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Abstract

While deep learning methods have shown immense bene-
fits for Acoustic Scene Classification (ASC) tasks in terms
of performance, they also introduce new challenges as these
methods are prone to suffer from large performance degra-
dation for out of distribution data. To build robust ASC
models that can achieve reliable performance across mul-
tiple recording devices, the architecture has to be able to
quickly adapt to changing input and activation distribu-
tions. We present ASCMobConvNet, a CNN architecture
based on Mobile Inverted Bottleneck Convolutions. In or-
der to better adapt to domain shifts and the resulting change
in activation distributions, it uses sub-spectral normaliza-
tion layers in combination with residual normalization in-
stead of batch normalization layers. Furthermore, the
model corrects non-parametric mismatches in the activa-
tion distributions through the integration of Wasserstein
distribution correction layers. Using our proposed archi-
tecture we are able to achieve an test accuracy of 68.10 %
on the TAU Urban Acoustic Scenes 2020 Mobile devel-
opment dataset. Using Wasserstein distribution correction
layers we can further improve the accuracy by 0.68 %.

1 Introduction

As many interactive applications need to be optimized or
adjusted for specific scenarios, information about the en-
vironment of the user or a device can provide valuable in-
formation and feedback to the application. Acoustic Scene
Classification (ASC) aims to provide this information by
recognizing the acoustic scene of a given audio environ-
ment. The analyzed audio samples are recorded within
different acoustic scenes such as a public street, a restau-
rant or a bus driving in an urban environment. Acoustic
scenes may vary significantly within each class and on the
contrary they often share similar characteristics among dif-
ferent classes. This fact is challenging for ASC systems.

Another level of complexity is introduced via the diver-
sity of devices that are used to record the audio samples.
Each recording device has its own characteristic frequency
response. This means that the spectral representation of
an acoustic scene recorded by one device can differ sig-
nificantly for other devices. Hence, the machine learning
model used for the ASC task has to generalize with respect
to the different recording devices.

Therefore, there have been multiple specialized Con-
volutional Neural Network (CNN) architectures proposed
for ASC, often targeting a low computational complexity
due to hardware limitations. CP_Resnet [1] provides a
low-complexity solution by limiting the size of the recep-
tive field. BC-ResNet-Mod [2] goes one step further and
reduces the dimensionality by applying one-dimensional
convolutional layers to a two-dimensional problem. Mini-
SegNet [3], another low-complexity architecture which is
based on [4], uses an encoder-decoder architecture. It is
further reduced in size by pruning, quantization and knowl-
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edge distillation. Other specialized architectures [5, 6] of-
ten use MobileNet [7] or VGG [8] as their base architec-
ture.

The generalization ability of these specialized archi-
tectures can be improved via a variety of other methods
targeting all aspects of the modelling pipeline, i.e., data
pre-processing, training regularization, and test-time adap-
tion. One suitable data pre-processing method for ASC,
used during the data generation phase, is spectrum correc-
tion [9, 10]. It applies a separate correction coefficient to
each bin of a magnitude spectrogram in order to unify the
input data distributions over multiple input devices. An-
other method is presented in [2], where a network inspired
by the pix2pix framework [11] is used to translate spec-
trograms from one recording device to another simulated
recording device. During training, improved generaliza-
tion can be achieved with a wide variety of methods such
as data augmentation, dropout, weight decay regulariza-
tion, etc. [12, 13].

However, often input distribution shifts occur during
the deployment of the model due to not anticipated in-
fluences such as noise and sensor, i.e. microphone drifts.
These distribution shifts can cause great performance degra-
dation for neural network based ASC systems [14]. There-
fore, domain adaptation methods have been developed to
mitigate these domain shifts [15, 16].

While most CNN-based models rely on Batch Normal-
ization (BN) to normalize the activation statistics between
layers, for ASC tasks it has been shown that Sub-Spectral
Normalization (SSN) [17] can achieve improved perfor-
mance. SSN layers are similar to BN layers. However, they
split the frequency dimension into multiple groups and per-
form a separate normalization for each of these groups.
This makes models using SSN better suited to ASC tasks.
However, this requires to adapt most domain adaptation
methods as these are usually designed for BN [15, 16].

Furthermore, the diversity of recording devices needs
to be addressed. While for many tasks it is sufficient to nor-
malize the input data to zero mean and unit variance using
training set statistics, this static approach can fail if the do-
main shifts between training and test set are too large. This
is the case for multi-device ASC tasks. To reduce the im-
pact of these domain shifts, it is possible to apply Residual
Normalization (RN) layers instead of dataset standardiza-
tion [2]. These layers rely on a combination of Instance
Normalization with a linear shortcut and are specialized
for ASC processing [18]. Since the RN layers are inserted
at multiple stages throughout a network, in contrast to the
dataset standardization which is only applied to the input
data, the use of RN is also an effective measure against do-
main shifts at activation level. While RN, due to its sample
specific normalization, makes the model less sensitive to
distribution shifts it can only account for parametric shifts
within the activation distributions. Therefore, to further re-
duce the impact of domain shifts on the model, we need to
investigate domain adaptation methods, that are (i) appli-
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Figure 1: Structure of a 2D MobConv block.

cable to SSN and RN layers, and (ii) that can correct for
non-parametric distribution shifts.

Our Wasserstein distance-based distribution correction
layer [19] shows both properties, i.e. it is independent of
the used normalization layer type and it can also perform
non-parametric adaptions. This method adapts the activa-
tions in a layer during test-time to better match the dis-
tribution of activations observed during training using an
energy-based minimization scheme. It can be added to the
model after the model is trained. The Wasserstein correc-
tion is done for all devices in the dataset.

In this paper, we introduce ASCMobConvNet, a CNN
architecture based on Mobile Inverted Bottleneck Convo-
lutions [20]. In order to better adapt to domain shifts and
the resulting change in activation distributions, it uses SNN
layer in combination with RN layers instead of batch nor-
malization layers and dataset standardization. Addition-
ally, we apply Wasserstein correction layers to the opti-
mized ASC model to improve performance and make the
model even more robust. For our experiments, we use
the TAU Urban Acoustic Scenes 2020 Mobile develop-
ment dataset [21], which was published in the course of
the annually hosted Detection and Classification of Acous-
tic Scenes and Events (DCASE) challenge. It contains
64 h of audio data, recorded across ten different European
cities. The audio samples were recorded with nine differ-
ent recording devices. While the representation of these
recording devices is balanced in the test set, it is greatly
unbalanced in the training set, with some of the recording
devices being only available in the test set. Therefore, this
test set includes large domain shifts and an ASC model ap-
plied to this data must generalize well with regard to the
different recording devices.

The remainder of this paper is organized as follows.
We introduce the ASCMobConvNet in Section 2. In Sec-
tion 3 we present the Wasserstein correction approach in
detail. The experiments and results are summarized in Sec-
tion 4. Finally, in Section 5 we conclude the paper.
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Figure 2: Structure of the ASCMobConvNet. It uses Mob-
Convs and Wasserstein correction layers. Depending on
the setting it uses SSN instead of BN layers and resid-
ual normalization over the frequency axis instead of zero-
mean unit variance normalization. The RN layers are in-
serted at the input and between each convolutional stage.

2 Mobile Inverted Bottleneck Convo-
lution Network

Our proposed CNN architecture called ASCMobConvNet
is based on Mobile Inverted Bottleneck Convolutions (Mob-
Convs) [20], which were introduced in the MobileNetV?2
architecture and were adopted for the ASC task. The used
2D-MobConv blocks, as shown in Figure 1, consist of three
main parts: (i) a point-wise convolution that is used to in-
crease the channel count for the bottleneck, (ii) a depth-
wise convolution within the bottleneck, and (iii) another
point-wise convolution to again reduce the number chan-
nels. After each convolution layer ASCMobConvNet uses
a ReLUG6 activation [7], an optional Wasserstein correction
layer and a Sub-Spectral Normalization (SSN) layer [17].
Here, we use ReLU6 instead of ReLLU because it has been
shown to be more robust and suitable for low-complexity
applications. Instead of the more commonly used Batch
Normalization (BN) we use SSN, as it is frequency-aware
and therefore has the ability to better learn characteristics
in the audio data. SSN implements the same basic func-
tionality as BN, but splits the frequency axis into multi-
ple separate sub-bands. After the last SSN layer we add a
residual connection and a spatial dropout layer [22]. The
number of parameters of a MobConv block is mainly de-
termined by the kernel size of the depthwise convolution,
by the stride and by the expansion ratio, which is the fac-
tor by which the number of channels in the bottleneck is
increased.

Regarding normalization, we replace the more tradi-
tional zero-mean unit variance data standardization, which
is only applied to the input tensor, with RN layers perform-
ing normalization over the frequency axis of the input and
activation tensors [2]. These layers are then applied at mul-
tiple stages throughout the network. RN for input activa-
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I f)z. As shown in Figure 2, the corresponding Residual
Normalization (RN) layers are inserted at the beginning of
the network and between each convolutional stage, where
each of the RN layers uses a residual factor of Az = 0.1.
The initial 2D-convolution layer in the input stage uses 28
channels, a 5 x 5-kernel and a stride of 1 x 1. It is fol-
lowed by a ReLU6 activation layer, a Wasserstein correc-
tion layer, a SSN layer, and a RN layer. The stacking of
normalization layers (SSN and RN) with different modes
of normalization allows for improved robustness during
test-time and increased convergence speed during training.
Here, RN is independent of training set statistics and can
adapt to changes in the activation distribution, while SSN
allows for faster convergence during training. This com-
bination has shown to be effective within our experiments.
At the end of each MobConv block a spatial dropout layer
is applied to regularize the training.

The backbone of the network consists of four Mob-
Conv blocks. The first two of these blocks use 28 chan-
nels, while the latter two use 42 channels. Here, the first
and the third block use a stride of 2 x 2 to reduce the size of
the feature map, while the second and the last block keep
the feature map size using a stride of 1 x 1. All MobConv
blocks use a 3 x 3-depth-wise kernel, an expansion ratio of
6 and a spatial dropout probability of 10 %.

The output stage of the network uses a point-wise con-
volution layer which reduces the channel count to the C' =
10 classes in our dataset, resulting in an activation tensor
ac RFXT>10 A global average pooling layer then reduces
the frequency and the time axes to a single bin creating the
output logits y € RC. The last layer is a softmax activa-
tion computing the output probabilities for each of the 10
classes. Using the proposed configuration, ASCMobCon-
vNet comprises only 75.9K trainable parameters, imple-
menting a hardware-friendly architecture.

3 Non-parametric Wasserstein domain
adaptation

Changes in the input data distribution also introduce an
activation distribution mismatch between training and test
set. The non-parametric Wasserstein distance-based cor-
rection layers reduce this mismatch for the test-time acti-
vations a(™ of each audio sample m, improving the clas-
sification performance of CNN architectures. The advan-
tage of using the one-dimensional Wasserstein distance be-
tween the target distribution ¢(t) and the test-time distribu-
tion p(al™)) is that it can be determined by a simple sort
operation. Since we use only a single one-dimensional dis-
tribution per layer, we flatten the activations (RF*7*¢) to
a vector of length N = F« T+ C, a™ € RN. This ap-
proach frames the distribution correction as a denoising
problem using an energy minimization scheme. The en-
ergy F(ala) is composed of two terms (&) (correspond-
ing to the prior) and Z(a|a) (corresponding to the likeli-
hood) such that

E(ala) =\ -Z(ala) + X\, - Z(a), 2)

using the weighting factors A\; and ;. Here Z(ala) is the
mean squared error between the corrected activations & and

the original activations a which is minimized via

dz
da

a—a. 3)

Z(a) is the one-dimensional Wasserstein distance to a pre-
defined target vector t € RY. Here the target distribution
t is chosen to be the Wasserstein barycenter of the training
set distribution of size K, which is defined as:
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where ag; are the sorted activation values of sample m,
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Here j are the original indices of the activations, which are
required to assign the correction to the corresponding acti-
vations. The updates to the activations a(™) are then cal-
culated by minimizing the Wasserstein 1-distance, which
is defined as:
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where ¢(;) are the sorted target values and a(;n) are the

sorted test-time activations. The update minimizing Eqn. (6)
is defined via,

A =] - [aV]. ™
The update tensor A(™ is used for updating the corre-
sponding indices j within the activation tensor, resulting
in the updated activations &, i.e. the corrections are cal-
culated in the space of sorted activations (both in ¢;) and

ag?;)), and are then added to the correct indices j within

al™) . Based on a, the data term update is calculated ac-
cording to Eqn. (3). The non-parametric Wasserstein cor-
rection layer (NP-C) then iteratively minimizes first Z (&)
and Z(ala). Experiments have shown that one iteration is
sufficient as the domain adaption is performed over all lay-
ers of the model. Since the correction layer does not need
to be optimized, it can easily be added to pre-trained mod-
els, requiring only the collection of training dataset statis-
tics. More details on non-parametric Wasserstein domain
adaptation are provided in [19].

4 Experiments and Results

4.1 Data

We use the TAU Urban Acoustic Scenes 2020 Mobile de-
velopment dataset [21]. It contains ten acoustic scenes,
recorded across ten European cities. The samples were
recorded with a total of nine different recording devices.
Three of these are real and six are simulated. The dataset
includes an official train-test split. In the test set the record-
ing devices are evenly balanced, while in the training set
the devices are greatly unbalanced, with device A con-
tributing a portion of 62.5 %. Additionally, three of the
simulated recording devices are only present in the test set.
The training set contains 13962 samples and the test set
contains 2970 samples. Each audio sample is 10s long,



ASCMobConvNet | Test accuracy

Baseline 47.70 £ 0.90%
BN 66.07 £+ 0.86%
BN + RN 67.83 £ 0.86 %
SSN + RN 68.10 £+ 0.86%

SSN + RN + NP-C | 68.78 + 0.85%
Table 1: Classification results for various normalizations
and non-parametric wasserstein correction (NP-C).

uses a sampling rate of 44.1 kHz, and a bit width of 24. We
further split the training set using a train-validation split of
85% to 15 %.

We convert each audio sample to a log-melspectrogram
with 256 bins. For the log-melspectrograms we use f,,;, =
20Hz and frnq, = #1522 Additionally, during train-
ing we randomly roll the input feature tensors along the
time dimension and apply the MixUp [23] data augmenta-
tion method. For the time-rolling operation we randomly
draw a time within the interval {—5s,5s}. For the MixUp
augmentation method we set the parameter apziq7p = 0.3.
Each augmentation method is applied on-the-fly with a
probability of 75 %.

4.2 Setup

For training we use a batch size of 32, training the model
for 120 epochs maximum. Here, an early stopping mech-
anism is employed that stops the training if the validation
loss does not decrease for more than eight epochs. We use
the Adam optimizer with a starting learning rate of 0.001.
The learning rate is divided by a factor of 2 if the valida-
tion loss does not decrease over the course of five epochs.
In between epochs the training set is shuffled.

We conduct an ablation study using four different set-
tings.  Here, only the fourth setting includes the
non-parametric correction layers (NP-C). The baseline per-
formance in our ablation study is derived from the baseline
performance of the DCASE challenge 2022, task 1.A [24].
In the first setting we remove the SSN layers and replace
them with plain BN instead, as well as deactivating the RN
layers in favor of classic zero-mean unit variance standard-
ization (BN). In the second setting we keep the BN lay-
ers but use the RN layers in the network instead of zero-
mean unit variance standardization (BN+RN), and in the
third setting we combine SSN layers with the RN layers
(SSN+RN).

Lastly, in the fourth setting, we add the NP-C layer
for test-time domain adaptation (SSN+RN+NP-C). For the
Wasserstein correction parameters A\; and A, we conduct
a grid search. For each parameter set in the grid \; =
{0.1,0.2,...,0.9} we take the model without Wasserstein
correction layers, enable these layers and collect the acti-
vation distribution statistics ¢,y from the training data. Af-
terwards, we evaluate the models using the corrected acti-
vation distribution for the test-samples.

4.3 Results and Discussion

In Table 1 the results for the model architectures are shown.
Using RN over the frequency axis instead of zero-mean
unit variance normalization improved the test accuracy by
1.76 %. Replacing the BN layers with SSN layers further
improved the test accuracy by 0.27 %.

In Figure 3 we can see the absolute performance change

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Az

Figure 3: The improvement in test accuracy for each com-
bination of A\; and \;.

of the Wasserstein correction for all A\;, A, combinations.
The best performance is achieved with A\; = 0.4 and A\, =
0.3. It leads to an accuracy improvement of 0.68 %. This
increases the test accuracy to 68.78 %. Setting A\ similar
to A\ improves the accuracy. Low values of \; combined
with high values of )\, decrease the test accuracy. This
underlines the assumption that putting too much empha-
sis on the prior and too little emphasis on the likelihood
in Eqn. (2) distorts the spatial correlation between layers.
The combination of low values of A\; and high value of A,,
leads to a performance improvement.

Even though the Wasserstein correction improves the
performance of our network its practical relevance 1 is lim-
ited. The Wasserstein correction layers add a massive
amount of parameters to the network (i.e. the target distri-
butions t) without leading to a huge performance increase.

5 Conclusion

In this paper, we examined the Wasserstein correction al-
gorithm for distribution shift correction in ASC. We speci-
fied a parameter efficient ASCMobConvNet model for the
prediction of acoustic scenes using the TAU Urban Acous-
tic Scenes 2020 Mobile development dataset. Adding
Wasserstein correction layers to our network improved the
performance when a recording device mismatch across the
train and the test datasets is present. We also observed that
there is a sweet spot of hyperparameters for the Wasser-
stein correction, and that putting too much emphasis on
the prior and too little emphasis on the likelihood of the
correction algorithm degrades its performance. Using sub-
spectral normalization layers and residual normalization
layers instead of batch normalization and applying Wasser-
stein correction layers we were able to achieve an improve-
ment in test accuracy of 2.71 % (absolute) for ASCMob-
ConvNet, and a 21.08 %(absolute) improvement over the
baseline model.
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