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Abstract 

The sentiment orientation analysis aims to find out the public's attitude towards something and is widely 

used in product analysis and public opinion detection. This paper uses real text corpus to achieve automatic 

judgment of sentiment orientation through preprocessing, text coding representation, feature extraction, 

classification, etc.; explores the unique heat expression and word vector representation of text, neighbor, 

naive Bayes, support vector machine The effect of the algorithm on the judgment of sentiment orientation. 

Through multiple sets of comparative experiments, we found that the word vector representation of the text 

significantly improved the accuracy and speed of the sentiment analysis. At the same time, for the case of 

less training corpus, we try to carry out the word vector model "secondary training", and the experiment 

shows that the word vector quality can be effectively improved. In summary, the process of this paper has 

a certain effect on the analysis of text sentiment orientation. 

Introduction 

High-quality distributed representations of words have proven helpful in many learning algorithms for 

speech recognition, image annotation, machine translation and other NLP tasks (Schwenk and Gauvain 

2004; Schwenk, Dchelotte, and Gauvain 2006; Schwenk 2007; Weston, Bengio, and Usunier 2011; Mnih 

and Hinton 2007; 2008; Collobert and Weston 2008; Collobert et al. 2011). Traditionally, a word is 

represented by a one-hot-spot vector. The vector size equals the vocabulary size. The element at the word 

index is ”1” while the other elements are ”0” s. How- ever, the one-hot-spot representation has two 

weaknesses: the vocabulary size keeps increasing with the growth of big data which leads to the curse of 

dimensionality (Bengio et al. 2003), and the one-hot-spot representation captures no syntactic or semantic 

regularities of words because the distances between any two words in the vector space are the same. 

The distributed representation of words has garnered significant attention in the recent past. Instead of a 

one-hot- spot vector, a word is represented by a real-valued vector with a much smaller size (normally by 

several hundreds). Such distributed representation does not face the- curse-of-dimensionality problem since 

the growth of the distributed vector size is logarithmic compared to the vocabulary’s growth. Moreover, 

the syntactic and semantic regularities of words can be encoded in the distributed vector space: the 

Euclidean distance between two words in the vector space represents the syntactic or semantic similarity 

between them. Mikolov et al. (Mikolov et al. 2013a) find that distributed word representation can preserve 



− not only syntactic and semantic regularities, but also linear regularities. For example, vector(“king”) 

vector(“man”) + vector(“woman”) results in a vector that is closest to vector(“queen”). They design a test 

set to measure the regularities preserved in the distributed word representation. 

They also carry out two neural network models for representation learning: CBOW and Skip-gram. CBOW 

uses a word’s context words in a surrounding window to predict the word, while Skip-gram uses only one 

context word for prediction. Specifically, a sum pooling layer is employed in CBOW to speed up its training 

process. This makes it possible to train CBOW on very large-scale data which can hardly be handled with 

other neural network bag-of-words models (Bengio et al. 2003). Theoretically, CBOW should be superior 

since more context words are involved. How- ever, Skip-gram achieves the best accuracy on their test set 

over all existing word representation learning models. 

There is a significant performance gap between CBOW and Skip-gram. We find this comes from the 

proximity modeling of the context words in CBOW. CBOW is a classifier. The output class label is the 

target word while the input features are the context words which are in a window around the target word. 

In CBOW, the representation vectors of the context words are fed to the sum pooling layer. The sum pooling 

layer treats each context word equally by adding up the representation vectors of the con- text words. That 

is, switching any two context words will not change the pooling layer output. Therefore, the order 

information (or the proximity to the target word) of the context words is completely removed in CBOW. 

The ignorance of proximity results in poorly positioned word representations. Mikolov et al. try to perceive 

the context word proximity by adjusting the context window size randomly whenever a training sentence 

is fed to CBOW. The window size is drawn from a prior probability distribution in which the probability 

of selecting a certain window size drops linearly as the size becomes large. We call this strategy dynamic 

window size. Dynamic window size reduces the impact of proximity ignorance by choosing more small 

window sizes. How- ever, dynamic window size is not a fundamental solution but a trade-off: using less 

context information to avoid negative impact. Moreover, the output vector of the sum pooling layer suffers 

from scale fluctuation by using dynamic window size since the number of input vectors changes all the 

time. Such scale fluctuation is eventually transmitted to the word representation vectors during error 

backpropagation (Rumelhart, Hintont, and Williams 1986). Skip-gram is relatively less sensitive to 

proximity since it captures the averaged co-occurrences of two words over the whole training set. The 

influence of the local context proximity is thus reduced but still exists. Also, there is no scale fluctuation 

issue in Skip-gram. 

Besides neural network models, learning good word representations also relies on linguistics. It’s common 

for a word to belong to multiple lexical categories. For example, the word “account” can be either a noun 

or a verb. It’s very hard to capture the syntactic regularities of the verb “ac- count” and the noun “account” 

in one representation vector simultaneously, because the vector is required to be close to several nouns and 



verbs in the vector space. Therefore, such morphosyntactic ambiguity must be considered in representation 

learning. 

In the paper, we propose two PAS models: PAS CBOW and PAS Skip-gram for producing high quality 

word representations considering both word proximity and ambiguity. Since the lexical categories of a word 

are represented by its POS tags, we focus on the POS ambiguity, i.e. a word possibly having multiple valid 

POS tags. We attack the POS ambiguity problem by creating multiple representation vectors for one word. 

Besides creating one vector for each POS tag, we also try creating vectors for groups of POS tags since the 

occurrences of a word may hold the same meaning even when their POS tags are different. We model word 

proximity in PAS CBOW by introducing proximity weights. They are treated as a special network layer 

which is placed before the pooling layer. These weights are updated during training. By introducing 

proximity weights, we fix the context window size so that fluctuations in word representation vectors are 

removed as the scales of the projection vector items are stabilized. Although learning the proximity weights 

creates additional calculation cost, the total training time of PAS CBOW is still comparable to CBOW. 

More- over, the proximity weight layer can also be employed in other neural network applications, that 

have pooling layers, to model proximity. In PAS Skip-gram, we model the word proximity by leveraging 

the proximity weights learnt after the training of PAS CBOW. Specifically, we achieve an accuracy increase 

of 16.9% with PAS CBOW and 3.7% with PAS Skip-gram. 

Related Work 

The distributed representation of words is carried out in (Hinton 1986; Elman 1991). Word representation 

is then used in learning language models. Bengio et al. (Bengio et al. 2003) propose a neural network 

language model (NNLM) which uses the context words in a window to predict the next word. NNLM 

consists of a sequential projection layer, in which the context word representation vectors are con- catenated, 

as are classification layers. Word proximity does not need to be modeled explicitly since the context word 

order is already considered in concatenation. NNLM out- performs traditional N-gram models and is 

applied to a variety of learning tasks in speech recognition, machine translation and image annotation 

(Schwenk and Gauvain 2004; Schwenk, Dchelotte, and Gauvain 2006; Schwenk 2007; Weston, Bengio, 

and Usunier 2011). Morin et al. (Morin and Bengio 2005) propose a hierarchical architecture which 

significantly improves the training speed of NNLM. Mnih et al. (Mnih and Hinton 2007; 2008; Mnih and 

Teh 2012) fur- ther improve both model performance and training speed. 

Instead of focusing on learning language models, Collobert et al. (Collobert and Weston 2008; Collobert et 

al. 2011) are interested in learning word representations directly. They learn word representations in a 

binary classification task: whether the word in the middle of a window is related to its context word in the 

window or not. They use the learned word representations to initialize the neural network models for other 

NLP tasks that also have word representation layers. Word representation initialization is proven helpful in 



these tasks. Mikolov et al. (Mikolov et al. 2013a) design a test set for evaluating syntactic and semantic 

regularities preserved in the word representations. They also propose two neural network models for word 

representation learning: CBOW and Skip-gram. Specifically, a sum pool- ing layer is employed in CBOW 

which significantly speeds up the training process. CBOW can be trained over billions of words in one day. 

The training speed is much faster than the neural network models reported in (Bengio et al. 2003; Collobert 

and Weston 2008; Collobert et al. 2011), which use sequential projection layers. However, CBOW suffers 

from the word proximity modeling issue. Skip-gram outperforms previous learning models on 

representation learning. Mikolov et al. (Mikolov et al. 2013b) further improve the performance and training 

speed of Skip-gram by employing negative sampling. 

From a linguistic perspective, researchers are exploring ways to hand word sense ambiguity in training 

word representations. Reisinger et al. (Reisinger and Mooney 2010) propose creating multiple “sense-

specific” representation vectors for one word. When measuring word similarity without context, they just 

pick the smallest distance among all word sense vector pairs. They incorporate a clustering algorithm when 

measuring word similarity with context. Huang et al. (Huang et al. 2012) adopt the idea of “sense-specific” 

representation in their work where the word representation is trained with neural networks. 

Table 1: Statistics of the POS ambiguity in Wikipedia documents 

POS Tag Word Occurrences 
Threshold 

Non-dominant POS 
Occurrences 

Total Word 
Occurrences 

Ratio Coverage in All 
Ambiguous Words 

All POS tags >5 196,795,312 1,632,407,847 12.06% N/A 

>1,000 188,782,936 1,563,857,888 12.07% N/A 
>10,000 169,595,926 1,450,251,521 11.69% N/A 

Noun, Verb, 
Adjective, Adverb 

>5 184,256,253 1,034,196,882 17.82% 93.63% 

>1,000 177,753,314 968,408,711 18.36% 94.16% 
>10,000 159,829,386 856,609,611 18.66% 94.24% 

 

We propose the PAS models for producing high quality distributed representations of words by considering 

both proximity and ambiguity. In both models, we handle POS ambiguity by allowing multiple 

representation vectors for one word. In PAS CBOW, word proximity is modeled by adding proximity 

weights to the pooling layer. The proximity weights are learned together with the word representations 

during training. In PAS Skip-gram, we model the word proximity by using the proximity weights learned 

with PAS CBOW. We present the two PAS models in this section. 

In CBOW and Skip-gram (Mikolov et al. 2013a), a word can only have one single representation vector. 

However, it’s common for a word to have multiple valid POS tags, each of which reflects one lexical 

category the word may belong to. Taking “account” as an example, the verb “account” and the noun 

“account” have different semantic meanings. It’s very hard to capture regularities of the verb “account” and 

the noun “account” in one representation vector simultaneously. The regularities of the minority POS tags 

tend to be ignored while the regularities of the majority POS tags are interfered by the minority ones. 



POS ambiguity widely exists in natural language texts. Many machine learning algorithms have been 

applied to assign POS tags with high accuracy, such as Hidden Markov Models (HMM) (Manning and 

Schu ẗze 1999), Conditional Random Fields (CRF) (Lafferty, McCallum, and Pereira 2001) etc. We train a 

CRF POS tagger on the Wall Street Journal data from Penn Treebank III (Marcus, Marcinkiewicz, and 

Santorini 1993). The accuracy of the POS tagger is about 97%. We process all Wikipedia documents (total 

1.6 billion words) with the POS tagger. Table 1 shows the statistics of the POS ambiguity in the Wikipedia 

documents. A POS tag is considered the dominant POS tag of a word if it is assigned to over 90% 

occurrences of the word. Among normal words (occurrences > 5), the non- dominant POS tag occurrences 

cover over 12% of the total occurrences. When we look at high frequency words (occurrences > 10,000), 

the non-dominant POS occurrences still cover over 11% of the total occurrences. 

In CBOW, the neural network input is the words inside a context window around the output word. The 

representation vectors of the context words are summated at the sum pooling layer. The output word is 

represented by a Huffman binary tree in the classification section. The objective function is a hierarchical 

softmax. Stochastic Gradient Descent (SGD) is used to train CBOW while the gradient is calculated with 

the back-propagation algorithm. 

Skip-gram is less sensitive to word proximity. In Skip-gram, the neural network input is one single word 

inside a con- text window around the output word. When enumerating the word pairs (input and output) in 

a training corpus, Skip-gram captures the total co-occurrences of two words. The local word proximities 

are averaged over whole training corpus, making Skip-gram less sensitive to the word proximity. 

We cannot add proximity weights into Skip-gram as we do in PAS CBOW. The supervision signal for the 

proximity weights during training PAS CBOW comes from the differences among context words. However, 

there is only one context word at the input layer of Skip-gram which makes it impossible to learn the 

proximity weights as in PAS CBOW. We propose PAS Skip-gram which directly uses the proximity 

weights learned in PAS CBOW. The proximity weights cannot be multiplied to the word representation 

vector as we do in PAS CBOW because that would bring scale fluctuation to the projection vector. Instead, 

we replace the prior of dynamic window size with the prior derived from the proximity weights. When 

applying dynamic window size to PAS Skip-gram, only the word inside the selected con- text window is 

fed to the input layer. The prior distribution of the window size decides how the word pair (input and output) 

co-occurrences are averaged. An appropriate prior distribution can improve word representation learning. 

We scale the proximity weights learned with PAS CBOW to make the summation equal to 1. The 

normalized weights can be regarded as a pseudo probability distribution. We use the pseudo probability 

distribution as a prior for dynamic window size in PAS Skip-gram. 

Experiments 

We test the effectiveness of the proximity modeling by com- paring the PAS models with CBOW/Skip-



− 

gram without considering word ambiguity. We present the experimental results of the different POS tag 

grouping strategies when considering word ambiguity. We then present the results of the PAS models 

considering both proximity and ambiguity. 

Data Sets 

We conduct experiments on two text corpora created from Wikipedia documents. The big one contains 1.6 

billion words from all Wikipedia documents while the small one contains 42 million words from a random 

sample of Wikipedia documents. We use the test set proposed in (Mikolov et al. 2013a) to measure the 

quality of the learned representation vectors. There is a total of 8,869 semantic and 10,675 syntactic 

questions in the test set. The semantic questions are categorized into five types while the syntactic questions 

are categorized into nine types (as shown in Table 2). An example question is “what to ‘woman’ is like 

‘king’ to ‘man’?”. The answer to the question is “queen”. With the distributed word representation vectors, 

the question is answered by finding the closest word vector (Euclidean distance) to vector(“king”) 

vector(“man”) + vector(“woman”). The accuracy, i.e. the ratio of correctly answered questions, is used to 

measure the quality of the learned distributed word representations. 

Proximity Modeling 

We try the proximity modeling method in PAS CBOW on the small corpus. Since we only want to compare 

the proximity modeling capability, word ambiguity is not considered. Three different vector dimensions 

(50, 300 and 600) are employed in the experiments. Increasing vector dimension results in better accuracy 

as reported in (Mikolov et al. 2013a). In the following, we only present the results where vector dimension 

equals to 600. 

 

 

 

 

 

 

 

 

Figure 2: Comparison among different proximity modeling methods in CBOW 
 

Figure 2 shows the comparison among different proximity modeling methods in CBOW. For each method, 

we train CBOW with different window size settings and evaluate it on the test set. The trend “Proximity 

Insensitive” corresponds to the proximity insensitive CBOW where the con- text window size is fixed 

during training. The accuracy of the proximity insensitive CBOW drops rapidly with the in- crease of 

window size since word proximity is totally ignored. When the window size becomes large, the bag-of- 

          

 

 



words become noisier as the order information is removed (proximity is not modeled). Eventually, CBOW 

fails to learn meaningful word representations (accuracy goes to zero) when the window size is 31. 

By employing dynamic window size, the accuracy level drops slower than the proximity insensitive CBOW 

(see the trend “Dynamic Window Size”). Here the window size means the maximum size that can be drawn 

from prior distribution. The accuracy drop slows down because dynamic window size tends to use a small 

context window. Also as discussed in the previous section, the dynamic window size brings fluctuation to 

the word representation vector since the scales of the projection vector items are unstable. 

We model word proximity by automatically learning the proximity weights. Figure 3 shows the learned 

proximity weights (the window size is 31). The proximity weight drops rapidly as the context word distance 

increases, which is very different from the linear prior employed in dynamic window size. Since the 

proximity weights are used to scale the contribution of context words, we can use a fixed context window 

size. The trend “Ours” in Figure 2 shows the accuracy of CBOW when employing our proximity modeling 

method. Unlike dynamic window size, the accuracy increases as the window size goes up before the size 

reaches 31. There are two reasons for the accuracy increase. First, adding proximity weights helps to recover 

the order information of the input context words. Second, the window size is fixed during training so that 

the word representation vectors do not suffer from the scale variation of the projection vector. 

Moreover, our proximity modeling method can also be used in other neural network applications, which 

employ pooling layers like sum-pooling, max-pooling etc. 

We further test our proximity modeling method on the big corpus. The results are shown in Table 2. The 

accuracy of the semantic questions increases by 25.9%, the accuracy of the syntactic questions increases 

3.1%, while the total accuracy goes up 13.5%. We also test our proximity modeling method in Skip-gram. 

Although Skip-gram is less sensitive to word proximity, we still achieve a 1.8% overall accuracy increase. 

Although additional calculations are introduced by adding proximity weights, the training time does not see 

a significant increase. For CBOW, the training process is 42% slower due to the additional calculation 

brought by the proximity weights. However, the training process is 49% faster for Skip-gram since fewer 

words are involved in the calculation by leveraging the proximity weights learned from CBOW. 

Comparison of POS Grouping 

We compare the performance of the different POS grouping strategies including Coarse-Grained POS, 

Medium-Grained POS and Fine-Grained POS. Fine-Grained POS treats each POS tag as a group. Coarse-

Grained POS has 5 groups while Medium-Grained POS has 14 groups. The detailed grouping strategy in 

presented in the previous section. In the comparison experiments, we want to compare the performance of 

the POS grouping strategies only, so we don’t employ our proximity modeling method. Dynamic window 

size is used instead. 

Table 3: Comparison of the POS grouping strategies 



Strategy CBOW Skip-gram 
Ambiguity Insensitive 44.61% 58.89% 

Fine-Grained POS 43.98% 58.57% 

Coarse-Grained POS 45.78% 59.88% 
Medium-Grained POS 45.96% 60.21% 

We conduct the experiments on the big corpus, which is processed with our POS tagger. The words inside 

the corpus are altered based on the POS grouping strategy. We obtain get 3 new corpora from the original 

big corpus each of which corresponds to a POS grouping strategy. For the test set, we manually decide 

which representation vector to use for each question word and each answer word. This is easy to do so since 

the words in the test set have obvious POS dispositions. Accordingly, we get 3 new test sets from the 

original test set. We train CBOW and Skip-gram on each training corpus and evaluate it on the 

corresponding test set. Table 3 shows the results. 

The accuracies of both models drop a little bit when employing Fine-Grained POS. As discussed in the 

previous section, the occurrences of a word may hold the same meaning even when their POS tags are 

different. Learning one representation vector for each POS tag divides the word occurrences, where the 

word holds the same meaning, into small partitions. The representation vector is insufficiently trained on 

the corresponding partition. Therefore, POS grouping is preferred. 

Coarse-Grained POS keeps only five groups because most POS ambiguities are among nouns, verbs, 

adjectives, adverbs and their variations. It handles the ambiguous POS tags across groups, such as 

noun/verb ambiguity. By using Coarse-Grained POS, both models receive accuracy gain. 

Medium-Grained POS is sensitive to subtle POS ambiguities, such as paste tense verb/past participle verb 

ambiguity. Such POS ambiguities are ignored in Coarse-Grained POS. By using Medium-Grained POS, 

more accuracy gain is achieved. 

Table 2: Proximity modeling on the big corpus 

Domains Without Proximity Modeling With Proximity Modeling 

Semantic 37.22% (3301/8869) 63.13% (5599/8869) 

capital-common-countries 48.42% (245/506) 82.61% (418/506) 
capital-world 52.59% (2379/4524) 75.99% (3438/4524) 

currency 7.85% (68/866) 6.12% (53/866) 

city-in-state 10.70% (264/2467) 51.24% (1264/2467) 
family 68.18% (345/506) 84.19% (426/506) 

Syntactic 54.95% (5866/10675) 58.08% (6200/10675) 

adjective-to-adverb 7.56% (75/992) 5.44% (54/992) 

opposite 25.49% (207/812) 31.90% (259/812) 
comparative 75.38% (1004/1332) 79.20% (1055/1332) 

superlative 37.79% (424/1122) 43.05% (483/1122) 

present-participle 46.50% (491/1056) 51.23% (541/1056) 
nationality-adjective 86.37% (1381/1599) 87.62% (1401/1599) 

past-tense 52.95% (826/1560) 57.63% (899/1560) 
plural 68.62% (914/1332) 66.59% (887/1332) 

plural-verbs 62.53% (544/870) 71.38% (621/870) 

Total 46.90% (9167/19544) 60.37% (11799/19544) 

We finish by conducting experiments on PAS CBOW and PAS Skip-gram by considering both proximity 



and ambiguity. The window size is set to 31 since the accuracy drops a little bit after the size exceeds 31 

according to Figure 2. We employ Medium-Grained POS in both models according to the experiments in 

the previous section. The training of each model lasts 3 epoches. The results are shown in Table 4. 

Both models outperform the original models CBOW and Skip-gram. Specifically, PAS CBOW gets an 

accuracy gain of 16.92% over CBOW. PAS CBOW even out- performs PAS Skip-gram which proves the 

effectiveness of the proximity modeling on the pooling layer. In the modified Skip-gram reported in 

(Mikolov et al. 2013b), the hierarchical softmax cost function is replaced by Noise Contrastive Estimation 

(NCE) which differentiates the output word from a set of randomly sampled words. Our PAS models can 

also adopt the NCE cost function since both proximity modeling and ambiguity modeling are separated 

from the cost function selection. 

                                   Table 4: PAS performance 

Model Semantic Syntactic Total 
CBOW 37.22% 54.95% 46.90% 

Skip-gram 70.89% 50.87% 59.95% 
PAS CBOW 62.87% 64.61% 63.82% 

PAS Skip-gram 69.93% 58.44% 63.65% 

 

Conclusion 

In this paper, we carry out PAS CBOW and PAS Skip-gram to learn word representations by considering 

both word proximity and ambiguity. We handle the word ambiguity problem by training multiple 

representation vectors for one word. We focus on POS ambiguity and further propose different grouping 

strategies. In PAS CBOW, the word proximity is modeled by adding proximity weights to the sum pool- 

ing layer. The proximity weights are automatically learned together with the word representation during 

training. The proximity modeling can also be applied to other neural net- work applications, which employ 

pooling layers. In PAS Skip-gram, we leverage the proximity weights learned from PAS CBOW to handle 

the proximity issue. With the pro- posed PAS models, we achieve a maximum accuracy in- crease of 16.9% 

over state-of-the-art models in word representation learning. 

Reference 

[1] TH, MUNEEB, Sunil Sahu, and Ashish Anand. "Evaluating distributed word representations for 

capturing semantics of biomedical concepts." In Proceedings of BioNLP 15, pp. 158-163. 2015. 

[2] Liu, Xiaodong, Jianfeng Gao, Xiaodong He, Li Deng, Kevin Duh, and Ye-Yi Wang. "Representation 

learning using multi-task deep neural networks for semantic classification and information retrieval." 

(2015). 

[3] Braud, Chloé, and Pascal Denis. "Comparing word representations for implicit discourse relation 

classification." In Proceedings of the 2015 Conference on Empirical Methods in Natural Language 

Processing, pp. 2201-2211. 2015. 



[4] Johnson, Rie, and Tong Zhang. "Effective use of word order for text categorization with convolutional 

neural networks." arXiv preprint arXiv:1412.1058 (2014). 

[5] Kågebäck, Mikael, and Hans Salomonsson. "Word sense disambiguation using a bidirectional lstm." 

arXiv preprint arXiv:1606.03568 (2016). 

[6] Dahl, George E., Ryan P. Adams, and Hugo Larochelle. "Training restricted boltzmann machines on 

word observations." arXiv preprint arXiv:1202.5695 (2012). 

[7] Turian, Joseph, Lev Ratinov, and Yoshua Bengio. "Word representations: a simple and general method 

for semi-supervised learning." In Proceedings of the 48th annual meeting of the association for 

computational linguistics, pp. 384-394. Association for Computational Linguistics, 2010. 

[8] Choi, Heeyoul, Kyunghyun Cho, and Yoshua Bengio. "Context-dependent word representation for 

neural machine translation." Computer Speech & Language 45 (2017): 149-160. 

[9] Chen, Xinxiong, Lei Xu, Zhiyuan Liu, Maosong Sun, and Huanbo Luan. "Joint learning of character 

and word embeddings." In Twenty-Fourth International Joint Conference on Artificial Intelligence. 2015. 

[10] Ling, Wang, Tiago Luís, Luís Marujo, Ramón Fernandez Astudillo, Silvio Amir, Chris Dyer, Alan W. 

Black, and Isabel Trancoso. "Finding function in form: Compositional character models for open 

vocabulary word representation." arXiv preprint arXiv:1508.02096 (2015). 

[11] Xing, Chao, Dong Wang, Xuewei Zhang, and Chao Liu. "Document classification with distributions 

of word vectors." In Signal and Information Processing Association Annual Summit and Conference 

(APSIPA), 2014 Asia-Pacific, pp. 1-5. IEEE, 2014. 

[12] Ren, Yafeng, Ruimin Wang, and Donghong Ji. "A topic-enhanced word embedding for Twitter 

sentiment classification." Information Sciences 369 (2016): 188-198. 

[13] Liu, Yang, Zhiyuan Liu, Tat-Seng Chua, and Maosong Sun. "Topical word embeddings." In Twenty-

Ninth AAAI Conference on Artificial Intelligence. 2015. 

[14] Wang, Peilu, Yao Qian, Frank K. Soong, Lei He, and Hai Zhao. "Word embedding for recurrent neural 

network based TTS synthesis." In 2015 IEEE International Conference on Acoustics, Speech and Signal 

Processing (ICASSP), pp. 4879-4883. IEEE, 2015. 

[15] Batmanghelich, Kayhan, Ardavan Saeedi, Karthik Narasimhan, and Sam Gershman. "Nonparametric 

spherical topic modeling with word embeddings." In Proceedings of the conference. Association for 

Computational Linguistics. Meeting, vol. 2016, p. 537. NIH Public Access, 2016. 

[16] Pham, Duc-Hong, and Anh-Cuong Le. "Exploiting multiple word embeddings and one-hot character 

vectors for aspect-based sentiment analysis." International Journal of Approximate Reasoning 103 (2018): 

1-10. 

[17] Wang, Peng, Bo Xu, Jiaming Xu, Guanhua Tian, Cheng-Lin Liu, and Hongwei Hao. "Semantic 

expansion using word embedding clustering and convolutional neural network for improving short text 



classification." Neurocomputing 174 (2016): 806-814. 

[18] Choi, Edward, Mohammad Taha Bahadori, Elizabeth Searles, Catherine Coffey, Michael Thompson, 

James Bost, Javier Tejedor-Sojo, and Jimeng Sun. "Multi-layer representation learning for medical 

concepts." In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery 

and Data Mining, pp. 1495-1504. ACM, 2016. 

[19] Liang, Dongyun, Weiran Xu, and Yinge Zhao. "Combining word-level and character-level 

representations for relation classification of informal text." In Proceedings of the 2nd Workshop on 

Representation Learning for NLP, pp. 43-47. 2017. 

[20] Inan, Hakan, Khashayar Khosravi, and Richard Socher. "Tying word vectors and word classifiers: A 

loss framework for language modeling." arXiv preprint arXiv:1611.01462 (2016). 


