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ABSTRACT
We present a scalable and flexible approach for mapping

forest disturbances over large areas. The approach harnesses
the power of a spatio-temporal deep learning model, enabling
it to capitalize on complex patterns while demanding min-
imal data pre-processing efforts. Our methodology enables
rapid map production, offering a streamlined workflow. The
approach was demonstrated over central Europe, covering an
area of approximately 900,000 km2. Utilizing a modest clus-
ter, the processing time amounted to just 36 hours. The re-
sults, produced at 20 m spatial resolution, exhibit coherent
patterns and promising accuracy values, with an overall accu-
racy of 96%. We classify disturbances into four categories,
marking a significant stride towards forest disturbance attri-
bution. Identifying areas for improvement, we aim to re-
duce residual artifacts and enhance accuracy by incorporating
higher quality training data. Future work will focus on refin-
ing the model architecture and expanding the dataset coverage
to further optimize the approach’s performance and accuracy.

Index Terms— Sentinel-2, time-series, forest, deep-
learning

1. INTRODUCTION

Forests, covering around 35% of Europe, provide essential
ecosystem services including biodiversity conservation and
climate regulation [1]. Their significant role in our planet’s
ecological balance necessitates accurate, frequent, and timely
monitoring to inform decisions of policy makers and forest
managers.

Various methodologies for mapping forest disturbances
have been proposed, with some operational at large scales
[2, 3]. These approaches typically involve some form of im-
age selection, whether manually or algorithmically driven,
which can limit the input data used and pose obstacles to ef-
ficient and timely map production. A handful of truly multi-
temporal approaches have been proposed, yet, to our knowl-
edge, their scalability remains unproven and has only been
tested on a limited scale [4, 5]. It is important to note that
temporal segmentation approaches like LandTrendr, despite
being inherently multi-temporal, are more suited to extracting
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temporal trajectories and breakpoints, making them excellent
for retrospective analyses over long periods, but less effective
for detecting recent changes [6].

In this paper, we explore the potential of the underutilized
Sentinel-2 satellite data, which offers high-resolution, multi-
spectral data at a rapid frequency. Challenges such as het-
erogeneous temporal sampling due to cloud cover and resid-
ual clouds, despite default cloud masking, pose difficulties in
transferring conventional methods and require algorithms that
can robustly handle variable length and density time-series.

Our exploration leads us towards a deep learning approach
to harness the potential of Sentinel-2 data for a more flexible
and scalable disturbance mapping method. The deep learn-
ing model operates on raw satellite data, providing a novel
approach in this domain.

The rest of the article is structured as follows: We first
outline our strategy for generating training data, followed by
a brief overview of the model architecture. Subsequently, we
report and discuss performance metrics and the results of a
scalability experiment. This exploration, while not claiming
to fill the gap completely, contributes to the ongoing efforts in
enhancing forest disturbance mapping at scale and in a timely
manner.

2. MATERIALS AND METHODS

To demonstrate the flexibility and scalability of the proposed
approach, the study focuses on 7 countries of Central Eu-
rope (Austria, Czech Republic, Germany, Hungary, Poland,
Slovakia and Slovenia). With an area of nearly 900,000 km2

and a broad range of environmental conditions and forest
disturbance types, this region offers great opportunities and
challenges for demonstration and testing. The following sec-
tion describes (1) the iterative, semi-supervised, approach
employed to obtain training data, (2) the architecture of the
spatio-temporal model we used, (3) some elements of model
training and (4) the scalable and flexible map prediction
strategy we utilized.

2.1. Training data generation

To generate a labeled dataset of forest dynamics, we applied
a semi-automated protocol over 15 40 by 40 km areas of



interest (AOI) spread across Central Europe (see Fig. 1 for
the footprints of the AOIs). Although the resulting data re-
mains imperfect, the approach allows to efficiently create an
adequate amount of annotated data required for subsequent
model training. For each AOI independently, the protocol
consists of the following steps:

1. Image selection: Manual selection of three cloud-free
summer images for the years 2019, 2020 and 2021.

2. Identification and labeling of initial examples: Initial
examples of various land trajectories, such as persistent
non-treed areas, persistent treed areas, and tree cover
loss, are identified and digitized within the selected im-
ages. These examples serve as the starting point for
training a simple tri-temporal pixel-based classifier.

3. Model training and prediction: Based on digitized
training samples, a random forest classifier is used to
classify each pixel of the AOI into one of the land
trajectories.

4. Result inspection: The quality of the produced land
trajectories layer is assessed by visual inspection. By
confronting predicted patterns with various sources of
information (input Sentinel-2 images, very high reso-
lution layers, hypertemporal Planet data, model uncer-
tainty), the operators can identify mislabeled pixels.

5. Enrichment of Training Data: Training data is en-
riched, particularly for areas and patterns presenting
high model confusion.

6. Iteration: The operators iteratively repeats steps 3 to 5
until they consider that no significant improvement can
be achieved.

The annotated dataset resulting from applying this proto-
col over the 15 AOIs covers an area of 24,000 km2 for two
one-year time periods, and divides the land dynamics into 7
classes (persistent non-treed, persistent tree cover, tree cover
loss, light disturbance, persistent disturbed state, disturbed to
non-treed, water).

2.2. Model architecture

To address the challenge of scalable and detailed mapping of
forest dynamics, we used a spatio-temporal deep learning ar-
chitecture. Deep learning presents an attractive option due
to (i) its ability to automatically extract meaningful features
from multi-dimensional data, and (ii) its capacity to internally
handle data heterogeneity such as noise and irregular tempo-
ral sampling. In the context of forest mapping, this means that
the deep learning model can capture important contextual in-
formation and associate complex spectro-spatio-temporal sig-
natures to forest dynamic patterns which is crucial for accu-
rate mapping. The handling of heterogeneous data, which

Fig. 1: Map of forest dynamics between July 2020 and July 2021.
The green squares with orange outline are the footprints of the AOIs
used for training data generation produced following the protocol
described in 2.1

often poses limitations for classical machine learning meth-
ods, is a crucial characteristics for flexibility and scalability
allowing to take full advantage of the entire stack of temporal
information contained in Sentinel-2 data.

Following these considerations, we adapted a deep-
learning architecture initially designed for volumetric seg-
mentation named UNet3D [7]. This model extends the classi-
cal UNet by incorporating 3D convolutional filters, enabling
the simultaneous consideration of spatial context and depen-
dencies in an additional dimension, in this case, time.

2.3. Model training

Both the training and prediction phases of our model were
conducted using 20 m Sentinel-2 data that exhibited less than
30% cloud cover. We specifically utilized the spectral bands
B2, B3, B4, B5, B6, B7, B8A, B11, and B12, and com-
plemented them with three vegetation indices: Normalized
Difference Vegetation Index (NDVI), Normalized Burn Ratio
(NBR), and Normalized Difference Moisture Index (NDMI).
Although the model should allow working on unfiltered data,
we filtered clouds and shadows using the Scene Classifica-
tion Layer (SCL) provided with level 2A Sentinel-2 data. To
establish a consistent temporal framework for training, we re-
sampled the data into a zero-filled, 10-day interval vector, re-
sulting in a total of 46 time steps. This temporal resampling
approach allows to maintain temporal coherence and align the
data across different timestamps, enabling effective tempo-
ral analysis. The training process was performed end to end,
leveraging the capabilities of an NVIDIA Tesla V100 32GB
GPU.



2.4. Map prediction

For the map prediction step, which consists in running the
deep learning model in inference mode, CPU-based compu-
tation was utilized. While individual CPUs generally have
lower performance compared to GPUs, their higher availabil-
ity makes it easier to horizontally scale the process, accom-
modating larger workloads. The computing load was dis-
tributed on a Dask cluster, allowing for efficient utilization of
computational resources and parallelized execution of tasks,
enabling faster overall map production [8].

All the Sentinel-2 data required for the map prediction
are available on the EOS distributed file system (EOS) of the
Big Data Analytic Platform (BDAP) of the Joint Research
Center (JRC) and indexed in a SpatioTemporal Asset Cata-
log (STAC) [9, 10]. We used the pystac-client python
library to query the STAC catalog and retrieved the data as
a lazy data cube thanks to the odc-stac package [11].
Some data preparation steps, as described in section 2.3, were
necessary and performed on the fly as part of the prediction
pipeline.

The desired output map was set to be in the EPSG:3035
coordinate reference system (CRS) and two strategies were
considered to achieve this. The first strategy involves using
MGRS (Military Grid Reference System) tiles for task defi-
nitions and processing each tile in its respective input CRS,
typically one of the UTM zone intersecting Central Europe.
Once every MGRS tile has been predicted, the individual
raster files need to be mosaicked, handling different CRS and
overlap between tiles as a post-processing step. The second
strategy involves defining a regular grid in the desired coor-
dinate reference system (EPSG:3035) and warping the input
data to align with that CRS. Using that second strategy, the
result of the predictions are directly produced in the target
CRS and no further post-processing steps are required. This
resembles a processing pipeline from an Analysis Ready Data
(ARD) collection, except that the harmonized input data is
generated on the fly, from the raw collection. While that sec-
ond strategy implies higher computational requirements, in-
creasing the processing time for map production, the absence
of post-processing steps reduces the amount of mosaicking
artifacts and makes the overall approach more agile; it was
therefore preferred for the current demonstration.

3. RESULTS AND DISCUSSION

3.1. Map production and qualitative assessment

The production of the final map using the approach described
in section 2.4 required 36 hours of processing on a single
machine cluster spread over 38 cores. This is a very en-
couraging result given the size of the study area and sug-
gests a high potential to scale a similar approach to much
larger areas, and obtain forest disturbance layers covering the
whole of Europe within days. As can be seen in Fig. 1, the

resulting map covers the entire study area without interrup-
tions and very few processing artifacts (e.g. visible tile edges)
could be found. A detailed visual inspection of the result re-
vealed generally coherent patterns of various landscape ele-
ments including water bodies, tree cover areas and forest dis-
turbances. Well known hot-spots of forest disturbances due to
widespread bark beetle outbreaks in Germany, Czechia and
Slovakia are clearly visible and include all four disturbance
classes. Unsurprisingly, the highest confusion in classifica-
tion appeared to be found between subtle disturbance classes,
such as persistent disturbed state and transitions from healthy
to lightly disturbed forests. This is expected due to the nu-
anced structural and chemical processes at stake, compared
to scenarios like a complete stand removal. We also noticed
that North-facing slopes in steep terrain were often classified
non-treed, regardless of whether trees were present or not;
this can be explained by their low sun illumination combined
with the fact the labelled dataset did not present such terrain
configuration.

3.2. Model performance metrics

By confronting the model predictions to a held out partition
of the labelled dataset, we could generate some model perfor-
mance metrics (Table 1).

Table 1: Classification Performance

Class Producer’s Accuracy User’s Accuracy F1 Score
Persistent Non-Treed .98 .97 .97
Persistent Tree Cover .94 .96 .95
Tree Cover Loss .77 .73 .75
Light Disturbance .46 .45 .46
Persistent Disturbed State .34 .27 .30
Disturbed to Non-Treed .27 .65 .38
Water .95 .99 .97

Overall Accuracy: .96

The accuracy for the ”stable” classes (Persistent Non-
Treed, Persistent Tree Cover, Water) is consistently high,
as anticipated due to the distinct spectral and temporal sig-
natures associated with these classes. In contrast, notable
confusion is observed among the four closely related distur-
bance classes, indicating the need for further refinement in
distinguishing them.

It is important to note that these benchmark metrics, while
useful and convenient to get a rapid snapshot of a model’s po-
tential, do not necessarily translate into an unbiased estimate
of the accuracy of the produced map. Reasons are that:

• The data used for computing these metrics originates
from the same data generation protocol described in
section 2.1, and while the quality is generally high, it
likely still contains errors.

• Accuracy tends to vary in space and time, even when
the exact same approach is strictly replicated over a dif-
ferent area or time periods [12]. Map accuracy is there-



fore not an intrinsic characteristic of the model used,
but rather a complex context dependent parameter.

• Model benchmark metrics only account for one step
of the map production process, the prediction. Other
steps, such as tiling strategy that may have an impact
on the accuracy of the final map are not captured by
these metrics.

A proper accuracy assessment of the produced map will re-
quire an independent set of visually interpreted samples ob-
tained through probability sampling [13].

3.3. Operationalization potential

The operationalization potential of the approach is notewor-
thy. It requires minimal pre-processing, relying on a clus-
ter, data archive, and STAC catalogue for producing scalable
maps. Despite the utilization of imperfect training data, the
approach delivers visually coherent results and demonstrates
encouraging model performance metrics. Remaining issues,
as described earlier, necessitate further research. Improve-
ments are required in both the model architecture and training
data quality, particularly for accurately characterizing com-
plex forest disturbances such as light disturbances and stand-
ing dead trees. Nevertheless, the approach partially distin-
guishes four types of forest disturbances, marking a signifi-
cant achievement in forest disturbance attribution. Enhance-
ments should focus on addressing identified issues and re-
fining the model architecture and training data quality to in-
crease accuracy and expand the applicability of the approach.

4. CONCLUSIONS

In conclusion, we successfully developed a scalable forest
disturbance mapping approach by harnessing the capabilities
of deep learning. This allows us to generate large area maps
with minimal pre-processing requirements. The results ob-
tained from the demonstration in Central Europe are highly
promising, showcasing the effectiveness of the approach in
capturing and characterizing forest disturbances. However,
the study has also identified certain shortcomings and areas
that require improvement. These insights will guide future
work, enabling us to address these limitations and enhance
the approach’s performance and accuracy. With ongoing re-
search and refinement, we are confident that our approach will
make a substantial contribution to enhancing operational ca-
pacity in achieving detailed mapping of forest disturbances in
temperate environments.
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