fw.Lly, w] — Eus.L[s(y),us])) — Vz.3z. L[z, x]

(Maglind)

where the only free variable of L[t, z] is 2 and C does not contain z.

Ezample 1. Consider the specification (SD) from Figure 1. To prove it using
superposition, and not yet synthesize the function satisfying (SD), we use the
following magic axiom:

(Huo.half(uo) ~0AVy.(Jw.half(w)~y — ﬂus.half(us)zs(y))) — Vz.3z.half(z)~z (7)

To use (7) in saturation, we clausify it and skolemize the variables y,w,z as
Oy, 0w, 0z(2), respectively. The following is a refutational proof of (SD):
)

1. half(y) # 0o [negated and skolemized specification (SD)]
2. half(ug) # 0V half(oy) ~ o, V half(0,(2)) ~ 2 [Maglnd with (7)]
3. half(ug) % 0V half (us) % s(oy) V half(0,(2)) ~ = [Maglnd with (7)]
4. half(ug) % 0V half(oy) ~ o, [BR 1, 2]
5. half(ug) % 0V half(us) % s(oy) [BR 1, 3]
6. half(ug) 2 0V half(us) % s(half(o,)) [Sup 4, 5]
7. half(ug) % 0V half (us) % half(s(s(ow))) [Sup (H3), 6]
8. half(ug) 2 0 [ER 7]
9. 0 [BR 8,(H2)]

Hence, the magic axiom (6) is sufficient to prove (SD). However, (6) does not
suffice to synthesize the program for (SD) from the above proof. Similarly to [7],
for synthesis we would use

half(y) % o V ans(y) (8)
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instead of clause 1 and obtain a derivation similar to the one above, but with the
answer literal ans(o,(0)). As o, is a fresh skolem function, it is uncomputable
and not allowed in answer literals. Therefore, simply following the approach of [7]
fails to synthesize a recursive program from the proof of (SD). We address the
challenge of program construction for the skolem function o, in Section 6. O

6 Programs with Primitive Recursion

We now construct recursive programs for proofs using induction over natural
numbers (6). As mentioned in Section 4, the antecedent of the induction axiom
gives us a recipe for constructing the program for the consequent. To capture
this dependence of the consequent program x on the antecedent programs uq, us,
we convert the magic axiom (6) to its equivalent prenex normal form:

Jy, w.NVug, us, z.EIx.((G[O, uo] A (Gly, w] = G[s(y), us])) — G[z,x]) 9)

We next define a recursive operator to be used for constructing programs.

Definition 1 (Primitive Recursion Operator). Let f : o, and fo : Nxa —
a. The primitive recursion operator R for natural numbers and « is:

R(f1, f2)(0) ~ f1
R(f1, f2)(s(y)) =~ fa(y, R(f1, f2)(y))

Lemma 2 (Recursive Witness). The expression R(ug, Ay, w.us)(z) is a wit-
ness for the variable x in (9).

Lemma 2 ensures that we can construct a program for the consequent of
the magic axiom given programs for the base case and the step case. We next
integrate this construction into our synthesis framework using answer literals.
For that we take a close look on skolemization of induction axiom (9), and define
skolem symbols for the variable z, capturing the recursive program.

Definition 3 (rec-Symbols). Consider formulas G[t, z] with a single free vari-
able x : a containing a term ¢ : N. For each such formula we introduce a distinct
computable function symbol recg ) : @ X a — a. We will refer to such symbols
recg,z] as rec-symbols. When the formula G[t,z] is clear from the context or
unimportant for the context, we will simply write rec instead of recg,4)-

A term with a rec-symbol as the top-level functor is called a rec-term.
Definition 4 (Magic Formula). The magic formula for G[t, z] is:

Yug, Us, 2.

10
((G’[O, uo] A (Gloy, ow] — G[s(ay),us])) — Gz, recgr, ) (uo, us,z)}) (10)
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It is easy to see that magic formula (10) is obtained by skolemizing the prenex
normal form of magic axiom (9), where we replace the variables y,w by fresh
constants oy, 0., and the variable z by a fresh recg; »-symbol. The constants
oy, 0y introduced in (10) are said to be associated with the recgy z)-term. An
occurrence of any skolem constant oy,0,, is considered computable if it is an
occurrence in the second argument of a recg(; ,)-term which it is associated with.

We introduce additional requirements for reasoning with rec-terms to ensure
that they always represent the recursive function to be synthesized.

Definition 5 (rec-Compliance). An inference system Z is rec-compliant if:

1. Z only introduces rec-terms in the instances of the magic formula (10),
2. T does not introduce uncomputable symbols into arguments of rec-terms in
clauses it derives.

Using a rec-compliant inference system Z, we derive clauses containing rec-terms.
These terms correspond to functions constructed using the operator R.

Definition 6 (Recursive Function Term). Let o,,0, be associated with
rec(sy, s2,t). Then we call the term R(s1, Aoy, 0y.52)(t) the recursive function
term corresponding to rec(sy, S2,t).

For a term r, we denote by R the expression obtained from r by iteratively
replacing all rec-terms by their corresponding recursive function terms, starting
from the innermost ones. Similarly, formula FR denotes the formula F in which
we replace all rec-terms by their corresponding recursive function terms.

Lemma 7 (Recursive Witness for Magic Formulas). Consider the formula
obtained from (10) by replacing recqy »](uo, us, 2) by its corresponding recursive
function term R(ug, Aoy, ou.us)(2):

Yug, Us, 2.

(11)
((G[O, uo) A (Gloy, 0] = Gls(ay), us))) = Gz, R(uo, Aay,ow.us)<z)])
For every interpretation I, there exists a mapping of skolem constants to values
{oy > vy, 0y > vy} such that I extended by this mapping is a model of (11).
As a consequence, formula (11) is satisfiable.

Lemma 7 implies that we can use formula (11) instead of (10) in derivation,
while preserving the soundness of the derivations. Soundness of our approach to
recursive program synthesis is given next.

Theorem 8 (Semantics of Clauses with Answer Literals and rec-terms).
Let C4,...,C,, be clauses and F' a formula containing no answer literals and no
rec-symbols. Let C be a clause containing no answer literals. Let My, ..., M; be
magic formulas. Assume that using a sound rec-compliant inference system Z,
we derive C' V ans(r[g]), where r[g] is computable, from the set of clauses

{Cy,...,Chp, My,...,M;, cnf(=F[7,y]Vans(y)) }.
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Then
MR, ..., MR, Cy,...,Cp F CR Flz,rR[7]).
That is, under the assumptions MR ... MlR, Ci,...,Cp,—CR, the computable

expression rR[7] is a witness for y in VZ3y.F[z,y].

Based on Theorem 8, if the CNF of Ay,..., A, is among C,...,C,,, then rR[Z]
is a witness for y in (3) under the assumptions MR, ..., MlR, Ci,...,Cp,—CR.
The following ensures that we can construct recursive programs with conditions.

Theorem 9 (Recursive Programs). Let r[g] be a computable term, and
Cla],C1[a],...,Cnlo] be ground computable clauses containing no answer lit-
erals and no rec-symbols. Assume that using a sound rec-compliant inference
system Z, we derive the clause C[a] V ans(r[a]) from the CNF of

{Alv'“aAn» Cl[E]a"'aCm[E]v Mla"'le» _'F[Evy] \/al"IS(y) }

where My, ..., M; are magic formulas. Then,
(@), \ Cslz) A —Cla))
j=1

is a program with conditions for (3).

From Theorem 9 we obtain the following key result on program synthesis.

Theorem 10 (Recursive Program Synthesis). Let P[], ..., P;[Z], where

P,[z] = (rR[7], /\;;11 C;[z] A =C;[z]), be programs with conditions for (3), such

that A, 4; A /\f:1 C;[Z] is unsatisfiable. Then the program P[Z| defined as
P[z] := if ~C}[Z] then }[7]

else if ~Cy[Z] then rX[7]

else if ﬁckfl[f] then 7‘5_1[?]

else rR[z],

is a program for (3).

7 Recursive Synthesis in Saturation

This section integrates the proving and synthesis steps of Sections 5-6 into sat-
uration. The crux of our approach is that instead of adding standard induction
formulas to the search space, we add magic formulas.

Theorems 9-10 imply that, to derive recursive programs, we can use any
rec-compliant calculus, as long as the calculus supports derivation of clauses
C'Vans(r), where r is computable and C is ground, computable, and contains no
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rec-terms nor answer literals. In our work we rely on the extended Sup calculus
of [7] (see Figure 4 in Appendix A.2), which we (i) further extend by adding
magic formulas alongside standard induction formulas, (ii) make rec-compliant
by disallowing inferences containing uncomputable rec-terms, and (iii) extend
by adding more complex rules for introducing conditions into rec-terms (see
Appendix A.3). We illustrate these steps by our running example.

Ezample 2. Using the extended Sup calculus, we synthesize the program for the
specification of Figure 1. With the magic formula corresponding to (7),

Yuo, Us, 2.
((half(uo)zo A (half(ow) >0y — half(us)~s(oy))) — half(rec(uo, us, z))zz),
(12)

we obtain the following derivation”:

1. half(y) # o Vans(y) [negated, skolemized specification with answer literal]
2. half(ug) # 0V half(oy,) ~ oy V half(0,(2)) ~ =z [MaglInd with (12)]
3. half(ug) % 0V half(us) % s(gy) V half(04(2)) ~ 2 [Maglnd with (12)]
4. half(ug) %0V half(oy) ~ oy V ans(rec(ug, us, 0)) [BR 1, 2]
5. half(ug) % 0V half(us) % s(oy) V ans(rec(uo, us, o)) [BR 1, 3]
6. half(ug) % 0V half(us) % s(half(c,)) V ans(rec(ug, us, o)) [Sup 4, 5]
7. half(ug) % 0V half(us) % half(s(s(ow))) V ans(rec(ug, us, o)) [Sup (H3), 6]
8. half(ug) % 0V ans(rec(ug,s(s(ow)), o)) [ER 7]
9. ans(rec(s(0), 5(5(c)). 7)) BRS, (H2)
10. O [answer literal removal 9]

The program recorded in step 10 of the proof is rec(s(0),s(s(cy)), z)R =
R(s(0), Aow.s(s(ow)))(z) = f(x), where f is defined as:

£(0) =~ 5(0)
f(s(n)) = s(s(f(n)))

Note that while the synthesized program satisfies the specification (SD), it does
not match the expected definition of the double function from (1). Since the half
function is rounding down, and the specification does not require the synthesized
function to produce even results, the base case was resolved in step 9 with (H2),
leading to f(0) ~s(0). As a result, we have f(n) = s(double(n)) for any n. O

Example 2 demonstrates that specification (SD) has multiple solutions and
saturation can find a solution different from the intended one. In the next ex-
ample we modify the specification to have a single solution and synthesize it.

Ezample 3. To synthesize the double function, we modify the specification:

=
=

additional axioms: even(0) (E1)
—even(s(0)) (E2)
V. (even(s(s(z))) <> even(z)) (E3)
new specification: VaJy. (half(y) ~ = A even(y)) (SD’)

7 the fully detailed derivation is in Appendix E
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After negating and skolemizing (SD’) and adding the answer literal, we obtain:
half(y) % o vV —even(y) V ans(y) (13)

In this case we use the magic axiom for the conjunction G[t,z] := half(z) ~
t A even(x):

(Eluo.(half(uo) ~ 0 A even(ug))A

Vy.(Jw.(half(w) ~ y A even(w)) — Jus.(half (us) ~ s(y) A even(us)))) (14)
— Vz.3z.(half(x) ~ z A even(z))

We clausify the magic formula corresponding to (14), and further resolve it with
the premise (13) to obtain:

half(ug) 2 0V —even(ug) V half (o) >~ o, V ans(rec(ug, us, o))
half (ug) % 0V —even(ug) V even(oy,) V ans(rec(ug, us, o))
half (ug) %0 V —even(ug) V half (us) %s(oy) V —even(us) V ans(rec(ug, us, o))

The refutation of these clauses follows a similar course to the proof in Example 2.
However, ug occurring in the literal —even(ug) forces the proof to use (H1) in-
stead of (H2), and thus the final derived answer literal will be rec(0,s(s(o,)), o),
corresponding exactly to the function definition of double from (1). Note that
a derivation of this program in this case requires a saturation prover to apply
induction on conjunctions of literals. a

8 Generalization to Arbitrary Term Algebras

Our approach from Sections 5-7 generalizes naturally to arbitrary term alge-
bras. This section summarizes the key parts of this generalization. We state all
definitions, lemmas and theorems in Appendix C.

Let 7 be a (possibly polymorphic) term algebra with constructors {cy, ..., ¢},
where we denote the sort of each ¢; by 7,1 x -+ x Timne, — T and P, =

{j1,--.,Jp..|} for each i = 1,...,n. Let o be any sort. The magic axiom for
Glt,z], where t : 7,2 : a, is:

(/\ Vi e, ((\ e Glye,s, we,5]) = auc.G[c(m),uC])) —Vz.32.Glz, 2] (15)
cEX JEP.

The corresponding magic formula uses the skolem function recgs ) : o™ X 7 —
o

vceETuc.vz.( A (N Gloy.,s0u.,] = Gle(@y), ucl) = Gz, recap (1, z)]) (16)

ceEX, jEP:

Note that each oy, ., 04, ; introduced in (16) is considered computable only in
the ith argument of its associated rec-term. We define the recursion operator R
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for 7 and o analogously to Definition 1:

R(f1s s ) (@(®) = fr(@n, oo RO oo ) (@3 RO o ) (5, )

R(fl’ 7fn)(cn(f)) = fn(ﬂfl, sy Ty, R(fl, ~~~afﬂ)(wj1)’ (RRE R(fla ""fn)(xﬂpcn\))

P..
i

where for each i we have f; : 71 X -+ X Ty, X alPeil — o. Using R, we state

an analogue of Lemma 7:

Lemma 11 (Recursive Witness for Magic Formulas Using 7). Consider
the formula obtained from (16) by replacing recgy ,1 (%W, z) by its corresponding
recursive function term:

VCQET’U,C.VZ.( /\ (/\ G[Uycijo'wc,j] — G[C(Tyc)’uC])
ceEX, jEP. (17)

Ny Necp
— G[Z7 R()‘izlaycl,i 'AkEPclo—wcl,k cUcyy veesy )‘1:717 Oyep.i 'AkEPc”O’wcn,k . U‘Cn)(z)})

For every interpretation, there exists its extension by some {o,_ , =y ci; Ow, ,
Vw,c,k fee X, ie{l,...n.}.keP, Such that the extension is a model of (17). As a con-
sequence, formula (17) is satisfiable.

Using Lemma 11, we derive the analogues of Theorems 8-10 for an arbitrary term
algebra 7. We then employ magic formulas (16) in Maglnd when in the premise
L[t,z] V C V ans(r[z]) we have ¢t : 7. We finally note that our synthesis method
generalizes also to sorts other than term algebras, as long as the induction axiom
used for the sort carries the constructive meaning described in Section 4.

9 Implementation and Examples

Implementation. We extended the first-order theorem prover VAMPIRE [13]
with a proof-of-concept implementation of our method for recursive program
synthesis in saturation. Our implementation consists of approximately 1,100 lines
of C++ code and is available online at https://github.com/vprover/vampire/
tree/synthesis-recursive.

We implemented the Maglind rule as well as a version of Maglnd using a magic
axiom with base case s(0) for natural numbers and cons(a, nil) for any a for lists.
To support synthesis requiring induction on specifications —F[t, z], where F[t, x]
is an arbitrary formula with the only free variable x, we use an encoding as
follows. We change the specification VZ3y.F[Z,y| to YZ3y.p(Z,y), where p is a
fresh uncomputable predicate, and we add an axiom VZ,y.(p(Z, y) < F[T,y]).
Examples. Our implementation can synthesize the programs for the specifica-

tions (SD) and (SD’). We also synthesize further examples over the term al-
gebras® of natural numbers N, lists L, and binary trees BT. We display the

8 See Appendix D for term algebra constructors and signatures (Figure 6), and for
axiomatization and lemmas for the used predicates and functions (Figures 7, 8).
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Specificiation Program Synthesized definitions VAMPIRE
Double:
f(0)~0
e N.Hy(ehzfl\lf'(y) ~ x A even(y)) @ F(sn)) = sls(f (m)) /
Associativity of addition:
f(0) ~ s
veens ERA el ] Y F(s(n)) =5(7(m)) d
Subtraction with condition: F(0) ~ a2y y
Vw1712(§2leifE~x2+y:wl) f(IQ) f(s(n)) ~p(f(n))
Floored square root: f(0)~0
vz € N.3y € N. f(x) f(s(n)) =if s(n)~s(f(n)) s(f(n)) X
(v y<azno<sy) sy) then s(f(n)) else f(n)
Floored division: f(0)~0
Vai,z2 € N3y € N.(z2 20 — f(z1) f(s(n)) ~if s(n)~s(f(n))-z2 X
(y-z2 <z1 Az1 <s(y) - z2)) then s(f(n)) else f(n)
Length of 2 concatenated lists: £(nil) ~ len(z2) y
Vo €L E M en(@rena) fy) Fcons(n, 1)) = s(£(1))
Last element of a list: F(cons(n,nil)) ~n y
T A ey | T | v pteomstn ~ 0
Prefix of a list given its suff F(nil) 22 21
refix of a list given its suffix: -
oo | ez |
(suff(wz, @1) = @1 = yuo2) 1 2 nil — g(cons(n, 1)) ~ cons(n, g(1))
Maximum element of a list: f(cons(n,nil)) ~n
vz € L.3y € N.(z #nil — f(x) 1% nil = f(cons(n,l)) ~if f(I)<n X
(in(y,z)AVk € N.(in(k,z) > k<vy)) then n else f(1)
f(leaf(n)) ~n
fbt(l,n,r)) =~
if f(1) < f(r)then
Maximum element of a tree: if f(I) <nthen
Vz € BT.3y € N. f(x) if f(r) < nthennelse f(r) X

(in(y,z) A\VE €N.(in(k,z) > k<y)

else f(r)
elseif f(r) < nthen
if f(I) <nthennelse f(I)

else f(1)

Table 1. Synthesis examples using natural numbers N, lists . and binary trees BT.
The x-variables in the program and synthesized definitions are the inputs. While our
framework synthesizes all these examples (see Appendix D for the derivations), our
implementation in VAMPIRE only synthesizes those marked with “/”. Note that for
“Length of 2 concatenated lists” we consider + to be uncomputable.

specifications alongside the programs synthesized by our framework in Table 1,
and provide the full derivations of the synthesized programs in Appendix D.
Our framework synthesizes programs for each of the examples, yet our imple-
mentation supports so far only a limited set of magic formulas; therefore, the
“VAMPIRE” column of Table 1 lists which examples are solved in practice.
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10 Related Work

We only discuss approaches that support full automation, without templates
or user guidance. We extend the recursion-free synthesis framework of [7] and
exploit ideas from deductive synthesis [17,14,27] using answer literals [3]. We
bring recursive program synthesis into the landscape of saturation-based proving
and construct programs from saturation proofs with magic axioms.

The works of [16,27] construct recursive programs from proofs by induction,
by reducing the program specification to subgoals corresponding to the cases
of the induction axiom. Modern first-order theorem provers mostly implement
saturation-based proof search, which however does not support a goal-subgoal
architecture. Our approach integrates induction directly into saturation and en-
ables automated reasoning with term algebras.

Fully automated methods supporting recursive program synthesis include
SyNQuiD [20], LEoN [12], JENNISYS [15], SUSLik [21], CYPRESS [9], and
BURsT [18]. Except for BURST, all these works decompose goals into subgoals.
Our work complements these methods, by turning saturation into a recursive
synthesis framework over first-order theories. As such, our work also differs from
SYNQUID, where term enumeration combined with type checking is used over
program specifications within decidable logics. LEON uses recursive schemas cor-
responding to our recursive operator R, instantiates them by candidate program
terms, and checks if they satisfy the specification. Unlike LEON, we support a
complete handling of quantifiers via superposition reasoning. JENNISYS uses a
verifier to generate input-output examples, which differs from our setting of using
inductive formulas as logical specifications. BURST generates programs by com-
position from existing ones, using quantifier-free fragments of first-order logic.
Contrarily to this, we support full first-order logic and induction, without using
subgoal proof strategies.

The syntax-guided synthesis (SyGuS) framework [1] supports specifications
for recursive functions and can encode our examples from Section 9. However,
to the best of our knowledge, SyGuS methods do not support recursive synthe-
sis. While the semantics-guided synthesis framework [10] also supports recursive
functions, its (to the best of our knowledge) only solver MESSY synthesizes pro-
grams from input-output examples rather than from logical specifications.

11 Conclusions

We extend saturation-based framework to recursive program synthesis by uti-
lizing the constructive nature of induction axioms. We introduce magic axioms
as a tracking mechanism and seamlessly integrate these axioms into saturation.
We then construct correct recursive programs using answer literals in satura-
tion, as also demonstrated by our proof-of-concept implementation. Extending
our work with tailored handling of (more general) magic axioms, and respective
superposition inferences, is an interesting line for future work.
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A Inference Rules

In this appendix we display the calculi used in the paper: the standard superpo-
sition calculus Sup, the extended version from [7], as well as the rules introduced
in this paper to support reasoning with rec-terms.

A.1 Standard Superposition Calculus Sup

See Figure 3 for the rules of of the standard superposition calculus Sup. The
calculus is parametrized by a simplification ordering > on terms and a selection
function, which selects in each non-empty clause a non-empty subset of literals.
The selection function can possibly select any subset of literals. Using different
selection functions and different orderings results in different derivations.

We denote selected literals by underlining them. An inference rule can be
applied on the given premise(s) if the literals that are underlined in the rule
are also selected in the premise(s). For a certain class of selection functions,
the superposition calculus Sup is sound (if O is derived from F, then F' is
unsatisfiable) and refutationally complete (if F' is unsatisfiable, then OJ can be
derived from it).

Superposition:

s~tVvC L[§]vD s~tVvC uls]#2u VD s~tvC u[s]~u VD

(L[t}]vC Vv D)o (ut] 2u' v CV D)o (u[t] ' v C Vv D)

where 0 := mgu(s, s'); t0 # s0; (first rule only) L[s'] is not an equality literal; and
(second and third rules only) u'6 % u[s']0.

Binary resolution: Factoring: Equality resolution: Equality factoring:
AvC -A'VD AVA VC s¥tvC s~tvs ~tvC
(Cv D)o (AvC)e co (s~tvtgt vO)o

where where where where 6 := mgu(s, s);

0:=mgu(A,A"). 0:=mgu(A, A). 0 := mgu(s,t). t # s0; and t'0 # t.

Fig. 3. Superposition calculus Sup. The underlined literals are selected.

A.2 Extended Superposition Calculus for Reasoning With Answer
literals

In Figure 4 we display the calculus from [7]. It uses the notion of computable
unifier based on an abstract unfier, which we recall from [7]:

— An abstract unifier [22] of two expressions E1, Es is a pair (6, D) such that:
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Superposition (Sup):

s~ tVvCvVans(r) L[s'|VvC Vans(r’) s~tVvCVans(r) L[s'|VvC Vans(r’)

(DVL[t]vCVCVans(if s=~t then r’ else ))0 (DVrr' VL VCVC Vans(r))d
s~tVvCVans(r) uls]|2u VO Vvans(r') sx~tvCvVans(r) wu[s']~u'VC’'Vans(r’)

(DVult]2u' vVCVC' Vans(if s~tthenr’ elser))d (DVrr'Vu[t)~u' vCVC'Vans(r))6

s~tVvCVans(r) uls]|~u' VO Vvans(r') s~tvCvans(r) wu[s']#u’ VO Vans(r')

(DVult]~u'vVCOVC' vans(if s~tthenr’elsen))d  (DVr#r' Vult]2u' vCVC’ vans(r))o

where (0, D) is a computable unifier of s,s’ w.r.t. the argument of the answer
literal in the rule conclusion (i.e. if s~t then r’ else r for the left-column rules,
and r for the others); (rules on the first line only) L[s'] is not an equality literal;
and (rules on the second and third line only) u'60 % u[s']0.

Binary resolution (BR):

AvCvVans(r) —=A'vVC'Vvans(r') AvCvVans(r) —-A'VC'Vans(r')
(DVCVC'Vans(if A then ' else r))0 (DVrer'vCvVvC' Vans(r))d

where (6, D) is a computable unifier of A, A’ w.r.t. (first rule) if A then r’ else r
or (second rule) r.

Factoring (F): Equality resolution (ER): Equality factoring (EF):

AV A VCVans(r) s 2tV CVans(r) s~tVs ~t'VvCVans(r)
(DVAVCVans(r))d (DV CVans(r))d (DVs~tVtxt'VCVans(r))d
where (0, D) is a where (0, D) is a where (0, D) is a computable
computable unifier computable unifier unifier of s, s’ w.r.t. r;
of A, A" w.rt. r. of s,t w.r.t. 7. t0 # s0; and t'0 ¥ t6.

Fig. 4. Selected rules of the extended superposition calculus Sup for reasoning with
answer literals [7], with underlined literals being selected.

1. 6 is a substitution and D is a (possibly empty) disjunction of disequali-
ties,

2. (DV E; ~ E5)# is valid in the underlying theory.
Intuitively speaking, an abstract unifier combines disequality constraints D
with a substitution # such that the substitution is a unifier of F, Fs if the
constraints D are not satisfied.

— A computable unifier [7] of two expressions E7, Fo with respect to an expres-

sion Ej3 is an abstract unifier (6, D) of E;, Es such that the expression FEs0
is computable.

For example, let f be computable and g uncomputable. Then ({y — f(2)},
z % g(z)) is a computable unifier of the terms f(g(x)),y with respect to f(y).
Further, ({y — f(g(x))},0) is an abstract unifier of the same terms, but not a
computable unifier with respect to f(y).
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Superposition (Sup’):

stV CVans(rlrec(ro,ms, 7)) L[s'] v C"V ans(r'[rec(ro, 75, 7"")])
(DV L[] vCV C"V ans(r[rec(ro, if s>t then 7{ else rs,7")]))0

s>tV CVans(rlrec(ro, s, 7)) uls'] #£ u' Vv C"V ans(r'[rec(ro, 75, 7"")])
(DVult] 24 VCVC'Vans(r[rec(ro, if s>t then r{ else rs,7")]))0

s~ tV CVans(rlrec(ro,7s,7"")]) u[s'] ~u' VvV C"V ans(r'[rec(ro, ri,7"")])
(DVult]~u'VCVC'Vans(r[rec(ro, if s~t then r, else rs,r"")]))0

where (0, D) is a computable unifier of s,s’ and r,7’ and " ", all w.r.t.

rrec(ro,if s~t then r else rs,7"")]; (first rule only) L[s'] is not an equality lit-
eral; and (second and third rule only) u'6 ¥# u[s']6.

Binary resolution (BR’):

AV OV ans(rlrec(ro, re, ")) A’V C'V ans(rrec(ro,rty "))
(DVCVC'Vans(r[rec(ro, if st then r{ else r5,7")]))0

1"

where (6, D) is a computable unifier of 4, A" and 7,7’ and 7,7, all w.r.t.

r[rec(ro,if A then r{ else rs,r")].

Fig. 5. Newly introduced rules of the extended superposition calculus Sup for reasoning
with answer literals with rec-terms. The underlined literals are selected.

A.3 Additional Rules for Reasoning with rec-terms

In Figure 5 we introduce a variation of the superposition and binary resolution
rules for reasoning with answer literals containing rec-terms. They apply when
both premises have answer literals which are unifiable except for the second
argument of a rec-term they contain. In this case the rules trigger to produce a
clause containing an if —then—else in the second argument of the rec-term in the
answer literal. These rules are useful when the BR and Sup rules from the left-
hand column of Figure 4 do not apply, because the condition of the if—then—else
is not computable outside of the second argument of the rec-term — i.e., when
the condition contains skolem constants associated with the rec-term. Applying
these new rules results into conditions which are local to the recursive branch of
the synthesized recursive function, and use the argument of the recursive call,
or the result of the recursive call.

B Lemma and Theorem Proofs

Lemma 2 (Recursive Witness). The expression R(ug, \y, w.us)(z) is a wit-
ness for the variable x in (9).
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Proof. Let us consider the following formula obtained by replacing x in (9) by
R(ug, Ay, w.us)(2):

Ty, w-¥uo, us, 2.((G10, uo] A (Gly, w] = Gls(y), wl)) = Glz, Rluo, Ay, wous)(2)]) - (18)

We will prove that every interpretation I is a model of (18).

By contradiction, let us assume that (18) is false in I. That would mean
that for all values a,b and an interpretation I{y — a,w — b}, there exists an
extension Jy p of I{y — a,w > b} by {ug — vo, us — vs, 2 — v, } for some values
Vg, Us, U, such that:

((G10,u0] A (Gly,w] = Gls(y), us])) = Gz, R(uo, Ayw.us)(z)])‘]“’b =1 (19)

This means that for any values a, b:°

G7er[0,u)* = T (20)
G’ebla,b) = L or GJ“vb[s(a),u;I“"’] =T (21)
GTav e RTeo (ug™® Ay, woug) o) (2720)] = L (22)

Since the operator R has a fixed interpretation and since the variables y, w, ug, us, 2
do not occur in G[z1,z2] (where z1,x2 are fresh), from (20)-(22) we obtain for
any values a, b:

GO, u)™" | =T (23)
G'a,bj =1 or Gl[s(a),u;]“'b] =T (24)
G 70, R (g w1 4) (7)) = L )

By definition (\y,w.us)’*r =

u;]“’b{val’wHW}. Since Jq p{y — vi,w — va} = Jy, 4,, the function f, ; actually

fap where for any wvq,ve: fop(vi,ve) =

does not depend on a,b and thus we write f def fa,p and obtain:

Flor,v9) = ug™2 (26)

Using (26) we obtain from (24) and (25) for any a, b:
G'a,bl =1 or G's(a), f(a,b)]=T (27)
GH e R (ug™, f)(z70)] = L (28)

To simplify the notation, we now consider (28) for arbitrarily fixed values
J

VyVw

J .
a := vy, b := v,,. We denote v, := z"vvw vy 1= ug and obtain:

GI[Uza RI(UO, f)(vz)] =1 (29)

Assume there is a smallest value of v, such that (29) holds. Either this value
is 0, or a successor of some v, i.e., v, = s(v):

9 In the following, we write ug“’b7u;1“’b instead of v, vs to emphasize the dependence
of the interpretation of wug, us on the values a, b.
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1. If v, = 0, then RY(vg, f)(v.) = R¥(vg, f)(0) is by definition of R equal to vo.
Therefore,

L Z G10,R (v, £)(0)] = GT[0, vo]

(23) with a:=vy,b:=vy,

T.

This is a contradiction and thus it has to be the second case:
2. v, = s(v), therefore from (29):

G'[s(v), R (vo, f)(s(v))] = L
By definition of R we have RY (vg, f)(s(v)) = f(v, R (vg, f)(v)), and thus:
G1[s(v), f(v, R (vo, f)(v))] = L (30)
From (27) with a := v,b := R (v, f)(v) we obtain:
G, RN (vo, /()] =L or G[s(v), f(v, R (vo, f)())] = T
From that and (30) we get:
G'[v,R! (vo, f)(v)] = L

That is, v satisfies (29), which contradicts the assumption that s(v) is the
smallest value satisfying (29).

Therefore, there is no value v, satisfying (29). Thus, since the argument above
works for arbitrary vy,v,, the formula from (19) cannot be false in any Jg .
This means that (18) cannot be false in any I, meaning that it is valid and
R(ug, Ay, w.us)(z) is indeed a witness for the variable = in (9). O

Lemma 7 (Recursive Witness for Magic Formulas). Consider the formula
obtained from (10) by replacing recgy ,1 (o, us, 2) by its corresponding recursive
function term R(ug, Aoy, 0u.us)(2):

Yug, Us, 2.

((G10,u0] A (Gloy, 7] = Gls(ay), ws])) = Glz,R(uo, Ady, 0 s) ()] )

For every interpretation I, there exists a mapping of skolem constants to values
{oy > vy, 0y > vy} such that I extended by this mapping is a model of (11).
As a consequence, formula (11) is satisfiable.

Proof. The lemma immediately follows from the fact that formula (10) is a
skolemization of

Ay, w o, us, 2. (G0, uo] A (Gly, w] = Gls(y), us])) = Glz,R(uo, Ay, w.us)(2)]),

which is by Lemma 2 valid. ad
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Theorem 8 (Semantics of Clauses with Answer Literals and rec-terms).
Let C4,...,C,, be clauses and F' a formula containing no answer literals and no
rec-symbols. Let C be a clause containing no answer literals. Let My, ..., M; be
magic formulas. Assume that using a sound rec-compliant inference system Z,
we derive C' V ans(r[g]), where r[g] is computable, from the set of clauses

{Cy,...,Cn, My,...,M;, cnf(=F[7,y] Vans(y)) }.

Then
MR,..., MR, Cy,...,Cp FCR Flz,rR[5]].

That is, under the assumptions MF, ..., MZR7 Ci,...,Cp,~CR, the computable
expression rR[Z] is a witness for y in VZ3y.F[Z, y|.

Proof. The proof mirrors the proof of Theorem 1 of [7].

We consider the calculus which was used for deriving C'V ans(r[]), but with
lifted ordering and selection constraints. Since the soundness of the calculus does
not depend on these constraints, the calculus without the constraints is sound as
well. Now, since ans is uninterpreted, we can replace ans(y) by y ¢ 7R[7]. Further,
since also all rec-symbols are uninterpreted, we can also replace each rec(w, z) in
each induction formula M; by its corresponding recursive function term. Since
the calculus is rec-compliant, all rec-terms were introduced by the induction
formulas My, ..., M;, and therefore after the replacements we obtain a derivation
of CRVrR[5] #£ rR[5) from Vy.onf(—=F[7,y] vy # rR[7]), MR, ..., MR, C1,...,Cp,
using the calculus without the constraints.'©

We want to show that

l m
N\ MEA N Ci— CRV Fla, (7)) (31)

i=1 i=1

is valid. Hence, we need to show that in each interpretation, in which the an-
tecedent is true, also the consequent is true. Let us consider such an interpreta-
tion 1. We distinguish two cases:

1. First, assume that Vy.cnf(=F[7,y] V y % rR[7]) is true in I. Then since all
assumptions from which we derived CR v 7R[5] 2 R[] are true in I and
since the inference system is sound, also CR v rR[5] % rR[7] is true. That
clause is equivalent to CR, hence CR is true, which makes the consequent
of (31) true.

2. Second, assume that Vy.cnf(=F[7,y] V y # rR[7]) is false in I. Then its
negation, =Vy.cnf(-~F[7, y|Vy % rR[7]), equivalent to Jy.(F[7, y|Ay ~ rR[7]),
equivalent to F[&,7R[]] must be true in I. Hence, the consequent of (31) is
true also in this case.

10 The derivation might not have been possible in the calculus with the ordering and
selection constraints due to replacing the positive literal ans(y) with the negative
literal y 2 TR[E] containing different symbols, and replacing rec-terms by terms with
R and A.
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Therefore (31) is valid. Since 7 are fresh uninterpreted constants, we obtain that
/\f.,:1 MRANL, C; — CRV Flz, rR[7]] is valid too, and hence rR[z] is a witness
for VZ.3y.F[Z,y] under the assumptions MY, ..., MR, C1,...,Cp, ~CR.

Finally, note that since r[g] is computable, so is r[Z]. The only skolem con-
stants r[Z] contains are skolem constants within the respective arguments of rec-
terms they are associated with. Since rR[Z] lambda-binds exactly those skolem
constants from the rec-terms, we have that rR[Z] is computable too. O

Theorem 9 (Recursive Programs). Let r[g] be a computable term, and
Cla],Ci[a],...,Cn[o] be ground computable clauses containing no answer lit-
erals and no rec-symbols. Assume that using a sound rec-compliant inference
system Z, we derive the clause C[a] V ans(r[g]) from the CNF of

{Al,...,An, C’l[ﬁ],...,C’m[ﬁ], Ml,...,Ml, _\F[E,y] \/ans(y) }

where My, ..., M; are magic formulas. Then,

). A €l A ~Cla)

is a program with conditions for (3).

Proof. From Theorem 8 follows that
/\A /\/\MR/\/\C ] = CR[a] v F[z,R[7]] (32)

is valid. Since C[7] does not contain any rec-terms, CR[5] = C[5]. We can there-
fore equivalently rewrite (32) as

l n m

AME = (N 4in A\ Cilo] - Clo) v Flo, ™ [a]). (33)

i=1 i=1 i=1

Let us consider an arbitrary interpretation I of
/\A /\/\C 7| v F[z,rR[7]). (34)

From Lemma 7 follows that we can extend I to I’ which is a model of /\é:1 MR by
choosing suitable values for skolem constants in each M; (each of these skolems
only occurs in one M;, and they do not occur in (34)). Since (33) is valid and
/\é=1 MPR is true in I’, also (34) has to be true in I'. However, since (34) does
not contain any of those skolem constants by which I was extended to I’, we get
that (34) is also true in I. Therefore (34) is valid.

Next, since & are fresh uninterpreted constants7 we obtain that the for-
mula A, 4; A AL, Ci[E] — C[z] v Flz,rR[Z]] is valid as well, and this for-
mula is equivalent to /\;n=1 C;[z] A -Clz] = (N[, Ai — F[z,rR[z]]). Therefore
(rR[z], Nj=1 Cj[@] A =C[z]) is a program with conditions for A1 A ... A A, —
Vz.3y. F[Z,y]. O



Synthesis of Recursive Programs in Saturation 25

Theorem 10 (Recursive Program Synthesis). Let P1[7], ..., P;[z], where
P[7] = (rR[7), /\;;11 C;[z] A =C;[z]), be programs with conditions for (3), such
that Al_; A; A \'_, Ci[7] is unsatisfiable. Then the program P[z] defined as

P[7] := if =C,[z] then r}[7]

else if ~Cy[Z] then 7X[7]

else if ﬁck_l[f] then T}Fj_l[f]

else rR([z],
is a program for (3).

Proof. The proof is given in the extended version of [7].

C Generalization to Arbitrary Term Algebras

In this appendix we expand on Section 8 and present all definitions, lemmas,
and theorems for recursive synthesis using arbitrary term algebras. We will
work with an arbitrary (possibly polymorphic) term algebra 7 with construc-
tors {c1,...,cn}, where we denote the sort of each ¢; by 7,1 X - -+ x Timne, = T
and Pe; = {j1,...,jp,,|} for each i =1,...,n. Let a be any sort.

We recall the magic aziom for G[t, x], where ¢ : 7,2 : a, and by Y. we denote
yc,h ceey yc,nC:

< /\ Vi Y- (( /\ Jwe,;.Glye,s, we,5]) = Eluc.G[c(@),uc]O — V2.32.G[z,z] (15)

ceX JEP.:

We use the magic axiom in Maglnd, when L[t, z] is a literal with the only free
variable x:

Lit,z]v C
(Maglnd)
(Aces, Vizivei- (A e p,Bwe.s Llye.ss wei]) = Bue. LIe(e), uel)) — V2.3. L[z, a]
We convert (15) to prenex normal form:
Jdeex, ie{l,...ne}Yei-Tee s, ke P, We k-Vee s, Ue-V2.3T.
(35)

[( A (N Clyes,wes) = G[c(ya,uc])) Gl

ceX¥, jeP.

We define the primitive recursion operator R for 7 and o analogously to Defini-
tion 1:

R(fh 7f’ﬂ)(cl(f)) = fl(mh sy ey R(fh -«»,fn)(le)u "'7R(f17 ""fn)(mj\Pcﬂ))

R(fl’ 7fn)(cn(f)) = fn(ﬂfl, sy Ty, R(fl, ~~~afﬂ)(xj1)7 (RRE R(f1> ""fn)(xj\Pcn\))
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where for each ¢ we have f; : 7,1 X -+ X Ty, X alPeil = .
Using the recursion operator R, we state the analogue of Lemma 2:

Lemma 12 (Recursive Witness for Term Algebra 7). The expression

ne Ney,
R(/\izllychi-)‘kePclwq,k- Ueys -y Niq ycn,i'/\kePc" Wey, k- e, )(2) (36)
is a witness for the variable x in axiom (35).

Proof. The proof is analogous to the proof of Lemma 2. We consider an in-
terpretation I under which (36) is not a witness for x in (35), and extend it
to J 3, parametrized by values @, b assigned to 7, w. Under this interpretation
the antecedent of (35) is true. Hence, we obtain one assumption per each of
the cases of the antecedent (corresponding to constructors of 7), similarly as
we obtained (23) for 0 and (27) for s in the proof of Lemma 2. We use these
assumptions to refute that there is a smallest value v, for which

GI[Uzv RI(?)(UZ)] =1,

where v, = z7a% and each element of f is defined analogously to f in the original

proof. a

For G[t,z] we introduce a distinct computable function symbol recgys ) :
a™ X 7 — a. As for natural numbers, we call such symbols for any G[t,z] the
rec-symbols, and terms with a rec-symbol as the top-level functor the rec-terms.

We recall the magic formula for G[t,z] corresponding to magic axiom (15)

Vees ueVz( N\ (N Clove, 0uwe,] = Gle(@n),uel) = Glz recqren (@, 2)]), (16)
ceX, jEP,
which uses skolem constants oy, ;,0w,, ; to skolemize the variables ye, ;, we, ;,
and the skolem function recgy; , to skolemize the variable z, and where by u we
denote uc,,...,Uc,, and by o, we denote oy, 1,...,0y, n, As for natural num-
bers, we say that the skolem constants o, , 0, ; introduced in the same (16) as
the recgyy »)-term are associated with the recgy ,-term. Each oy, ., 04, ; intro-
duced in (16) is considered computable only in the ith argument of its associated
rec-term.
Exactly as for natural numbers, an inference system Z is rec-compliant if:

1. 7 only introduces rec-terms in the instances of the magic formula (16),
2. T does not introduce uncomputable symbols into arguments of rec-terms in
clauses it derives.

When oy, 04, ; are associated with rec(s,¢), then the term

e, ey,
R()\’izloycl,i')\kepcl Owey o+ S1s -+ v )‘izlgycn,i'AkEPcn Owe,, i+ Sn)(t)

is the recursive function term corresponding to rec(s,t). As for natural numbers,
for a term 7, we denote by rR the expression obtained from r by iteratively
replacing all rec-terms by their corresponding recursive function terms, starting
from the innermost ones. Similarly, formula FR denotes the formula F' in which
we replace all rec-terms by their corresponding recursive function terms. We
recall Lemma 11 from Section 8:
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Lemma 11 (Recursive Witness for Magic Formulas Using 7). Consider
the formula obtained from (16) by replacing recqgy .1 (%W, z) by its corresponding
recursive function term:

‘v’cegTuc.Vz.( /\ (/\ G[Uyc,jvawc,j] — G[C(Tw),uc])

€S, jEP: 17

Neq Ne
— Glz, R()‘i:ﬂ’ycl,i~/\kePclawc1,k-u61: sy )\i:TO.ycn,z'AkEPcno-wcn,k'U‘Cn)(z)})

For every interpretation, there exists its extension by some {o,_ , =y ci; Ow, , >
Vw,c,k fee S, ie{l,...n.}.keP, Such that the extension is a model of (17). As a con-
sequence, formula (17) is satisfiable.

Proof. Immediately follows from (17) being a skolemization of

Jeex, ie{l,...n}Ye,i-Fee s, ke P We k- Vee s, Uc. V2.

[( A (CA Glyejswe;]) — G[C(yc),uc])>

ce¥, jeP.

— G[Zv R(A?illychi')‘kepclwcl,k'ucla ) /\:L:C?i ycmi')‘kEPcanmk'uCn)(Z)] 3

which is by Lemma 12 valid. a

Using Lemma 11, we derive the analogues of Theorems 8-10 for an arbitrary
term algebra 7. Note that since we extended the definition of a rec-compliant
system and rR, FR for 7, the statements and proofs of the theorems do not
change.

We finally note that our synthesis method generalizes also to other sorts
as term algebras, as long as the induction axiom used for the sort carries the
constructive meaning described in Section 4.

D Example Derivations

In this appendix we display the definitions of the term algebra constructors,
functions and predicates used in the paper (see Figure 6). We also detail specifi-
cations of the examples from Table 1 of Section 9, and show the full derivations
of their programs. Note that these derivations may differ from derivations found
using VAMPIRE.!!

In the following derivations we use definitions of functions and predicates
listed in Figure 7. We also use auxiliary lemmas (listed in Figure 8), which only
serve the purpose of making the derivations shorter and easier to read. Each of
the lemmas can be individually proven (e.g. using superposition calculus extened
with induction). For the sake of readability, we use z < y as a syntactic macro
for =(y < z).

11 All our examples as well as the instructions to run VAMPIRE are available online at
https://github.com/vprover /vampire_benchmarks/tree/master /synthesis/recursive.
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Natural numbers N ‘Natural lists L ‘Natural binary trees BT
Constructors |0 : N nil : L leaf : N — BT

s:N—> N cons: NxL —L bt : BT x N x BT — BT
Destructors |p: N — N (omitted) (omitted)

Vz € N. p(s(z)) ~z
Symbols + : NxN—=N +:LxL—>L

- : NxN—=>N len : LN ingr : N x BT — {T, L}

< : NXxN—{T,L}|suff :LxL—{T,L}

in, :NxL—{T,1}

Fig. 6. Definitions for the theories of natural numbers N, lists L, and binary trees
BT. The axioms defining function and predicate symbols can be found in Figure (7).
When it is clear from the context we will just write in instead of inp/ingr. We omit the
destructors for . and BT, since we do not use them in our derivations.

To shorten the derivations, the factoring rule is not stated explicitly, we also
merge selected steps and indicate all applied rules in the inference tag. Notably,
we merge the application of Maglnd and the following BR (e.g., compare steps
2-5 from Example 2 with steps 2-3 from Example 4 below). We also merge
the applications of BR or Sup from the right-hand column of Figure 4 with
a following ER on r % 7’ in case the answer literal arguments r,r’ from the
premises are computably unifiable.

For some of the examples, we use magic axioms different from (6) and (15).
In those cases we state these adapted magic axioms above the derivation. For
readability reasons only the axioms that are needed for deriving the empty clause
will be written down in the derivation.

Finally, to highlight the important derivation steps, some literals and terms
are typeset in bold. This is done either when the Maglnd is applied on the literals,
or when an inference rule applied on the literal causes a rec-term to change.

D.1 Theory of Natural Numbers
Ezample 4 (Associativity of addition,).
Specification. We recall the specification:

Vay,x9,23 € NIy € Ni(z1 +29) + 23 2 x1 + ¥y

Details of the magic. We use magic axiom (6) instantiated with G[t,z] :=
(01 + 02) +t ~ 01 + =. The clausified magic formula used in the proof then
corresponds to the following two clauses:
(01+02)+0% 01 +ugV (01 +02) +0y ~01+ 0y
V (01 + 02) 4+ 2z % o1 + rec(ug, us, 2)
(0’14‘0’2)4‘0%0’1+UOV(0’1+0’2)+S(Uy) ¢01+u5
V (o1 + 02) + 2z % o1 + rec(ug, us, 2)

Derivation and program.
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Vz € N.s(z) 20 (Aly)

Ve,y € N. x>~y — s(z) ~s(y) (A2y)
VeeN z+0x~x (A3y)

Va,k € N. x +s(k) ~s(z + k) (Ady)
VreN. z-0~0 (A5y)
Ve,neN. z-s(n)~z-n+ux (A6y)
Yz € N. =(z < 0) (ATN)

Ve,y e Nz <s(y) < ax<yVz~y (A8y)
Ve,y,z €N (z<yAy<z) >z <z ( )

Vo € L. x ~ z+nil (AlL)

Vz,l € L. Vn € N. cons(n, l)+x ~ cons(n, [+z) (A2y)
len(nil) ~ 0 (A3L)

vl € L. Vn € N. len(cons(n, 1)) ~ s(len(l)) (Ady)

Vi € L. suff(nil, 1) (A5.)

vl € L. ¥Yn € N. =(suff(cons(n, I), nil)) (A6L)

Vi,l' € L. Vn € N. suff(I',1) — suff(I', cons(n, 1)) (ATL)
Vi,1" € L. V¥n' € N. suff(cons(n’,1),1) — suff(l',1) (A8L)
Vi,l' € L.Vn,n’ € N. cons(n,l) = cons(n’,l') = (n=n"Al=1") (A9r)
Vn € N. =ing(n, nil) (A10L)

Vi € L. Vn,k € N. inp(n, cons(k, 1)) + (inL(n,l) Vn ~k) (A11p)
Vn,k € N. ingr(n, leaf(k)) <> n~k (Algr)

Vi, r € BT. Vn,k € N. ingr(n, bt(l, k,7)) <> (ingr(n,l) Vingr(n,r) Vo~ k) (A2sr)

Fig. 7. List of all axioms defining function and predicate symbols and/or are used for
the derivations.

1. (61 + 02) + 03 % 01+ y Vans(y) [input]
2. (o1+02)+0%01+u V(o1 +02)+0y ~o1+0yV

V ans(rec(ug, us,03)) [Magind, BR 1]
3. (01 4+02) +0% 01 +ug V(01 +02) +5s(oy) # 01+ us V

V ans(rec(ug, us,0°3)) [Magind, BR 1]
4. o1 +O’2 ;ﬁ g1 +’U,0\/(01 +02)+0'y ~01+ 0wV

V ans(rec(ug, us, 03)) [Sup (A3y), 2]
5. 01+ 02 2 01+ upV(o1 +02) +s(oy) £ o1 +us V

V ans(rec(ug, us, 0'3)) [Sup (A3y), 3]
6. (o1 +02) + 0y~ 01+ 0y Vans(rec(oz, us,03)) [ER 4]
7. (01 4 02) +s(oy) # 01 + us V ans(rec(o2, us, 03)) [ER 5]
8. s((o1 + 02) + 0y) % 01 + us V ans(rec(os, us, 03)) [Sup (Ady), 7]
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VieN.z~0+x (Lly)
Va,n € N.s(z) +n >~z +s(n) (L2y)
VreN.0-2~0 (L3n)
Ve,y e N.s(z) - y~x-y+y (L4y)
Ve,y e N.s(z) <y—z<y (L5w)
Ve,y,z €N, (y+ox~zAy<z)—x#0 (L6n)
Ve,yeNz<y—xzty (L7n)
Ve,y e N.z <y — (s(z) <yVs(z) ~y) (L8n)
Vez,ye N.y <z —y <s(x) (L)
Ve,ye Ny20—-ax<z+y (L10w)
Ve,ye Nz <y—oax<y (L11y)
Ve,ye Nz <y—axty (L12y)
Ve,y,z € N. ((z <yVe<z)Ay<z) sz<z (L13w)
Vn,n' ,meN.n~n >mtn~m+n (L14w)
Vo € L. nilba ~ x (L1y)
Vi,l' € L.Vn € N. I % cons(n, 1) — (suff(I', cons(n, 1)) — suff(l’, 1)) (L2)
Va,y,z € L. Vn € N. (x ~ y+2z A suff(cons(n, z),z)) — suff(cons(n,nil),y)  (L3L)
Vz,y € L. n € N. suff(cons(n, z),y) > = #y (L4y)
Vz,y,z €EL. (x 2 y+Hz Az % 2) = y % nil (L51)
Vr,y,z €EL. x ~y — xHz ~ y+Hz (Lé6L)

Fig. 8. List of all lemmas used for the derivations.

9. s(o1 + ow) # 01 + us V ans(rec(os, us, 03)) [Sup 6, 8]
10. o1 + s(ow) % 01 + usVans(rec(oa, us, 03)) [Sup (Ady), 9]
11. ans(rec(o2,8(0), 03)) [ER 10]
12. O [answer literal removal 11]

Note that while a possible program would be x5 + x3, using our framework we
synthesize a syntactically different program. Induction is applied on the literal
in clause 1, producing the clauses (37) and (38), which are resolved with clause 1
to obtain the clauses 2 and 3. Now (A3y) can be used to rewrite the first literal
in clauses 2 and 3, and then we resolve the first literal of 4 and 5 with the sub-
stitution {ug — o2}, resulting in clause 6 and 7. Using (Ady) twice and the sub-
stitution {us — s(o)} the clause containing only the answer literal is derived.
The program recorded in step 12 is recR(zq,s(0y,), 3) = R(w2, A\oy.5(0w))(23).
The program is therefore

f(l‘g,),
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where f is the recursive function defined as:

f(O) ~ T2
f(s(n)) = s(f(n)).
Note that f(n) computes xzo + n, and therefore the program is semantically
equivalent to x5 + x3. O

Ezample 5 (Subtraction with condition,).

Specification.
Vo, 290 € NIy e Ni(za <21 > 22+ y >~ 1)

To showcase synthesis of nested recursive functions, we mark the destructor
p as uncomputable, effectively disallowing the solution from Table 1 on a syn-
tactic level. As a result, we derive a recursive function pre which is semantically
equivalent to p for all arguments other than 0.
Details of the magic. For synthesizing two linked recursive functions, induc-
tion is applied two times. Firstly, for proving —(oy < 0,)V o, +2z ~ 0, induction
needs to be applied on both literals. Therefore we use magic axiom (6) with
Glt,z] := L1[t,z] V La[t, z]. The CNF of the corresponding magic formula con-
sists of the following clauses:

L1[0,u0] V Li[oy, 0w] V La[oy, 0w] V L1z, rec(uo, us, 2)] V La2[z, rec(uo, us, 2)]  (39)
L2[0,u0] V Li[oy,0w] V La[oy, 0w] V L1z, rec(uo, us, 2)] V La[z, rec(uo, us, 2)]  (40)
L1[0,u0] V L1[s(oy), us] V L1z, rec(uo, us, 2)] V Lz[z, rec(uo, us, 2)] (41)
L1[0,u0] V La[s(oy), us] V L1z, rec(uo, us, 2)] V Lz2[z, rec(uo, us, 2)] (42)
L2[0,u0] V L1[s(0y), us] V L1z, rec(uo, us, 2)] V L2[z, rec(uo, us, 2)] (43)
L2[0,u0] V La[s(oy), us] V L1z, rec(uo, us, 2)] V Lz[z, rec(uo, us, 2)] (44)

We will denote the application of induction with this magic formula by Maglndj.

Induction is applied a second time on the literal L[¢, x| : t % s(x). However,
this time we need to apply induction only starting with s(0) as the base case,
using the following magic axiom:

(Huo.L[s(O), uo] AVy.(y % 0AFw. L[y, w] — Jus.L[s(y), us])) — Vz.3z.(z2 20 — L[z, z])

Note that this magic axiom results in a different scheme for the synthesized

recursive function: the base case of the function will be s(0), and the recursive

case will be s(n) conditioned on n % 0. The CNF of the corresponding magic
formula is:

L[s(0),uo] Vo, 20V z~0V L[z rec(ug, us, 2)] (45)

L[s(0),ug] V L[oy,00] V 2 = 0V L[z, rec(ug, us, 2)] (46)

L[s(0),uo] V L[s(cy),us] V 2 =~ 0V L[z, rec(ug, us, z)] (47)
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We will denote the application of indcution with this magic formula by Maglndg.

Derivation and program. For readability, we denote the two rec-symbols used
in the two magic formulas by recqp and recpre.

1. o2 < o1 Vans(y) [input]
2. o2 +y # o1 Vans(y) [input]
3. 0+ ug ® o1V-(oy <o1)Vo,+0p 201V
V ans(recgyb (g, Us,02)) [Maglndj;, BR 1, 2]
4. 0+ ug 2 o1Vs(oy) < 01 V ans(recgyp(uo, us,02)) [Maglndj;, BR 1, 2]
5. 0+ ug 2 o1Vs(oy) + us % 01 V ans(recgp (g, us,02))  [Maglndy;, BR 1, 2]
6. ~(0y < 01)V oy + 0w > 01 Vans(recep (01, Us, 02)) [Sup, ER (L1y), 3]
7. s(oy) < o1V ans(recsup (01, us, 02)) [Sup, ER (L1y), 4]
8. s(oy) + us % 01 V ans(receu (01, Us, 02)) [Sup, ER (L1y), 5]
9. oy +5s(us) % o1V ans(receu (01, us, 02)) [Sup (L2y), 8]
10. oy < 01 V ans(recsup (01, Us, 02)) [BR (L5y), 7]
11. oy + 0w =~ 01 V ans(recgp (01, Us, 02)) [BR 6, 10]
12. oy +s(us) % oy + 0y V ans(recsyp (01, Us, 02)) [Sup 9, 11]
13. 0w % s(us) Vans(recoub (01, us, 02)) [BR (L14y), 12]
14. s(0) 2 s(ug)Voy ~s(ol,) Vo, ~0V
V ans(recsyb (071, reCpre (o, Us,04p ), 02)) [Maglndy;, BR 13]
15. s(0) 2 s(ug)Vs(oy) # s(us) Vo, ~0V
V ans(recous (01, reCpre (U0, Us,04 ), 02)) [Maglndy;, BR 13]
16. oy ~s(oy,) Vo =20V
V ans(receus (01, reCpre (0, us, 04), 02)) [ER 14]
17. s(oy) % s(us)Vo, ~0V
V ans(recsub (01, recpre (0, us, 04y), 02)) [ER 15]
18. s(oy) ~ s(s(o’,))Vo, ~0V
V ans(recsub (01, reCpre (0, Us, 0w ), 02)) [BR (A2y), 16]
19. 0 ~ 0V ans(recsyp (01, recpre(0,8(02,), 0w), 02)) [BR 17, 18, ER]
20. o4 % 0V ans(receu (01, us, 02)) [BR (L6y), 10, 11]
21. ans(recsup (o1, recpre(0,5(07,), 0w ), 02)) [BR 19, 20, ER]
22. O [answer literal removal 21]
Induction is applied on both clauses 1 and 2, where Lq[t,z] := —(t < 0y)
and La[t,x] :==t 4+ z ~ 0,. This results in six clauses, three of which we omit in

the derivation, because they are not used further. Using lemmas from Figure 8,
we derive 13, on which we then again apply induction. After termination the
recsupb-term inside the answer literal is translated into

reCeub (1, reCpre(0,5(0%,), 0w), 22)% = R(21, Aoy .R'(0, Ao’ .5(0)) (0) ) (22)-
The program we end up with is therefore

sub(zs),

where sub is the recursive function defined as
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sub(0) ~ x4
sub(s(n)) = pre(sub(n)),

and pre is the recursive function defined as

pre(s(0)) ~ 0,
n % 0 — pre(s(n)) ~ s(pre(n)).

Ezample 6 (Floored square root).

Specification.
Vady.(y-y <z Az <s(y)-s(y))

Details of the magic. For this example and for Example 7, the specification
contains two unit clauses. In order to derive the synthesized program we use a
magic axiom with G[t,z] := L1[t, z] A La[t, z]. The CNF of its magic formula is:

L1[0,uo) V L2[0,ug] V Ly [0y, 04 V L1z, rec(ug, us, 2)] (48)
L1[0,uo) V L2[0,ug] V Loy, 0] V La[z, rec(ug, us, 2)] (49)
L1[0,uo) V L2[0,ug] V Laoy, 0] V L1z, rec(ug, us, 2)] (50)
L1[0,ug] V La[0,u] V La[oy, 0] V La[z, rec(ug, us, 2)] (51)
L1[0,up] V La[0,uo] V Li[s(0y), us| V La[s(cy), us) V L1 [z, rec(uo, us, 2)]  (52)
L1[0,up] V La[0,uo) V Li[s(0y), us] V La[s(cy), us) V La[z, rec(uo, us, 2)]  (53)

Note that after we resolve the formulas above with a premise Li[t, x] V La[t, z] V
C'V ans(r[z]), we obtain only three clauses:

L1]0,u0] V L2[0,uo) V L1 [0y, 0] V C V ans(r[rec(uo, us, t)]) (54)
L1[0,u0] V L2[0,uo] V La[oy, 0w] V C V ans(r[rec(ug, us, t)]) (55)
L1[0,u0] V L2[0,uo] V L1[s(0y), us) V La[s(cy), us] V C V ans(r[rec(uo, us, t)]) (56)

We will denote the application of induction with this magic formula by Maglndy".

For the derivation, we instantiate the magic formula with G[t,y] ==y -y <
tAt<s(y)-s(y).
Derivation and program.

1. 0 < y-yV-(oz <s(y)-s(y))Vans(y) [input]
2. 0<ug-upV ﬁ(O < S(UO) -S(UO>) \Y ﬁ(O'y <Oy - O’w) V
V ans(rec(ug, ts,0z)) [Maglnd{, BR 1]

3. 0 <ug-upV (0 <s(up)-s(ug)) Voy <s(ow)-s(ow) V
V ans(rec(ug, Us,0 %)) [Maglnd{, BR 1]
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0 < wug-ug V(0 <s(ug)-s(ug)) Vs(oy) < us-usV

V =(s(oy) < s(us) -s(us)) V ans(rec(ug, us,0)) [Maglnd{, BR 1]

0 22 ug - ug V(0 < s(up) - s(ug)) V —(0y < 0w - 0w) V

V ans(rec(ug, us, o)) [BR (LTy), 2]

0 2 ug - ug V(0 < s(ug) - s(ug)) V oy < s(ow) - s(ow) V

V ans(rec(ug, ts, 0)) [BR (L7y), 3]

0 2 ug - ug V(0 < s(ug) - s(uo)) Vs(oy) < us - us V

V =(s(oy) < s(us) - s(us)) V ans(rec(ug, us, 05)) [BR (L7y), 4]

=(0 <s(0) -s(0)) V=(oy < 0w - 0w) V

V ans(rec(0, us, 0;)) [ER (Aby), 5]

=(0 <s(0) -s(0)) V oy < s(ow) -s(0w) V

V ans(rec(0, us, o)) [ER (A5y), 6]

—(0 < s(0) -s(0)) v s(ay) < ug - us V

V =(s(oy) < s(us) - s(us)) V ans(rec(0, us, 05)) [ER (Aby), 7]

-(0 < s( )-0+5s(0))V(oy < 0w 0y) V

\Y ans(rec(O Us, 0z)) [ER (A6y), 8]

=(0<s(0)-0+5(0)) Vo, <s(ow) -s(ow) V

V ans(rec(0, us 0'35)) [ER (A6y), 9]
—(0 <s(0)-0+45(0)) Vs(oy) < us - us V

V =(s(oy) < s(us) - s(us)) V ans(rec(0, us, 05)) [ER (A6y), 10
(0 <0+5s(0)) V—(oy < 0y - 0y) V ans(rec(0, us, 0y,)) [ER (A5y), 11]
—(0<0+5s(0)) Vo, <s(ow)-s(ow) V ans(rec(0, us, o)) [ER (Aby), 12]
=(0 < 0+5(0)) Vs(oy) < us - us V —(s(oy) < s(us) -s(us)) V

V ans(rec(0, us, 0,.)) [ER (Aby), 13]

=(0 <5(0)) V(oy < 0y - 0y) V ans(rec(0, us, o)) [Sup (Lly), 14]

(0 <s(0)) Vo, <s(ow)-s(ow) V ans(rec(0, us, o)) [Sup (Lly), 15]

=(0 < 5(0)) Vs(oy) < us - us V —(s(oy) < s(us) - s(us)) V

V ans(rec(0, us, 0)) [Sup (Lly), 16]

“(oy < 0y - Ow) V ans(rec(0, us, o)) [BR (A8y), 17]

oy < s(ow) - s(ow) V ans(rec(0, us, 0y)) [BR (A8y), 18]

s(oy) < us - usV(s(oy) < s(us) - s(us))Vans(rec(0, us,0,)) [BR (A8y), 19]

s(oy) < s(Ow) + S(0w)Vs(Ty) ~ s(0w) * S(0w)V

V ans(rec(0, us, 0,.)) [BR (L8y), 21]

s(0y) < Ow - 0w Vs(0y) 2 s(0w) - S(0w) V ans(rec(0,04,0;)) [BR 22, 23, ER]

(s(oy) < 0w - o) V ans(rec(0, us, o)) [BR (L9y), 20]

s(oy) ~ s(0w) * s(0w) Vans(rec(0,0y,04)) [BR 24, 25}

s(oy) 2 us - us\V—(s(oy) < s(us) - s(us)) V ans(rec(0, us, 0;)) [BR (L7y), 22

s(oy) <s(ow) -s(ow) V (s(ay) <s(s(ow)) - s(s(ow))) V
V ans(rec(0,5(0w),04)) [BR 23, 27, ER]

o(00) < s(s(0w)) - s(s(0w) V
V ans(rec(0,s(0w), 0z)) [Sup 23, 28]
S

V ans(rec(0,s(0w),0z)) [Sup (A6y), 29]
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31. s(oy) < s(ow) - s(ow) V

V =(s(ow) - s(ow) (0w) - s(ow) +s(0w) +s(s(ow))) V

V ans(rec(0,s(0y),02)) [Sup (L4y), 30]
32. s(ow) - s(ow) < s(ow) - s(ow) + s(ow) [BR (Aly), (L10y)]
33. s(ow) - S(ow) +5(0w) < s(ow) - S(0w) +5(0w) +s(s(ow)) [BR (Aly), (L10y)]
34. s(oy) - s(ow) < s(ow) - s(0w) + s(ow) +s(s(ow)) [BR (A9y), 32, 33]
35. s(oy) < s(ow) - s(ow) V ans(rec(0,s(0y), 0z)) [BR 31, 34]
36. s(oy) % s(ow) * s(ow) Vans(rec(0,s(0y),04)) [BR (L7y), 35]
37. ans(rec(0,if s(oy) ~ s(ow) * s(0w)) then s(oy,) else 0y, 0,) [BR' 26, 36]
38. O [answer literal removal 37)

Note that in step 37 we use BR/ from Figure 5, which introduces an if—then—else
into the rec-term. The synthesized program is therefore

f(=),

where f is the recursive function defined as

f(s(n)) = if s(n) = s(f(n)) - s(f(n)) then s(f(n)) else f(n).

Ezample 7 (Floored divison).

Specification. Note that the specification is very similar to the previous one,
with an additional condition.

Vo, 2oy (22 20 = (y- 22 <z Axy <s(y) - x2))

Details of the magic. We use the same rule Maglnd{{ as in the previous exam-
ple, this time with a magic formula instantiated with G[t,y] ;= y - 09 <tAE <

s(y) - o2.
Derivation and program.

1. o9 20V ans(y) [input]
2. 01 < y-0o2V (o1 <s(y) - o2)Vans(y) [input]
3. 0<ug-02 V(0 <s(up) - 02) V—(oy <oy -02)V

V ans(rec(ug, us,01)) [Maglnd{, BR 2]
4. 0<ug-o2V—(0<s(ug)-02) Vo, <s(oy) o2V

V ans(rec(ug, us,01)) [Maglnd{, BR 2]
5. 0<ug-o2 V(0 <s(ug)-02) Vs(oy) < us- 02 V

V =(s(oy) < s(us) - o2) V ans(rec(ug, us,01)) [MagInd{{’, BR 2]
6. 0 2 up-0o2V(0 <s(ug) - 02) V(oy < 0 - 02) V

V ans(rec(ug, us, 01)) [BR (L7y), 3]

7.0 ug - o2V(0 < s(ug) - 02) Vo, <s(oy) - 02V
V ans(rec(ug, us, 1)) [BR (L7y), 4]
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0 2 ug - o2V—(0 < s(ug) - 02) Vs(oy) < us -2V

V =(s(oy) < s(us) - o2) V ans(rec(ug, us, 1)) [BR (L7), 5]

=(0 <s(0) - 02) V(oy < 0y -02) V ans(rec(0, us,01)) [ER (L3y), 6]

—(0 <s(0) - 02) Vo, <s(ow)- 02V ans(rec(0,us,01)) [ER (L3n), 7]

=(0 <s(0) - 02) Vs(oy) < us-o2V

V =(s(oy) < s(us) - 02) V ans(rec(0, us, 01)) [ER (L3y), 8]
(O<O o2+ 02)V(oy < 0w -02) V

V ans(rec(0, us, 1)) [ER (L4y), 9]
—(0<0-09+02) Vo, <s(oy)- 02V

V ans(rec(0, us, 01)) [ER (L4y), 10]
—(0<0-09+02)Vs(oy) <us-o2V

V =(s(oy) < s(us) - 02) V ans(rec(0, us, 01)) [ER (L4y), 11]

-(0 < 0 +02) V —(0y < 0y - 02) V ans(rec(0, us, 01)) [Sup (L3y), 12]

=(0 <0+ 02) Vo, <s(ow) 02V ans(rec(0, us, 01)) [Sup (L3y), 13]

(0 <0+ 02) Vs(oy) < us- o2 V=(s(oy) < sus) -o2) V

V ans(rec(0, us, 01)) [Sup (L3y), 14]

x <x+ozVans(y) [BR (L10y), 1]

—(0y < 0y - 02) V ans(rec(0, us, 01)) [BR 15, 18]

oy < s(0w) - 02V ans(rec(0, us,01)) [BR 16, 18]

s(oy) < us - 02V(s(oy) < s(us) « o2)Vans(rec(0, us, 01)) [BR 17, 18]

s(oy) < s(ow) - 02Vs(oy) >~ s(ow) - 02V

V ans(rec(0, us, 01)) [BR (L8y), 20]

s(oy) < 0w - 02V s(oy) 2s(oy)- 02V

V ans(rec(0,0,01)) [BR 21, 22]

—(s(oy) < o - 02) V ans(rec(0, us, 1)) [BR (L9y), 19]

s(oy) ~ s(ow) * o2 Vans(rec(0, 0y, 01)) [BR 23, 24]

1]

s(oy) Z us - 02V(s(oy) < s(us) - 02) V ans(rec(0,us,01)) [BR (L7n), 2
s(oy) <s(ow) o2V = ()( y) <s(s(ow)) - 02) Vv

V ans(rec(0,s(0), 01) [BR 22, 26, ER]
s(oy) <s(ow) - 02V (s(ow) - 02 <s(s(ow)) - 02) V

V ans(rec(0,s(0w),01)) [Sup 22, 27]
s(oy) <s(ow) - 02V (s(ow) - 02 < S(ow) - 02+ 02) V

V ans(rec(0,s(ow),01)) [Sup (L4y), 28]
s(oy) < s(ow) - o2 V ans(rec(0,s(0y), 01)) [BR 18, 29]
s(oy) % s(ow) - o2 Vans(rec(0,s(0y,),01)) [BR (L7y), 30]
ans(rec(0,if s(oy) ~ s(ow) - 02) then s(o,,) else oy,,01) [BR' 25, 31]
O [answer literal removal 32]

The program we obtain is

f(‘rl)a

where f is the recursive function defined as

f(0)~0
if s(n) ~s(f(n)) - x2 then s(f(n)) else f(n).
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D.2 Theory of Lists

Ezample 8 (Length of two concatenated lists).

Specification.
Vay,xo € L.3y € Ny ~ len(x1+1x5)

To avoid the trivial solution of len(zi+x2), we mark the symbol + as uncom-
putable.

Details of the magic. This is the first example over the theory of lists. The
structure of the magic axiom we use is similar to the one for natural numbers,
just with different constructors. The 0-constructor changes to nil and the s-
constructor to cons, with an additional argument n, which is in the magic formula
skolemized as o,,.

The CNF of the magic formula is:

L[nil, uny] V Loy, 0] V L2, rec(tnil, tcons, 2)] (57)
L[nil, uny] V L[cons(op,, 07), Ucons] V L[z, rec(tnil, Ucons, 2)] (58)

We will denote the application of induction with this magic formula by Maglnd; .
Derivation and program.
1. y 2 len(o1+02)Vans(y) [input]

2. upyZlen(nil+oy) Vo, ~len(oj+as) V ans(rec(tnil, tcons,01)) [Maglindr, BR 1]
3. unit 2 len(nil+o2) V tcons # len(cons(oy,, 07)+Ho2) V

V ans(rec(Unil, UconssT1)) [Magindy,, BR 1]
4. uny # len(o2)Vo,, =~ len(o;+03) V ans(rec(unil, Ucons, 01)) [Sup (L1y), 2]
5. oy = len(oj+0o3) V ans(rec(len(oz2), tcons; 1)) [ER 4]
6. uni 2 len(o2)Vucons 2 len(cons(oy,, o7)+Ho3) V

V ans(rec(Unil, Ucons; 01)) [Sup (Ll]L) 3]
7. Ucons 2 len(cons(o,,, 07)+02) V ans(rec(len(oz), tcons, 01)) [ER 6]
8. Ucons 2 len(cons(o,, oy+02)) V ans(rec(len(o2), tcons, 01)) [Sup (A2y), 7]
9. Ucons 2 s(len(oy+02)) V ans(rec(len(o2), tcons, 01)) [Sup (A4y), 8]
10. Ucons % (0w )Vans(rec(len(o2), tcons, 1)) [Sup 5, 9]
11. ans(rec(len(o2),5(0w),01)) [ER 10]
12. O [answer literal removal 11]

The program constructed from rec(len(xs),s(f(1)),z1) is

f(x1)

where

F(nil) =~ len(z2)
f(eons(n, 1)) == s(f(1)).
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Ezample 9 (Last element of a list).

Specification. The specification is

Vo € L3y € N.(z # nil = 3z € L.z ~ z+cons(y, nil))

Details of the magic. We apply induction with the base cons(a, nil), similarly
how we did with Maglnd{} in Example 5. The CNF of the magic formula is:

Licons(og, nil), un] V op 2 nil V z = nil V L[z, rec(uni, Ucons, Z)] (59)
Llcons(cg, nil), uni] V Loy, 0] V 2 = nil V L[z, rec(tnii, tcons )] (60)
Llcons(og, nil), uni] V L[s(07), tcons) V 2 = nil V L[z, rec(tnil, tcons, 2)] (61)

We will denote the application of induction with this magic formula by Maglnd; .
For the derivation we instantiate the magic formula with L[t,z] := 3z €
L.t ~ z+cons(z, nil).

Derivation and program.

1. ox 2 nil Vans(y) [input]
2. o, P z+cons(y, nil)Vans(y) [input]
3. cons(og, nil) % z1+cons(un, nil) V o7 =~ o, +cons(oy,, nil) V

V o, = nil V ans(rec(unjl, Ucons,Tx)) [Maglnd; , BR 2]

4. cons(cg, nil) % z;+cons(up, nil) V
V cons(o,, 07) % zaHcons(Ueons, Nil) V

V o, = nil V ans(rec(unjl, Ucons,Tx)) [Maglnd; , BR 2]
5. cons(og, nil) 2 z;+cons(un, nil) Vo, ~ o,+cons(o,, nil) V
V ans(rec(unil, Ucons; 0z )) [BR 1, 3, ER|]

6. cons(og, nil) 2% z1+cons(ug, nil)Vv
V cons(oy,, 07) # za+Hcons(Ucons, nil) V

V ans(rec(Unil, Uconss Oz )) [BR 1, 4, ER)
7. o > g, +cons(oy, nil) V ans(rec(oq,, Ucons, 0)) [ER (L1p), 5]
8. cons(oy,, 07) 2 zo+cons(Ucons, Nil) V ans(rec(oq, Ucons, 0z )) [ER (L1p), 6]
9. cons(oy,, o, +Hcons(o,,, nil)) % za+cons(Ucons, Nil)V

V ans(rec(oq, Ucons, 0x)) [Sup 7, 8]
10. ans(rec(04,0w,0%)) [Sup (A2p), 9, ER]
11. O [answer literal removal 10]

We derive the program
f(=),

where f is the recursive function defined as

f(cons(a,nil)) ~ a
f(cons(n, 1)) = f(1).
Note. Similarly to this example, we could synthesize the function that returns

the first element of a list. However, in practice such a negated skolemized speci-
fication would be instantly resolved using the destructor for cons. ad
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Ezample 10 (Prefix of a List Given Its Suffiz).

Specification. Recall the specification:
Vai,xe € L3y € L.(suff(xe, z1) — a1 =~ y+as)

Details of the magic. We need to apply induction on suff(os,01) and o1 %
y++oo. Therefore we instantiate the magic axiom for lists with a disjunction
G[t,x] := Lq[t] V Lo[t, x]. We obtain a formula analogous to the one from Exam-
ple 5. The CNF of the corresponding magic formula is:

Li[nil,un] V Li[o1, 0w] V Laloi, 0w] V Li[z, rec(tnil, Ucons, 2)] V L2z, rec(unil, tcons, 2)]
(62)

La[nil, un] V Li[o1, 0w] V Lalo1, 0w] V Li[z, rec(tnil, Ucons, 2)] V L2[2, rec(uni, tcons, 2)]
(63)

Li[nil, uni] V L1 [cons(on, 01), Ucons] V L1 [2, rec(ni, Ucons, 2)] V La[z, rec(tnil, tcons, 2
E[nil, 'U/nil} \ E[COI’\S(O’n, Ul)7 Ucons] V Ly [Z7 I’ec(unil, Ucons, Z)] V La [27 rec(unih Ucons, 2
La[nil, uni] V L1 [cons(on, 01), Ucons] V L1 [2, rec(tuni, tcons, 2)] V La[z, rec(tnil, tUcons, 2

E[ni|7 unil} Vv E[C0n5(0n7 0l)7 ucons] V L1 [27 reC(unily Ucons Z)] V Lo [27 reC(unily Ucons, Z

We will denote the application of induction with this magic formula by Maglndy'.

After applying Maglnd; with G[t,y] : —(suff(t,01)) V o1 ~ y+t in the deriva-
tion, we need to apply induction again. Similarly to Example 5, the second time
we need a non-standard base case: instead of nil, we use cons(a, nil). The magic
axiom is:

(Va.ﬂun”.G[cons(a7 nil), wnit] AV, L (1 2 nil A Jw.G[l, w] — Jucons.Glcons(n, l)7ucons]))

— Vz.3z.(z # nil = Gz, z])
(68)

We will denote the application of induction with this magic formula by Maglnd;”.

We instantiate it with G[t, z] := —(suff(cons(o,, nil), t)) V t ~ z+cons(op,, nil).

Derivation and program.

1. suff(oz2,01)Vans(y) [input]
2. o1 ¥ y+o2Vans(y) [input]
3. o1 # uni|++nil\/—\suff(ol, 0'1) Vo, ~o,toV

V ans(reCpref (Unil; Ucons,02)) [Maglnd{, BR 1, 2]
4. o1 % um+nilVvsuff(cons(o,,01),01) V

V ans(reCpref (Unil; Ucons,02)) [Maglnd{, BR 1, 2]
5. 01 2 U HnilVoy % uconstcons(oy,, 0;) V

V ans(reCpref (Unil; Ucons,02)) [Maglnd{, BR 1, 2]

6. —suff(oy,01) V 01 = gytro; V ans(reCpref (01, Ucons; 02))  [Sup, ER (Aly), 3]
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suff(cons(oy,, 07), 1) V ans(reCpref (61, Ucons; 2)) [Sup, ER (Alyp), 4]
01 % Uconstcons(op,, 07) V ans(reCpref (071, Ucons, 02)) [Sup, ER (Alyp), 5]
suff(oy, 01) V ans(recpref (01, Ucons, 02)) [BR (A8L), 7]
01~ Oyw+oy V ans(reCpref (01, Ucons, 02)) [BR 6, 9]
. Owt0] % Uconstcons(oy,, ;) V ans(reCpref (071, Ucons, 02)) [Sup 8, 10]
. Owt0] % Uconstcons(oy,, nil+oy) V ans(reCpref (01, Ucons, 02)) [Sup (Alr), 11]
. O 0] % Uconstrcons(oy,, nil)+oy V ans(recpref (01, Ucons, 02)) [Sup (A2), 12]
. O 2 UconstcONS(0y,, Nil) Vans(recpref (01, Ucons, 02)) [BR (L6]L) 13]
. suff(cons(op,, nil), 0y, ) Vans(recpref (01, Ucons, 02)) [BR (L3y), 7, 10]

. cons(a, nil) 2 uny+cons(o,, nil) vV-suff(cons(oy,, nil), o;) V

V oy =~ gl +cons(op, nil) V oy, =~ nil vV

V ans(reCpref (01, r€Cremove (Unil, Ucons:Tw ), 02)) [Maglnd;”, BR 14, 15]
cons(a, nil) 2 up+cons(o,, nil)Vv

V suff(cons(oy,, nil), cons(a’,,07)) V 0y == nil V

V ans(reCpref (01, reCremove (Unil, Ucons:Tw ), 02)) [Maglnd{”, BR 14, 15]
cons(a, nil) 2 uyy+cons(oy,, nil)v

V cons(ay,, 07) % Uconstcons(oy, nil) V o, =~ nil v

V ans(recpref (01, r€Cremove (Unil; Ucons;Tw ); 02)) [MagInd]”, BR 14, 15]
cons(a, nil) 2 uyy+cons(oy,, nil)Vo; 2 nil vV o, ~ nil v

V ans(reCpref (01, reCremove (Unil, Ucons:Tw ), 02)) [Maglnd;”, BR 14, 15]
=suff(cons(a,, nil), oy) V o; ~ o/, +cons(op, nil) V o, =~ nil vV

V ans(reCpref (01, reCremove (Nil, Ucons, 0w ), 02)) [BR (Alp), 16]
suff(cons(oy, nil), cons(o7,,01)) V 04 = nil V

V ans(recCpref (01, reCremove (Nil, Ucons; Tuw ), 72)) [BR (Alyp), 17]
cons(al,, 01) # Uconstcons(oy, nil) V o,y =~ nil V

V ans(reCpref (01, reCremove (Nil, Ucons, Tu ), 02)) [BR (Aly), 18]
op 2 nil Vo, ~nil v

V ans(reCpref (01, reCremove (Nil, Ucons, 0w ), 02)) [BR (Alp), 19
cons(oy,, nil) = cons(a},, o) V suff(cons(op,, nil), o7) V

V 0y 2 nil V ans(recpref (01, reCremove (Nil, Ucons, 0w ), 02)) [BR (L2y,), 21]
o =~ nil V suff(cons(oy,, nil), ;) V oy, > nil v

V ans(reCpref (01, reCremove (Nil, Ucons, O ), 02)) [BR (A9y), 24]
suff(cons(oy,, nil), ;) V 0y > nil vV

V ans(reCpref (01, r€Cremove (Nil, Ucons, 0w ), 02)) [BR 23, 25]
oy =~ ol +cons(ay,, nil) V o, >~ nil v

V ans(recCpref (01, reCremove (Nil, Ucons, 0w ), 02)) [BR 20, 26]
cons(o,,, ol +cons(oy,, nil)) 2 Uconstrcons(oy,, nil)v

V oy 2 nil V ans(recpref (01, reCremove (Nil, Uconss Tuw )5 02)) [Sup 22, 27]
Ow 22 nil VvV

V ans(recpref (01, reCremove (nil,cons (o, , o ), 0.), 02)) [Sup (A21), 2

o1 % 07 V ans(reCpref (01, Ucons, 02)) [BR (L4L), 7
01> 01V 0y % il V ans(reCpref (01, Ucons, 02)) [BR (L5p), 1

ans(reCpref (01, reCremove (Nil, cons(al,, o1,), 0w,), 02)) [BR, ER 29, 32

8]
]
0]
ow % nil V ans(reCpref (01, Ucons, 02)) [BR 30, 31]
]
O [answer literal removal 33]
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The program is constructed as

pref(zs),
where pref is the recursive function defined as

pref(nil) ~ x;

pref(cons(n, 1)) ~ remove(pref(l)),
and remove is the recursive function defined as

remove(cons(a, nil)) ~ nil

remove(cons(n, 1)) ~ cons(n, remove(l)).

Ezample 11 (Maximum Element of a List).

Specification.
Vo € L3y € N.(z # nil — (in(y,z) AVE € N(in(k,z) - k <y)

Details of the magic. We instantiate the magic axiom with a formula of the
form G[t,z] := L1[t,z] A (L2[t] V Ls[x]). Similarly as in previous example, we
choose the base case cons(a, nil). We will denote the application of induction
with this magic axiom by Maglind;”, and we apply it with G[t,z] := in(x,t) A
(“iﬂ(O’k,t) Vo < .’b)

Derivation and program.

1. oy #nil Vans(y) [input]
2. in(og, 0z)VTin(y, o) Vans(y) [input]
3. y < oV-in(y, oz)Vans(y) [input]
4. =in(uni, cons(oq, nil))Vin(ok, cons(og, nil)) Vv

Vin(ow,01) V oz = nil V ans(rec(upil, Ucons, Tz )) [Maglnd{”’, BR 2, 3]

5. =in(wnit, cons(og, nil))Vin(oy, cons(og, nil)) vV
V =in(og, 01) Vo <oy V oy 2nil V ans(rec(unil, teons,0z)) [Maglind;”’, BR 2, 3]
6. —in(wnit, cons(oq, Nil)) Vg < o Vin(oy,o0p) V

V o, =~ nil V ans(rec(unjl, Ucons,0x)) [Maglnd{”’, BR 2, 3]
7. ﬁin(unu, COHS(O’a, nil))\/unn < oV —dn(ak, Ug) \Y
Vo < oy V oz > nil Vans(rec(tnil, Ucons; Tz )) [Maglnd{”’, BR 2, 3]

8. =in(wnii, cons(o g, nil))Vin(oy, cons(oy, nil)) vV

V =in(teons, €ONs(0y,, 07)) V in(og, cons(ay,, 07)) V

V o, = nil V ans(rec(unjl, Ucons,Tx)) [Maglnd{”’, BR 2, 3]
9. =in(wnii, cons(o g, nil))Vin(oy, cons(og, nil)) vV

V =N (teons, €ONS(0n, 7)) V Ucons < Tk V 0 = nil V

V ans(rec(Unil, Ucons, T )) [Maglnd{”’, BR 2, 3]
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—|in(uni|, cons(o-a, nil))\/unn < oLV

V =in(teons, €ONs(0y, 07)) V in(og, cons(oy,, 07)) V

V o, =~ nil V ans(rec(unil, Ucons,Ox)) [Maglnd{”’, BR 2, 3]
=in(wnit, cons(o g, nil) ) Vuy < op V

V =in(Ueons, €ONS(T, 01)) V Ucons < Ok V

V o, = nil V ans(rec(unjl, Ucons,Tx)) [Maglnd{”’, BR 2, 3]
in(oy, cons(og, nil)) Vin(oy, o1) V oz >~ nil vV

V ans(rec(oq, Ucons; Tz )) [BR (A10y), (Allp), 4]
in(ok, cons(og, nil)) V —in(ok,07) Vo < 0y V o = nil V

V ans(rec(o g, Ucons, 0z )) [BR (A10y), (Ally), 5]

0o < o Vin(ow,o1) Voy~nil Vans(rec(oq, tcons, 0z)) [BR (A10r), (Ally),
6]
0o < oV in(og,01) V ok < oy Vo, =nil Vv

V ans(rec(o g, Ucons; 0x)) [BR (A10L), (Allp), 7]
in(ok, cons(oq, nil)) V =in(ucons, cons(oy, 07)) V in(ok, cons(oy,, o)) V

V o, >~ nil V ans(rec(o g, Ucons; Tz )) [BR (A10y), (Allp), 8]
in(ok, cons(og, nil)) V —in(ucons, cons(cy,, a7)) V

V Ucons < 0k V 05 = nil V ans(rec(oq,, Ucons; 0z:)) [BR (A10y), (Ally), 9]
Oa < 0k V 2in(Ucons, cONS(0y, 07)) V in(oy, cons(oy,, 07)) V

V o, >~ nil V ans(rec(o g, Ucons; 0z )) [BR (A10p), (A11y), 10]
0o < 0k V —in(Ucons, €ONS(0p, 07)) V Ucons < 0k V 0 = nil V

V ans(rec(oq,, Ucons, 0)) [BR (A10L), (A1lp), 11]
0o # 0 Vin(ow, o) V oy = nil Vans(rec(cq, Ucons; Tz )) [BR (L7y), 14]
Oq 2 oV in(og,01) V ok < oy Vo, =nil Vv

V ans(rec(og, Ucons; 0z )) [BR (L7y), 15]
Oa % 0k V —in(Ucons, cOns(oy, 07)) Vin(og, cons(oy,, 07)) V

V o, = nil V ans(rec(oq, Ucons; 0z )) [BR (L7y), 18]
Oa 2 0k V —in(Ucons, €ONS(0p, 07)) V Ucons < 0k V 0y = nil V

V ans(rec(oq, Ucons; 0z )) [BR (L7y), 19]
o = 04 Vin(ow,o1) Vo, = nil Vans(rec(og, Ucons, 0z)) [BR (Ally), 12]
o = 0q V in(og,01) V ok < oy Vo, =il Vv

V ans(rec(oq, Ucons, Oz)) [BR (Al1ly,), 13]
o) = 04 V 7in(Ucons, cONs(op, 7)) V

Vin(o, cons(oy,07)) V o = nil V ans(rec(o4, Ucons, 0x)) [BR (A1lL), 16]
ok = 04 V —in(Ucons, cONS(0p, 77))

V Ucons < Ok V 0 = nil V ans(rec(oq, tcons, 0z )) [BR (Al1ly), 17]
in(ow, o1)Vo, ~ nil V ans(rec(oq, Uconss Tz )) [BR 20, 24]
Sin(og, 01) V o, < 0y V o, > nil V ans(rec(og, Ucons, 0z)) [BR 19, 25]
=in(Ucons, €ONS(0p, 07)) V in(og, cons(oy,, 07)) V 0y = nil V

V ans(rec(oq, Ucons; 0z )) [BR 22, 26]
=N (Ucons, €ONS(T, 01)) V Ucons < Tk V 0y = nil V

V ans(rec(ogq, Ucons, Tz )) [BR 23, 27]
Ucons 2 OnVin(og, cons(oy,01)) V oy ~ nil V

V ans(rec(oq, Ucons; 0z )) [BR (Ally), 30]

=in(Ucons, 01) Vin(og, cons(oy,, 07)) V o, > nil V
V ans(rec(oq, Ucons, 0z )) [BR (Ally), 30]
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Ucons Z On V Ucons < Ok V 05 = nil V ans(rec(oq, Ucons, 02))  [BR (Allp), 31]
=in(Ucons; 1) V Ucons < Ok V 05 = nil VV ans(rec(o 4, tcons; 0z)) [BR (Ally), 30]
in(og,cons(on,07)) V o, >~ nil Vans(rec(cq,04w,04)) [BR 28, 33, ER]
o) >~ 0p V oy il V ans(rec(og, 0w, 04)) [BR (All]L) 6]
Ow < 0k V 05 =~ il V ans(rec(oq, 04, 02)) [BR 28, 35]
=0, ~ nil V ans(rec(og4, 0w, 02)) [BR 29, 38]
O =~ 0, V oy =il Vans(rec(og, 0, 02)) [BR 37, 39]
Ow < opVo, ~nil Vans(rec(o,, 04w, 02)) [Sup 38, 40]
in(og,cons(op,07)) V o, =~ nil V ans(rec(cq,0p,04)) [ER 32]
On < 0 V oy =il Vans(rec(oq, 0p,04)) [ER 34]
ok == op Vo = nil Vans(rec(og, 0y, 04)) [BR (Ally), 42
Op >0, Vog <oy Vo, ~nilVans(rec(og, 04, 0.)) [BR 29, 44]
—(op < o) Vo < oy Vo > nil Vans(rec(og, 0, 04)) [BR (L7y), 45]
o < oy Vo, ~nil Vans(rec(og, 0, 04)) [BR 43, 46]
on < ok V oy =il Vans(rec(og, 0p,04)) [BR (LllN) 43]
on < 0wVo, >~ nil Vans(rec(og,0p,0:)) [BR (A9y), 47, 48]
o ~ il V ans(rec(o,,if 0 < o, then o, else 04,,0;)) [BR/ 41 49]
ans(rec(oy, if o, < o, then o, else 0y, 04)) [BR, ER 1, 50]
O [answer literal removal 51]

The program is then

f(x)

where f is the recursive function defined as

f(cons(a,nil)) ~a
f(cons(n, 1)) ~if f(I) <n then n else f(I).

D.3 Theory of Binary Trees

Ezample 12 (Mazimum Element of a Tree).

Specification.

Vo € BTy € N.(in(y,z) AVk € N(in(k,z) = k < y)

Details of the magic. This example is analogous to the previous one, but
since we are working with binary trees, the axiom we use as well as the resulting
derivation are more complex. The structure of the formula used to instantiate the
magic axiom is the same as in Example 11, G[t, z] := Li[t,x] A (L2[t] V L3[z]),
but we use the standard base case leaf(a). We will denote the application of
induction with this magic axiom by Maglndgy, and we apply it with G[t,x] :=
in(x,t) A (min(og, t) Vo < ).

Derivation and program.

1. in(og, 0)VAin(y, o) Vans(y) [input]
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y < ok Vin(y, o, )Vans(y)

—in(Ujeaf, leaf (o4)) Vin(oy, leaf(o,,)) V
Vin(ow,o01) V ans(rec(Ujeaf, Ubt,0z))

—in(Ujeaf, leaf (o4)) Vin(oy, leaf(o,,)) V

V =in(k,op) V (0w < k) V ans(rec(tieaf, Ubt,0z )
—\in(u|eaf, Ieaf(o-a))\/weaf < orV in(aw,al) V

V ans(rec(Ujeaf, Ubt,0x))

ﬂin(’weaf, Ieaf(a'a))\/weaf <oV in(aw,al) \

V oy < of V ans(rec(Uieaf, Ubt, 0 ))

—in(Ujeaf, leaf (o4)) Vin(oy, leaf(o,)) V
Vin(ol,,0.) V ans(rec(tjeaf, Ubt, Oz ))

—in(Ujeaf, leaf (o4)) Vin(oy, leaf(o,,)) V

V =in(k, o) V (o), < k) V ans(rec(jeaf, Ubt,0z))
=in(Ujeaf, l€af (04)) Vear < o Vin(ol,,0.) V

V ans(rec(Uieaf, Ubt,0x))

—|in(U|eaf, Ieaf(aa))\/weaf <oV ﬂin(k,o,.) \

V (o), < k) V ans(rec(ujeaf, Ubt,0z))

—in(Wieaf, leaf (o4)) Vin(oy, leaf(o,)) V

V =in(upt, bt(oy, o, 0)) Vin(ok, bt(or, opn, 0r)) V
V ans(rec(Uieaf, Ubt,0z))

[input]
[Maglndfr, BR 1, 2]
[Maglndf, BR 1, 2]
[MagIndg;, BR 1, 2]
[Maglndp, BR 1, 2]
[Maglndfr, BR 1, 2]
[Maglndg, BR 1, 2]
[Maglndfr, BR 1, 2]

[Maglndg, BR 1, 2]

[Maglndfr, BR 1, 2]

—in(Wieaf, leaf (o4)) Vin(og, leaf (o)) V —in(up, bt(oy, op, 04)) V

V upt < ok V ans(rec(Ueaf, Ubt,0z))

[Maglndr, BR 1, 2]

—in(Wjeaf, leaf (04)) Viiear < o V —in(upt, bt(oy, 0, 0r)) V

Vin(og, bt(oy, 0n,0r)) V ans(rec(Uieaf, Upt,0))

[Maglndfr, BR 1, 2]

—Iin(U|eaf, Ieaf(o'a))\/weaf < oV —\in(ubt, bt(O’l, On, O'T)) V

V upt < ok V ans(rec(teaf, Ubt,0z))
in(og,leaf(oy)) Vin(oy,01) V ans(rec(oq, tpt, 02 ))
in(o, leaf(o,)) V —in(k,07) V = (0w < k) V

V ans(rec(oq, Upt, 0z))

Oa < 0 Vin(ow, o)V ans(rec(oq, Upt, 0z ))

0q <o Vin(k,o;) V —(oy < k) V

V ans(rec(oq, Ubt, 01))

in(o, leaf(oy,)) Vin(ol,, o) V ans(rec(oq, tpt, o))
in(og,leaf(oq)) V —in(k,0,.) V =(0l, < k) V

V ans(rec(oq, Ubt; 0z))

04 < o Vin(ol,,0.) V ans(rec(oq, Ubt, 0z))
04 < o Vin(k,o,.) V =(o), < k) V

V ans(rec(oq, Ubt, 01))

in(oy, leaf(oy)) V —in(upt, bt(oy, o, 0r)) V
Vin(oy, bt(oy, 00, 0r)) V ans(rec(ogq, Upt, 02))
in(og,leaf(oq)) V —in(upt, bt(oy, o, 0r)) V

V upt < o V ans(rec(oq, Upt, 0z ))

0q < ok V —in(upt, bt(oy, 00, 0,)) V

Vin(oy, bt(oy, 00, 0r)) V ans(rec(ogq, tpt, 02))
Oa < 0 V 2in(Up, bt(og, o0y 04)) Vupy < op V
V ans(rec(oq, Ubt; 0z))

[Maglndfr, BR 1, 2]
[BR (Algr), 3, ER]

[BR (Algr), 4, ER]
[BR (Algr), 5, ER]

[BR (Algr), 6, ER]
[BR (Algr), 7, ER]

[BR (Algr), 8, ER]
[BR (Algr), 9, ER]

[BR (Algr), 10, ER]
[BR (Algr), 11, ER]
[BR (Algr), 12, ER]
[BR (Algr), 13, ER]

[BR (Algr), 14, ER]
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0o == 0k Vin(oy,01) V ans(rec(oq, Upt, 0z))
0q > oV in(k,01) V (0w < k) V ans(rec(oq, upt, 0))

0o % 0k Vin(oy,01) V ans(rec(oq, upt, 0z))
Oq Fop V —\In(k’ o1) V (o < k) V ans(rec(oq, Ubt, 0z ))
0 ~ o Vin(ol,,0.) V ans(rec(og, Upt, 04))

or)
Ogq ™ 0k V —||n(l<: or) V (o), < k) V ans(rec(og, upt, 04))
0o 2 o Vin(ol,,0.)V ans(rec(og, upt, 04))

0q % o V —in(k, a,) V =(ol, < k) V ans(rec(oq, Ubt, 02))
0q = 0 V —in(upt, bt(oy, 00, 0,)) V

Vin(oy, bt(oy, 00, 0r)) V ans(rec(oq, upt, 0))

Oa = 0 V 2in(Upt, bt(og, o, 04)) Vg, < op V

V ans(rec(oq, Ubt, 0z ))

Oa Z o) V 2in(upe, bt(oy, 00, 0.)) V

Vin(oy, bt(oy, o0, 0r)) V ans(rec(oq, upt, 0))

Oa 2 0 V 2in(up, bt(og, 00, 04)) Vg, < o V

V ans(rec(oq, Ubt, 0z ))

in(ow, o1)Vans(rec(og, upt, 0z))

=in(k,o1) V (0w < k) V ans(rec(oq, Ubt, 04))

in(o!,, o) Vans(rec(oq, upt, o))

—in(k, o) V (o), < k) V ans(rec(oq, Ubt, 0z))

=in(upt, bt(oy, 0, 0,)) Vin(og, bt(oy, oy, 00)) V

V ans(rec(oq, Ubt, 0z))

=in(upt, bt(op, o, 07)) V upe < o V ans(rec(oq, b, 0z ))
Upt % oy Vin(og, bt(oy, op,0.)) V ans(rec(og, tpt, 0))
=in(upt, 07) V in(ok, bt(oy, o, 0,)) V ans(rec(oq, tpt, 0z ))
=in(upt, o) V in(og, bt(oy, 0, 0,)) V ans(rec(oq, upt, 04))
Upt P o Vo =~ o, Vin(og,01) Vin(og, o) V

V ans(rec(oq, Upt, 0z))

=in(upt, 01)Vog ~ o, Vin(og,0;) Vin(og, 0,.) V

V ans(rec(oq, Ubt, 0z))

=in(upt, 05)Voy ~ o, Vin(og, 07) Vin(ok, o) V

V ans(rec(oq, Upt, 0z))

Upt Z onVup < ok V ans(rec(og, Upt, 0z ))

=in(Ubt, 01) Vb < 0y V ans(rec(oq, Upt, 0z))

Sin(upt, 07 ) Vupy < 0y V ans(rec(oq, tpt, 0z))

o ~ op Vin(og,01) Vin(ok, o) V ans(rec(0q,0n,04))
on < oy V ans(rec(0q,0m,04))

on % o V ans(rec(oq,0p,04))

in(ok,07) Vin(ok,0,) V ans(rec(oq, 0pn, 04))

—(0y < op) Vin(og,0,) Vans(rec(oq, op, 04))

—(ow < op) Vin(og,0,) V ans(rec(ogy, opn, 0y))

(0w < op) V (o), < ok) Vans(rec(oq, 0pn,04))

(0w < oy) V (o), < on)Vans(rec(o,,0n,04))

o =~ op Vin(og,01) Vin(og,o,) V ans(rec(cq,04, 0z ))
Ow < ok V ans(rec(04,0w, 01))

ow < on Vin(og, o) Vin(ok,0,) V ans(rec(oq, 0w, 04))

]
]
]
}
[BR (A9y), 55, 58]
]
]
]
]
]
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65. oy < op V(0w < ok) Vin(og, o) Vans(rec(oq, 0w, 0z)) [BR 40, 64]
66. o < on V(0w < or) V (0l < ok) V ans(rec(oq, 0w, 01)) [BR 42, 65]
67. oy < ol, V(0w < 0l,) [Taut ]
68. 0y < 0p V(0w < o)) V oy < o), Vans(rec(o,, 0y, 0;)) [BR (L13y), 66, 67]
69. 0w < Opn V Oy < o Vans(rec(cg, 0y, 0z)) [BR 63, 68]
70. o), < on V 0y < ol Vans(rec(o,, 0w, 0x)) [BR (L13y), 69]
71. o ~ oy Vin(og,01) Vin(ow, 0r) V ans(rec(oq,00,,02)) [BR 41, 50, ER]
72. 0,, < 0} V ans(rec(0q,0,,04)) [BR 41, 53, ER]
73. o, < o, Vin(ok,01) Vin(ok, o) V ans(rec(oq, ol,, aw)) [Sup 71, 72]
74. o), < 0, V (0w < o) Vin(og, o) V ans(rec(og, oo, al)) [BR 40, 73]
75. ol, <oV (0w < o)V (o), < ok)V ans(rec(aa, 01y 0x)) [BR 42, 74]
76. 0., < on V (o), < o)V —(0y < 0l,) V

V ans(rec(oq, 0w, 0z)) [BR (L13y), 67, 75]
77. ol, < on V (0w < o)) Vans(rec(o,,0,,,0,)) [BR 72, 76]
78. ow < 0n V (0w < o)) Vans(rec(o,,0,,,0,)) [BR (L13y), 77]
79. =(ol, <op)Vo, <o,V

V ans(rec(o,if oy < oy, then o, else 0,,0,)) [BR’ 61, 69]
80. 0w < 0, V ans(rec(oq,if ol < oy, then

if o, < oy, then o, else o, else 0,,0;)) [BR’ 70, 79]
81. =(oy < opn)V (O’w <o)V

V ans(rec(o,,if o), < oy, then o, else o ,0,)) [BR' 61, 77
82. —(oy < al,) V ans(rec(o,,if 04 < oy, then

if o/ < o, then o, else o/ else 0! ,0,)) [BR’ 78, 81]
83. ans(rec(oq,if o < o), then if o, < o), then

if o/, < oy, then o, else o) else o/ else if o/ < o, then

if 0, < oy, then o, else o, else 0,,0,)) [BR’ 80, 82]
84. O [answer literal removal 83]

The program we end up with is

f(=),

where

flleaf(a)) ~ a
f(bt(l,n,r)) = if f(I) < f(r) then
if f(I) <n then
if f(r) < n thenn else f(r)
else f(r)
else if f(r) < n then
if f(I) < mnthenn else f(I)

else f(1).
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E Vampire Outputs

In this appendix we show the full derivation of the recursive program for (3)
produced automatically by VAMPIRE. The runtime was 0.021s. The derivation
uses the TPTP syntax [26]. We underline the final derived program and highlight
it in red. The function r£85 corresponds to f from Example 2, and the variable
X0 to the input variable x.

Note that the derivations produced by VAMPIRE might differ from those
presented in the paper and Appendix D due to VAMPIRE using specific ordering
and selection constraints, and a limited subset of Maglnd instances.

All our examples as well as the instructions to run VAMPIRE are avail-
able online at https://github.com/vprover/vampire_benchmarks/tree/master/
synthesis/recursive.

Configuration used for Example 2:
--forced_options ind=struct:indu=off:qa=synthesis

Output:

% Inputs for synthesis:

5. ~! [X0 : ’nat()’] : ? [X1 : ’nat()’] : half(X1) = X0 [
negated conjecture 4]

% Recursive function definitions:

rf85(zero) = s(zero)

rf85(s(X5)) = s(s(rf85(X5)))

% SZS answers Tuple [[rf85(X0)]1|_]

% SZS output start Proof

2. zero = half(s(zero)) [input]
3. ! [X0 : ’nat()’] : s(half(X0)) = half(s(s(X0))) [input]
4. ' [X0 : ’nat()’] : 7 [X1 : ’nat()’] : half(X1) = X0 [input
]
5. ~! [X0 : ’nat()?’] : ? [X1 : ’nat()’] : half(X1) = X0 [
negated conjecture 4]
9. ! [X1 : ’nat()’] : ~(half(X1) = sKi_in & ansO0(X1)) [answer
literal with input var skolemisation 5]
10. ' [X0 : ’nat()’] : ~(half(X0) = sKi_in & ans0(X0)) [
rectify 9]
11. ! [X0 : ’nat()’] : (half(X0) !'= sK1_in | ~ans0(X0)) [ennf
transformation 10]
12. half(X0) !'= sKi_in | ~ans0(X0) [cnf transformation 11]
13. s(half(X0)) = half(s(s(X0))) [cnf transformation 3]
14. zero = half(s(zero)) [cnf transformation 2]
20. ? [X5 : ’nat()’] : ? [X6 : ’nat()’] : ! [X7 : ’nat()’,X3
’nat()’] : ! [X8 : ’nat()’] : ((zero = half(X3) & (half
(X6) = X5 => s(X5) = half(X7))) => half(rec2(X3,X7,X8)) =
X8) [structural induction hypothesis]
21. ? [X5 : ’nat()’] : ? [X6 : ’nat()’] : ' [X7 : ’nat()’,X3
nat()’] : ! [X8 : ’nat()’] : (half(rec2(X3,X7,X8)) =
X8 | (zero != half(X3) | (s(X5) !'= half(X7) & half(X6) =

X5))) [ennf transformation 20]
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22. sK3 = half(sK4) | zero != half(X3) | half(rec2(X3,X7,X8))
= X8 [cnf transformation 21]

23. half(X7) '= s(sK3) | zero !'= half(X3) | half(rec2(X3,X7,
X8)) = X8 [cnf transformation 21]

24. half(X1) '= s(sK3) | zero !'= half(X0) | ~ansO(rec2(X0,X1,
sK1_in)) [resolution 23,12]

25. zero != half(X0) | sK3 = half(sK4) | ~ansO(rec2(X0,X1,
sK1_in)) [resolution 22,12]

123. zero != zero | sK3 = half(sK4) | ~ansO(rec2(s(zero),XO0,

sK1_in)) [superposition 25,14]

127. sK3 = half(sK4) | ~ansO(rec2(s(zero),X0,sK1_in)) [

trivial inequality removal 123]

160. s(half(X0)) != s(sK3) | zero != half(X1) | ~ansO(rec2(X1

,s(s(X0)),sK1_in)) [superposition 24,13]

724. s(sK3) !'= s(sK3) | zero != half(s(zero)) | ~ansO(rec2(s(

75

75

75
76

zero) ,s(s(sK4)),sK1_in)) [superposition 160,127]

3. zero != half(s(zero)) | ~ansO(rec2(s(zero),s(s(sK4)),
sK1_in)) [trivial inequality removal 724]

8. ~ans0(rec2(s(zero),s(s(sK4)),sK1_in)) [subsumption
resolution 753,14]

9. ans0(X0) [answer literall]

0. $false [unit resulting resolution 759,758]

SZS output end Proof

Version: Vampire 4.8 (commit 3cddf8311 on 2024-01-28
09:37:47 +0100)

Linked with Z3 4.12.2.0
ed417£7d78509b2d0c9ebc911fee7632e6ef546b6 2z3-4.8.4-7517-
ge417£7d78

Termination reason: Refutation

Memory used [KB]: 718
Time elapsed: 0.021 s
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