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Abstract. The aim of this paper investigated the exact nonlinearly
chirped W-shaped soliton solutions of modified nonlinear Schrödinger
equation which is proposed to describe the short pulse propagation in
long monomode optical fibres. Firstly, we get the corresponding chirp-
ing parameter of the modified nonlinear Schrödinger equation by use
of a complex envelope traveling-wave ansatz. Secondly, substituting this
chirping parameter the modified nonlinear Schrödinger equation has been
reduced to an elliptic differential equation with a fourth-degree nonlin-
ear term. Thirdly, I apply localized soliton ansatz of the sech type which
allows for obtaining W-shaped soliton solution. Lastly, we get the 2-dim
and 3-dim graphs of the W-shaped soliton solution by giving specific
values to the parameters.
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1 Introduction

The nonlinear Schrödinger (NSL) equation from mid1960’s it has been a model
for deep water waves, nonlinear optics, nonlinear acoustics and plasma waves. It
has been used as a basic identifıcation of pulses on an optical fıbre by the early
1970’s [1]. Since NSL equation was solved with the Inverse Scattering Transform
method by Alexey Shabat and Vladimir Zakharov in 1972, the studies on this
equation have been continuing increasingly [2]. Many signals that we encounter
in our daily life, such as human speech, animal sounds, radar and mechanical
systems, have nonlinear and non-stationary properties, that is, signals whose
frequency content changes over time. In general, these signals are often called
nonlinear chirp signals [3]. Chirp, such as spread spectrum communications and
radar and sonar being characterized in some devices. Recently, there has been
much interest in the propagation of nonlinear chirping solitons. Mainly, propa-
gation of an optical pulse described by NSL equation.

The modified nonlinear Schrödinger (MNLS) equation, in which the nonlinear
terms are consist of a cubic term and a derivative cubic term, has been proposed
to describe the short pulse in long monomode optical fibres: where q ≡ q (x, t) is
the complex envelope of the wave,µ and δ are reals and i2 = −1 and the term
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2iδ
(
|q|2q

)
x
is called the self-steepening term, which causes an optical pulse to

become asymmetric and steepen up at the trailing edge. This equation is also
called the mixed nonlinear Schrödinger- Derivative nonlinear Schrödinger (NLS-
DNLS) equation since Eq. (1) reduces into the standard nonlinear Schrödinger

equation (NLS): iqt+qxx+2µ|q|2q = 0 when δ = 0, and the derivative nonlinear
Schrödinger equation (DNSL): iqt + qxx + 2iδ

(
|q|2q

)
x
= 0 when µ = 0 [4, 12].

2 Mathematical analysis

Our interest is to find exact chirped soliton solutions of the MNLS equation. So,
we try to find traveling-wave solutions of Eq. (1) in the form [13, 17]

q(x, t) = ρ(ξ)ei[χ(ξ)−ωt], (1)

where ξ =kx− vt, ρ = ρ(ξ) is the amplitude function and χ = χ (ξ) is the phase
function. Also, wave velocity and the frequency of wave oscillation are v and ω
respectively. The corresponding chirp is given by

δω(x, t) = − ∂

∂t
[χ(ξ)− ωt] = −χ′(ξ). (2)

Inserting (2) into (1), the real and imaginary parts yields a pair of relations in
two dependent variable ρ and χ.Real part gives

2µρ3 + ρω + vρχ′ − k2ρ(χ′)
2 − 2δkρ3χ′ + k2ρ′′ = 0, (3)

while imaginary part yields

2k2ρ′χ′ + k2ρχ′′ − vρ′ + 6δkρ2ρ′ = 0, (4)

where primes denote differentiations with respect to ξ. Multiplying Eq. (5) by ρ
and once as a result of integration gives

χ′ =
v

2k2
+

A

k2ρ2
− 3δρ2

2k
, (5)

where A is an integration constant. Therefore, the resultant chirp consisting of
linear and nonlinear terms is obtained by

δω = − v

2k2
− A

k2ρ2
+

3δρ2

2k
, (6)

which shows that the chirping has two intensity dependent chirping terms apart
from the linear term [where I = |q|2 = ρ2 being intensity]. On substituting Eq.
(6) in Eq. (4) gives

k2ρ′′ − A2

k2ρ3
+

(
v2

4k2
+

Aδ

k
+ ω

)
ρ+

(
−vδ

k
+ 2µ

)
ρ3 +

(
3

4
δ2
)
ρ5 = 0. (7)
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After multiplying Eq. (8) by ρ′ and integrating with respect to ξ leads to

(ρ′)
2

=
2B

k2
− A2

k4ρ2
−
(

v2

4k4
+

Aδ

k3
+

ω

k2

)
ρ2 +

(
vδ

2k3
− µ

k2

)
ρ4 − δ2

4k2
ρ6, (8)

where B is the second integration constant. Eq. (9) is a nonlinear differential
equation that completes the evolution of the wave amplitude in a nonlinear
medium that is governed by Eq. (1). Next, we find chirped soliton solutions of
the Eq. (1) for different parameter conditions. Before discussing exact solutions
of the Eq. (9), we make the change of variable for the field amplitude

ρ2 (ξ) = U (ξ) , (9)

converts Eq. (9) into the following new auxiliary elliptic equation [18, 22] :

(U ′) 2 = −a0 + a1U + a2U
2 + a3U

3 − a4U, (10)

where

a0 =
4A2

k4
, a1 =

8B

k2
, a2 = −v2

k4
+

4Aδ

k3
− 4ω

k2
, a3 =

2vδ

k3
− 4µ

k2
, a4 =

δ2

k2
. (11)

It is known that the elliptic Eq. (11) accepts various solution types such as
bright, dark, kink, periodic and solitary wave.

3 Exact Chirped W-Shaped Solitons

To find the nonlinear equation for the wave amplitude, we look for this type of
localized soliton ansatz:

U (s) = β + sech (µs) , (12)

which allows for W-shaped solitons if the unknown parameters β and g satisfy the
conditions βg < 0 and |g| > β [23]. Eq. (13) is placed in Eq. (11) and equalizing
sech functions of different powers, we get the following system of equations:

−a0 + βa1 + β2a2 + β3a3 − β4a4 = 0, (13)

g
(
a1 + 2βa2 + 3β2a3 − 4β3a4

)
= 0, (14)

g2
(
a2 + 3βa3 − 6β2a4 − µ2

)
= 0, (15)

g3 (a3 − 4βa4) = 0, (16)

g2
(
µ2 − a4ρ

2
)
= 0. (17)

Solving these equations, we get

β =
a3
4a4

, (18)

g = ±
[
3a23 + 8a2a4

8a4

]1/2
, (19)
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µ =

[
3a23 + 8a2a4

8a4

]1/2
, (20)

and

a0 = −
a23

(
a23 + 16a3a4

)
256a34

, a1 = −
a3

(
4a2a4 + a23

)
8a24

, (21)

provided that a4 > 0 and 3a23+8a2a4 > 0. Using Eq. (22), the integral constants
A and B are found as A2 = a0k

4/4 ,B = a1k
2/8 . Also, from Eq. (19) and Eq.

(20), we can determine the amplitude g in terms of soliton parameter β as

g = ±
√

6β2 + λ2, (22)

where λ2 = a2/a4. Using of these findings, we can write the exact chirped soliton
solution on a continuous- wave (cw) background of Eq. (1) as

(x, t) =
[
β ±

√
6β2 + λ2sech [µ (kx− vt)]

]1/2
ei[χ(kx−vt)−ωt], (23)

The corresponding chirping is given by

δω = − v

2k2
− A

k2
(
β ±

√
6β2 + λ2sech [µ (kx− vt)]

)+3δ
(
β ±

√
6β2 + λ2sech [µ (kx− vt)]

)
2k

,

(24)

Fig. 1. For the values β = −1, λ = 1, µ = 0.34 and v = 0.002 , the intensity |q (x, t)|2
evolution of the W-shaped soliton.

Actually, Eq. (24) explains the evolution of two different types of soliton
pulses on a background for the MNLS equation. The parameter β (determined
by Eq. (23)) determines the strength of the background in these propagating
envelope solutions. Only one of the soliton solutions given in Eq. (24) with the
sign – taken into account. The evolution of the soliton intensity calculated from
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Eq. (24) is shown in Fig. 1. It receives a W shape of the soliton intensity profile
as shown in Fig. 1 and a substantial propagation distance can be observed to
remain unchanged throughout. This distinctive soliton shape is due to the self-
steepening effect [21]. Also, the + signed soliton solution of Eq. (24) corresponds
to a bright pulse solution on the cw background for the MNLS equation.

Conclusion

We have achieved chirped MNLS soliton solutions to equations in this work.
To derive a nonlinear differential equation that describes the evolution of the
wave amplitude in a system applying the paired amplitude-phase method. It has
been shown that the wave amplitude provides a nonlinear differential equation
containing two integration constants that can be easily determined by the initial
parameters of the wave. So, we get the exact W-shaped soliton solution with
nonlinear chirp for Eq. (1). Such chirped soliton solution exists because of the
balance between group velocity dispersion and self-steepening effects.
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