ﬁ EasyChair Preprint

Ne 8629

Generating Mutation Tests Using an Equivalence
Prover

Christian Martin

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

August 9, 2022

Generating Mutation Tests Using an
Equivalence Prover

Christian Martin

Karlsruher Institut fiir Technologie (KIT)

Abstract. Creating test cases and assessing their quality is a neces-
sary but time-consuming part of software development. Mutation Test-
ing facilitates this process by introducing small syntactic changes into
the program and thereby creating mutants. The quality of test cases
is then measured by their ability to differentiate between those mutants
and the original program. Previous studies have also explored techniques
to automatically generate test inputs from program mutants. However,
the symbolic approaches to this problem do not handle unbounded loops
within the program. In this paper, we present a method using the equiv-
alence prover LLRéve [7] to generate test cases from program mutants.
‘We implemented the method as a pipeline and evaluated it on example
programs from the learning platform c4learn [19] as well as programs
from the library diet libc [15]. Our results have shown that this method
takes up to multiple hours to run on these programs, but the generated
test cases are able to detect half of the known errors. As an extension
to the method, we also present mutations which introduce an additional
parameter into the program. We then show on an example that a finite
set of test cases can be sufficient to kill the mutant for all values of the
parameter.

Keywords: Mutation Testing - Equivalence Prover

1 Introduction

During development of a program, the program will at some point accumulate
errors in its source code. Those errors lead to incorrect behaviour of the soft-
ware under certain circumstances. To prevent incorrect behaviour, it is therefore
desirable to find the errors in the source code. One established method of find-
ing errors is executing the program on test inputs and checking the behaviour.
Writing test cases however, which include test inputs and checks for the output,
is a time-consuming matter. Ideally, we want to automatically generate a min-
imal set of test cases which is sufficient to find all errors within the program.
Nevertheless, the problem of finding such a set is also non-trivial.

In this paper, we use a technique called program mutation. It was originally
conceived by De Millo et al. in 1978 [5]. Program mutation is the act of generating
a set of mutants from a program. Each mutant’s source code differs from the
original program’s source code only by a “small amount”. If the mutant behaves

2 C. Martin

differently than the original, then there is an error in the original or in the
mutant. A test case which is able to distinguish between the original and the
mutant is therefore able to detect this error. In this case, the test case is said to
kill the mutant.

The main contributions of this paper are a method for generating test cases
from mutants using an equivalence prover as well as an implementation of this
method which we also evaluated on a set of benchmark programs. Furthermore,
with parametric mutants we present a novel type of mutants which each represent
a family of mutants as well as a method to kill them.

To create test cases with our method, a set of mutants is generated from
the original program. Then an equivalence prover checks whether the original
and the mutant are equivalent. If they are equivalent, then no test case can be
deduced from the mutant. Otherwise, the equivalence prover provides a coun-
terexample which we can use as a test input. In this paper, we assume that
a reference implementation exists, which defines the correct behaviour of the
original program. We run the reference implementation on each test input to
determine the expected output. In the absence of a reference implementation,
the user has to provide checks for the test cases to determine whether the output
is correct.

As a proof of concept, we implemented our approach as a pipeline and eval-
uated it on a number of example programs from cjlearn [19] as well as some
library functions from diet libc [15]. The evaluation shows the benefits of the
approach as well as limitations due to the used tools or due to the method of
program mutation itself.

Furthermore, we extended our approach by the concept of parametric mu-
tants to use the symbolic nature of the equivalence prover. By introducing the
parametric mutants which each contains an additional parameter, we are able to
represent a family of mutants with one parametric mutant. Killing all mutants
of one of these families is achieved by generating a set of test cases which kill
the parametric mutant for all possible values of the parameter.

Section 2 serves as an introduction to the fundamentals of mutation testing as
well as the workings of the equivalence prover LLRéve which we used in our work.
In section 3, we present previous studies which explored ways to generate test
cases from program mutants. Our own approach is explained further in section
4, where we also show the results of our evaluation. Section 5 illustrates our
concept to use parametric mutants and which advantages it may have. Finally,
we draw our conclusions in section 7.

2 Background

2.1 Mutation Analysis

Mutation analysis is a method introduced by De Millo et al. in 1978 [5] for
assessing the quality of test cases. To achieve this, mutation analysis uses first-
order mutants of the program under test. A first-order mutant is a program

Generating Mutation Tests Using an Equivalence Prover 3

which differs from the program under test by only a small syntactic change in
the source code. In a different paper by De Millo et al. from 1988 [4], they
introduced mutation operators which specify the exact syntactic changes that
are allowed to generate first-order mutants. Some of these syntactic changes
introduce a semantic difference between the original program under test and the
mutant. In this case, at least one of both programs contains an error. A test
case which differentiates between the original and the mutant therefore is able
to detect this error.

The method proposed by De Millo et al. in their 1978 paper starts by running
the program under test on all given test cases. If the program fails at least one
of the test cases, then an error has been found and can be fixed. If the program
passes all of the test cases, then it either does not contain any errors or the
test cases are insufficient to find one of the errors in the program. To find out
which case applies, a set of first-order mutants is generated from the program
under test. Then, each mutant is executed on all test cases. If a mutant returns a
different result than the original program, the mutant is considered dead. On the
other hand, if a mutant returns the same result as the original on each test case,
it is considered live. A mutant can be live either because it is equivalent to the
original or because it represents an error which the test cases cannot detect. For
each live mutant, the programmer must determine the reason why the syntactic
difference between the original and the mutant did not matter to the test results.

William E. Howden [12] extended De Millo et al.’s notion of killing mutants.
If a mutant is killed by producing a different output than the original, the mutant
is said to be strongly killed. If on the other hand the mutant and the original
have differing program states at the same point during their execution, but do
not necessarily produce different outputs, the mutant is said to be weakly killed.
By this definition, all mutants which have been strongly killed also have been
weakly killed. This extension of killing is used in most of the related work which
focuses on generating test inputs that weakly kill mutants.

In this paper, we define that a set of test cases fulfills the weak mutation
coverage criterion if and only if the test cases weakly kill all non-equivalent mu-
tants. This is similar to the weak mutation coverage criterion used in a related
paper by Papadakis et al. [18]. Analogously, we define the strong mutation cov-
erage criterion to be fulfilled if all non-equivalent mutants have been strongly
killed.

2.2 Equivalence Prover

In this project, we use the equivalence prover LLRéve [14]. An equivalence prover
is a tool which, given two programs, proves or disproves their equivalence. A pair
of programs is considered equivalent if and only if they produce identical outputs
when executed on identical inputs.

In the case of LLRéve, the tool takes two program source codes written in
C as input and creates an SMT file. If the SMT file is satisfiable, then this also
means that the two programs are equivalent. All SMT clauses created by LLRéve
are Horn clauses, meaning they each are an implication B — H from a body B

4 C. Martin

to a head H, where B is the conjunction of one or more subexpressions. If the
head is equal to false, then the entire Horn clause is equal to —B.

For a pair of programs P; and P, to be compared by LLRéve, they both
must have the same set of synchronization points such that each loop contains
at least one synchronization point. For each of these synchronization points,
LLRéve declares a coupling predicate placeholder C; in the SMT file which
represents a relation between the program states of both programs at this point.
Whenever there exists a pair of paths in the two programs’ control flows from
a synchronization point 7 to a subsequent synchronization point j, the SMT file
contains an assertion of the form

vxa Y, x/a y/ : Ci(xa y) A g (.’IJ, l‘/) A Pij (y’ y/) — CJ (xla y/)

where 7;; and p;; define the state transitions from program states x and y of
P, and P, at ¢ to the program states ' and 3’ at j. Additionally, the coupling
predicate Cj, is included in another clause stating

Vo,y:x =y — Cn(z,y).

This means that the SMT clauses within the file apply to all cases in which the
inputs of both programs are identical. On the other hand, there is also a clause
which has the form

Vxla y/ : Cout(xla y,) —a = y/

where Cyyy is the coupling predicate on the outputs of the programs. Therefore
the SMT file states that any time both programs are executed on the same
input, the output of both programs is also the same. In short, if the SMT file is
satisfiable then the two programs are equivalent.

3 Related Work

Multiple approaches have already been proposed for generating test inputs from
program mutants.

The first approach we are aware of was presented in 1991 by De Millo and
Offutt [6] and uses constraint based testing. The authors form a constraint for
strongly killing a mutant which is then solved via multiple heuristics. The solu-
tion for the constraint is a test input which strongly kills the mutant.

Two approaches rely on the usage of model checking. Ammann et al. [1]
focus on the specifications of a software system. Instead of mutating the software
itself, the specifications are mutated. The model checker is then used to scan the
mutated specifications for any inconsistencies. If an inconsistency is found, the
model checker yields the test input as well as the expected output of the software
system.

Riener et al. [20] on the other hand first convert the program to a meta
mutant and then to logical formulae before applying an SMT solver. The meta

Generating Mutation Tests Using an Equivalence Prover 5

mutant is a program which contains all mutations. A global variable controls
which of the mutants is run in the current execution. The SMT solver outputs
a test input for each mutant until all the remaining mutants are equivalent.

Three papers were co-authored by Papadakis and Malevris. The 2010 paper
[18] by Papadakis et al. reduces weak mutation coverage to branch coverage.
This is achieved by converting the program under test to a meta program. The
meta program is equivalent to the original program except for an additional
branch for each mutation which is taken if and only if the respective mutant
is weakly killed. Thus a set of test cases for the meta program which meet the
branch coverage criterion also meet the weak mutation coverage criterion on the
original program.

Papadakis and Malevris presented another approach in 2012 [16] based on
symbolic execution. They convert the program under test to an extended control
flow graph which is similar to the meta program from their 2010 approach. They
search the “shortest” path in the graph from the input vertex to each mutated
vertex. Then the path constraints for each of these paths are solved to get the
respective test input which weakly kills the mutant.

In 2013, Papadakis and Malevris pursued a different approach [17]. This
approach also requires converting the program under test to a meta program,
but continues by using hill climbing. This means that at each of multiple steps,
a single program argument is slightly varied to measure the influence of the
change to a fitness function. The fitness function depends on the distance of the
executed control flow to the mutated statement and, if the mutated statement
is reached, on the influence of the statement on the next program state and the
output.

Another two approaches are based on concolic execution. Concolic execution
is a hybrid of a concrete execution and a symbolic execution. The concrete
execution is started on random inputs while collecting symbolic path constraints
along the taken path. To get a new path, a single branch constraint is inverted. If
this modification does not create a contradiction, then the constraints are solved
to get a concrete input for the new path.

One approach using concolic execution was proposed by Zhang et al. in 2010
[22]. Their approach is similar to the one by Papadakis et al. in that they convert
the program under test to a meta program and then generate test inputs with
branch coverage on the meta program. Zhang et al. use an existing concolic-
execution-based branch coverage tool to generate these test inputs.

Harman et al. [10] base their approach on the work by Zhang et al. The
authors focus on strongly killing higher-order mutants. Contrary to first-order
mutants, higher-order mutants are created by mutating the original program
multiple times for each mutant. In the case of Harman et al.’s work, they com-
bine mutants to create new mutants of increasing order. Using search based
software testing, they find paths passing all mutated statements for each mutant
if possible.

The approach by Fraser and Zeller [8] uses an evolutionary algorithm. The
test cases considered by the approach are encoded genetically. Then crossovers

6 C. Martin

and genetic mutations can be applied to create new test cases. A fitness function
then filters the test cases based on the distance of the control flow to the mutated
statement and based on the influence of the mutated statement on the output.

An approach from 2020 was presented by Baer et al. [2]. The authors use sym-
bolic execution to extract symbolic program states before and after the mutated
statement. An equivalence checker constructed by the authors then generates a
formula from the program states. Solving multiple formulae at once yields a test
input which weakly kills multiple mutants.

4 Pipeline for Killing Mutants

4.1 Approach

In our approach, we first generate a set of mutants for the original program
under test. Since for each non-equivalent mutant an error exists in the original
or in the mutant, a test case which distinguishes between the two programs must
be able to detect this error. Therefore we want to generate test cases with strong
mutation coverage.

For this purpose, we use an equivalence prover to compare each mutant
with the original. If the mutant is equivalent, we cannot infer any information
about any errors within the programs. If the mutant is not equivalent, then the
equivalence prover generates a counterexample. The counterexample includes
an input for which the mutant and the original produce different outputs. This
means that we can extract a test input from the counterexample which strongly
kills the mutant.

To create a full test case, we add the expected output of the program ac-
cording to its intended behaviour. In our case, we assume that a reference imple-
mentation exists which complies with the intended behaviour. In practice, the
reference implementation may be a simpler yet slower program for the same pur-
pose. We obtain the expected output for the test case by executing the reference
implementation on the test input and using its output.

4.2 Implementation

We implemented our approach as a pipeline which is outlined in figure 1. The
pipeline takes the source code of the original program written in C as well as the
executable of the reference implementation as input. Generating the mutants in
the first step is done via one of three existing mutant generators: Dextool Mutate
[3], MUSIC [13] or Universal Mutator [9]. The pipeline can also be adapted to
use any mutant generator which mutates C source code.

As the equivalence prover of the pipeline, we use LLRéve [7] (see section
2.2). LLRéve creates an SMT file such that if the SMT file is satisfiable, then
the two programs are equivalent. There is also a possibility of the SMT file not
being satisfiable while the two programs are equivalent, but this only may lead to
more test cases than necessary and does not affect the strong mutation coverage
criterion.

Generating Mutation Tests Using an Equivalence Prover 7

executable C source code
reference implementation +

C source code mutant generator
(Dextool, MUSIC or
Universal Mutator)

v

C source code
of mutants

A
equivalence prover (LLRéve)

SMT-LIBv2 clauses
(if satisfiable then mutant equiv. to original)

v

| SMT solver (Eldarica) |

Lunsatisfiable* J L satisfiable*

+counterexamples

v v

test case generator

test cases with strong ~mutant is equivalent*
mutation coverage

Fig. 1. Workflow of the pipeline

The pipeline uses the SMT solver Eldarica [11] to check the satisfiability of
the SMT file. If the SMT file is not satisfiable, Eldarica returns a counterexample.
The counterexample consists of concrete invocations of the predicates in the file
which form a contradiction. The arguments for the initial predicate are two
identical inputs to the programs which produce different outputs. These inputs
are the test input which will be used for the test case.

After extracting the test input, the reference implementation is executed on
the input and produces the expected output. Finally, a test case is generated for
the C unit testing framework Unity [21] which executes the original program on
the test input and checks whether the output equals the expected output. Unity
can also be interchanged for any unit testing framework for C through small
modifications of the pipeline.

Avoiding redundant executions of LLRéve and Eldarica During first experiments
with the pipeline, we noticed that frequently, Eldarica generates the same coun-
terexample for multiple mutants. Therefore we used this opportunity to reduce
the number of calls to LLRéve and Eldarica.

After each new counterexample found by Eldarica, the pipeline uses all coun-
terexamples to generate test cases. These test cases, however, are not created by
using the reference implementation, but instead get their expected outputs from
an executable of the original program under test. For this reason, a mutant fails
a test case if and only if it is killed by this test case. This provides us a method
to check which of the subsequent mutants are already killed by the previous test

8 C. Martin

cases. For these mutants we do not need additional test cases and therefore we
can omit to execute LLRéve and Eldarica on these mutants.

Note that at the end, the pipeline has to generate test cases once again,
but this time by using the reference implementation to determine the expected
outputs. These are the actual test cases returned by the pipeline.

Handling missing loops Since LLRéve synchronizes the execution of loops be-
tween both programs, mutants are required to have the same number of loops
as the original. However, this is not the case if the respective mutation opera-
tor deleted the loop. LLRéve’s optimization also removes a loop, if the program
always terminates before the loop or if the loop condition is mutated to be a
constant 0. If a loop is missing in the mutant, LLRéve generates an error message
and aborts. In order to still be able to kill these kinds of mutants, we modified
all three mutant generators to generate additional mutants.

The first type of mutant deals with the issue that the condition of an if
statement may be mutated to be a constant 0 or a constant 1. This way, a loop
within one of the branches may never be executed and therefore may be removed
by LLReéve’s optimization. The mutation operator replaces the condition of an
if statement with an undefined external function. LLRéve’s optimization can
neither assume that the condition always holds nor that the condition never
holds. However, when Eldarica tests the SMT clauses for satisfiability, it checks
whether the clauses are satisfiable for all implementations of the external func-
tion. Therefore, Eldarica outputs a counterexample, if such a counterexample
exists for at least one implementation of the external function. In this case, it
always is a counterexample for a mutant with a constant mutated if condition.

The second type of mutant mimics the cases in which the loop is removed
or has no iterations. This mutant also uses an undefined external function. The
function sets an auxiliary variable which is then used as the condition of an
empty loop. This empty loop also cannot be removed by LLRéve’s optimization.
If Eldarica finds a counterexample, it must be a counterexample for the mutant
where the auxiliary variable is set to 0 since all other cases would lead to an
infinite loop.

4.3 Evaluation Setup

To evaluate our pipeline, we used 28 benchmark programs. 18 of these programs
are example programs from c/learn [19] the other 10 programs are single func-
tions from diet libc [15]. c/learn is a website for learning how to write programs
in C. diet libc is a C standard library optimized to have a small size.

Our choice of benchmark programs was limited in part due to the tools we
used for our pipeline. LLRéve does not operate on any programs which contain
bitwise operators applied to integers, programs with function pointers which were
only initialized at runtime or programs which contain infinite loops. Moreover,
Eldarica can analyze SMT files which either contain multiplication operations
or arrays, but no SMT files which contain both.

Generating Mutation Tests Using an Equivalence Prover 9

Each of the programs we used contained one error. In each of the c4learn
example programs, we included an artificial error. For each of the diet libc func-
tions, we used an older version which had an error that was fixed in a later version
with a small syntactic change. When running the pipeline on the benchmark pro-
grams, we tested which of these errors the generated test cases were able to find.
Additionally, we counted how many mutants were generated, how many were
killed and how many were equivalent. We also measured the time the pipeline
took to generate the mutants, the time for generating the counterexamples and
the time for generating the test cases.

When analyzing each mutant, in most cases, Eldarica needed less than 60
seconds. On the other hand, in some cases, if it did not finish within 60 seconds
for a single mutant, it also did not finish after one hour. For this reason, we
introduced a limit to the execution time of Eldarica of 60 seconds per mutant.

4.4 Results

8:17
2:53

1:00 W Dextool

il =-

Fig. 2. Logarithmic chart of the runtime of the pipeline in hours:minutes using each
of the three mutant generators on each benchmark program

1400
1200

1000 W Dextool
800

u MUSI
60 usIC

33§JJI]|]JJ‘J|JIJ‘”‘]‘”JJJ“1

Fig. 3. Number of mutants generated by each of the three mutant generators from
each benchmark program

o

All results of the evaluation are listed in the appendix in section A. The
results show that the total runtime of the pipeline ranges from a single-digit

10 C. Martin

Dextool Mutate|MUSIC|Universal Mutator

Coefficient for total number of mutants 0.20 0.01 0.43
Coefficient for timed-out mutants 0.96 0.97 0.96

Table 1. Correlation coefficients between number of mutants and time for analysis
with LLRéve and Eldarica, for each used mutant generator

amount of minutes to multiple hours, as can also be seen in figure 2. It also
shows that the runtime of the pipeline has some correlation between the different
mutant generators, with all pairwise correlation coeflicients ranging from 0.47
to 0.90. The runtime on the other hand is only weakly correlated to the number
of generated mutants with correlation coefficients between 0.01 and 0.43, as can
be seen in the differences between the figures 2 and 3.

The time the pipeline needs for generating counterexamples for the programs
is highly correlated to the number of mutants on which Eldarica exceeded the 60
second time limit, as is shown in table 1. It is also apparent that the programs,
for which the pipeline needs substantially more runtime, are not necessarily
more complex than the programs with low pipeline runtimes. There is however
a clear difference between the three mutant generators. Out of 28 errors, the
pipeline found 14 using Dextool Mutate, 16 using Universal Mutator and 18
using MUSIC. For comparison, MUSIC generates on average 3.7 times as many
mutants as Universal Mutator, which in turn generates on average 9.4 times as
many mutants as Dextool Mutate. The total runtime of the pipeline when using
MUSIC is on average 2.6 times as long as the runtime when using Universal
Mutator, which in turn is on average 6.3 times as long as the runtime when
using Dextool Mutate.

4.5 Example

One of the benchmark programs we used is isxdigit. isxdigit is a function
of diet libc which determines whether the character encoded in the integer pa-
rameter c is a hexadecimal digit. Listing 1.1 shows the source code of version
1.2. Version 1.2 of isxdigit had the error that the last parenthesized term con-
tained a logical OR. As Version 1.3 in listing 1.2 shows, the correct operator was
a logical AND. This had the consequence that version 1.2 returned 1 on every
possible input.

In our evaluation we used version 1.2 as the program under test and version
1.3 as the reference implementation. We noticed that all mutant generators gen-
erated a high fraction of equivalent mutants compared to the other benchmark
programs. This was the case due to the mutants also always returning 1 as long
as the last term or the logical OR before the last term were not mutated. The
generated test cases found the error regardless of which mutant generator the
pipeline used. All three mutant generators have a mutant operator which re-
places the logical OR with a logical AND. As a consequence, all three mutant

Generating Mutation Tests Using an Equivalence Prover 11

int __isxdigit_ascii(int c) {
return ((c>=’0’&&c<=’9’) || (c>=’A’&&c<="F’) ||
(c>=’a’|le<="£"));
}
Listing 1.1. Source code for isxdigit version 1.2
int __isxdigit_ascii(int c) {
return ((c>=’0’&&c<="9’) || (c>=’A’&&c<="F’) ||
(c>=’a’&&c<="£f7));
}

Listing 1.2. Source code for isxdigit version 1.3

generators created a mutant which was identical to version 1.3. In this case, the
mutant was “more correct” than the original program under test.

5 Parametric Mutants

5.1 Idea

Some usual mutant operators replace a constant or a variable with a specific
integer literal. In case of the mutant generators we used, the literal which replaces
the previous expression is one of 0, 1, -1, MIN_INT and MAX_INT. There is however
no guarantee that these five values are sufficient to represent all errors which have
to be fixed by replacing a constant or variable with another constant.

We propose a new kind of mutant: Instead of replacing some expression with
a literal, we create a mutant by replacing the expression with an additional
parameter. Hence we call these mutants parametric mutants. When applying
LLRéve and Eldarica, Eldarica generates a counterexample with a specific value
for the parameter. This is equivalent to killing a mutant which has the specific
value as a literal in place of the parameter. As we will show, there are parametric
mutants which can be killed for all possible values of the parameter, for which
the mutant is not equivalent, with only a small set of test cases. This can be
thought of as killing infinitely many non-parametric mutants with finitely many
test cases.

5.2 Approach

Our goal is to kill all non-equivalent parameter values of a parametric mutant. By
killing a parameter value of a parametric mutant, we mean killing the parametric
mutant for that specific parameter value. We call a parameter value equivalent if
and only if the parametric mutant is equivalent to the original program under test
for that parameter value. To kill all non-equivalent parameter values, we execute
Eldarica multiple times and generate multiple test cases from one parametric

12 C. Martin

mutant. We require that after each execution of Eldarica, the generated test
cases will be able to kill more parameter values than before that execution.
When Eldarica no longer finds a counterexample which increases the number of
killed parameter values, we are done.

In section 2.2, we described how LLRéve generates an SMT file for a mutant
such that the mutant is equivalent if the SMT file is satisfiable. We use this
file to create a new SMT file for a parametric mutant. Before each execution of
Eldarica, we already found n € INy test inputs t¢1, ..., t,,. Accordingly, in the first
iteration, n is equal to 0. The file is constructed in each iteration such that if
the file is satisfiable, all parameter values which are not killed by ¢4, ...,t, are
equivalent.

We treat the parameter p of the parametric mutant like another input which
remains unchanged throughout the program. This means each assertion which
describes parts of the control flows of both programs now has the following form:

Va,y, 2,y p: Ci(x,y,p) Aoy (z,2") A (y,y',p) = Cj(2’, 4, p)

Here 0;; describes the program state transition for the original program under
test while j1;; describes the program state transition for the parametric mutant.
After adding p to the coupling predicates, we duplicate each coupling predicate
C; n times to get the predicates CZ-(U, . CZ-(n). Additionally, we duplicate each
assertion for the control flows n times while using the k-th duplicated predicates
Ci(k) for the k-th duplicate of the assertion.

Essentially, we now have clauses which describe the control flows of the origi-
nal and the parametric mutant n+1 times. We also still have a slight modification
of the input clause:

V%%p T=Y = Cin(mayvp)

Now we define a new input clause for each duplicated input predicate:
vp - O (bt p)

This means that the k-th test input is a valid input for the k-th duplicated
control flows of the original and the parametric mutant. As a result, we now
have clauses which define one execution of the original and the mutant on any
arbitrary input as well as n executions on the previous test inputs. To join all
executions, we replace the output clause with a new clause:

n

n
k
Vot Cous(2',y',p) A /\ B (@ gk, p) A /\ T, =y, = ' =y
k=1

The universal quantifier refers to all outputs «’, v/, 1, v, ..., 2},, y,, as well as the
parameter p. With this last clause we created an SMT file still only consisting
of horn clauses which states that for any parameter value p, if the outputs of
the original and the mutants are identical on each of the previous test inputs,
then the outputs of the original and the mutant are identical on any input. In

Generating Mutation Tests Using an Equivalence Prover 13

int add_one(int x) {
return x + 1;

Listing 1.3. Original of the first example

int add_one(int x) {
return x + p;

Listing 1.4. Parametric mutant of the first example

other words, if the previous test inputs are not able to kill the parameter value
p, then no test input exists which kills p.

If Eldarica finds a counterexample for this SMT file, then the counterexample
includes a new test input such that the previous test inputs are not able to kill
p, but the new test input is. Including the new test input into the set of test
inputs therefore increases the number of parameter values killed by the set.

5.3 Examples

The amount of test cases needed to kill all non-equivalent parameter values can
be finite or infinite depending on the specific original and the mutant. This is
demonstrated via the following three examples.

The first example seen in listings 1.3 and 1.4 adds one to the input x and then
returns the result. Any parameter value p not equal to 1 will always produce a
different result for the mutant than the original. This means that one test input
is sufficient to kill all parameter values except for the value 1.

The second example in listings 1.5 and 1.6 checks whether the input x is
greater than zero and then outputs 1 or 0 accordingly. If p is greater than
zero, any value of x less or equal to zero will produce the same results for the
original and the mutant. If p is less than zero, any value of x greater than zero
will produce the same results for the original and the mutant. Thus, to kill all
parameter values except for 0, we need two test inputs. Input x = 0 kills all
parameter values less than zero, while x = 1 kills all parameter values greater
than zero.

Unfortunately, there also exist examples like the one in listings 1.7 and 1.8.
The original program returns whether the input x is equal to zero. The paramet-
ric mutant however returns whether x is equal to zero or equal to p. This means
that the parametric mutant only behaves differently to the original if x equals
p- To kill all parameter values except 0, one has to create a new test input for
each parameter value, which is the worst case scenario.

14 C. Martin

int is_positive (int x) {
if (x > 0) {
return 1;
} else {
return O0;

Listing 1.5. Original of the second example
int is_positive (int x) {
if (x > p) {
return 1;

} else {
return O;

Listing 1.6. Parametric mutant of the second example

int is_zero(int x) {

if (x == 0 || x == 0) {
return 1;
} else {

return O0;

Listing 1.7. Original of the third example

int is_zero(int x) {

if (x == 0 || x == p) {
return 1;
} else {

return O0;

Listing 1.8. Parametric mutant of the third example

Generating Mutation Tests Using an Equivalence Prover 15

6 Discussion

As seen in section 4.4, the pipeline in its current state takes multiple hours on
some small programs, which is infeasible in real applications. Additionally, the
tools within the pipeline limit for which programs test cases can be generated
by the pipeline.

These issues however are due to the specific tools used and not a consequence
of the underlying concept. Program mutation itself on the other hand also has
a flaw which became apparent during evaluation. Most of the errors from diet
libc, which the generated test cases could not find, were fixed in later versions
by adding a check for a special case. Adding a check for special case is not a
syntactic modification that program mutation can mimic since there are too
many possibilities for which special case to check and how to handle it.

The choice of the mutant generator proved important both for the total
runtime of the pipeline and the number of errors the generated test cases were
able to find. The difference in runtime however was significantly greater than
the difference in the number of found errors. This indicates that generating
more mutants is not necessarily worth the effort. It seems to be more feasible to
only attempt to generate mutants that are killed by test cases which detect as
many errors as possible.

7 Conclusion

In summary, we presented a method to generate test cases from mutants using
an equivalence prover. We implemented this method as a pipeline using multiple
existing tools. The pipeline was slow and had limitations, but was able to find at
least half of the errors during the evaluation. In addition to that, we introduced
the concept of parametric mutants. Parametric mutants represented an entire
family of mutants. Killing all parameter values of the parametric mutant could
in some cases be achieved with a finite number of test cases, but in other cases
the number of test cases was linear in the number of possible parameter values.

As future work, one may exchange the mutant generator, the equivalence
prover or the SMT solver for other tools to reduce the high runtime for generating
counterexamples on some mutants or to remedy the limitations on the programs
the pipeline can be applied to. Furthermore, the approach for killing parametric
mutants can be implemented into the pipeline. It may also be useful to investigate
which kinds of parametric mutants only need a finite number of test cases to be
killed for all parameter values.

References

1. Ammann, P., Black, P., Majurski, W.: Using model checking to gener-
ate tests from specifications. In: Proceedings Second International Conference
on Formal Engineering Methods (Cat.No.98EX241). pp. 46-54 (Dec 1998).
https://doi.org/10.1109/ICFEM.1998.730569

16

10.

11.

12.

13.

C. Martin

. Baer, M., Oster, N., Philippsen, M.: MutantDistiller: Using Symbolic Execu-

tion for Automatic Detection of Equivalent Mutants and Generation of Mu-
tant Killing Tests. In: 2020 IEEE International Conference on Software Test-
ing, Verification and Validation Workshops (ICSTW). pp. 294-303 (Oct 2020).
https://doi.org/10.1109/ICSTW50294.2020.00055

Brannstrom, J.: Dextool Mutate (Oct 2021), https://github.com/joakim-
brannstrom/dextool/tree/master/plugin/mutate, original-date: 2015-10-
06T06:41:19Z

DeMillo, R., Guindi, D., McCracken, W., Offutt, A., King, K.: An extended
overview of the Mothra software testing environment. In: [1988] Proceedings. Sec-
ond Workshop on Software Testing, Verification, and Analysis. pp. 142-151 (Jul
1988). https://doi.org/10.1109/WST.1988.5369

DeMillo, R., Lipton, R., Sayward, F.. Hints on Test Data Selection:
Help for the Practicing Programmer. Computer 11(4), 34-41 (Apr 1978).
https://doi.org/10.1109/C-M.1978.218136, conference Name: Computer

DeMillo, R., Offutt, A.: Constraint-based automatic test data generation.
IEEE Transactions on Software Engineering 17(9), 900-910 (Sep 1991).
https://doi.org/10.1109/32.92910, conference Name: IEEE Transactions on Soft-
ware Engineering

Felsing, D., Grebing, S., Klebanov, V., Rimmer, P., Ulbrich, M.:
Automating regression verification. In: Proceedings of the 29th
ACM/IEEE international conference on Automated software engineer-
ing. pp. 349-360. ASE ’14, Association for Computing Machinery, New
York, NY, USA (Sep 2014). https://doi.org/10.1145/2642937.2642987,
https://doi.org/10.1145/2642937.2642987

Fraser, G., Zeller, A.: Mutation-Driven Generation of Unit Tests and Ora-
cles. IEEE Transactions on Software Engineering 38(2), 278-292 (Mar 2012).
https://doi.org/10.1109/TSE.2011.93, conference Name: IEEE Transactions on
Software Engineering

Groce, A., Holmes, J., Marinov, D., Shi, A., Zhang, L..: An exten-
sible, regular-expression-based tool for multi-language mutant gener-
ation. In: Proceedings of the 40th International Conference on Soft-
ware Engineering: Companion Proceeedings. pp. 25-28. ACM, Gothen-
burg Sweden (May 2018). https://doi.org/10.1145/3183440.3183485,
https://dl.acm.org/doi/10.1145/3183440.3183485

Harman, M., Jia, Y., Langdon, W.B.: Strong higher order mutation-
based test data generation. In: Proceedings of the 19th ACM SIG-
SOFT symposium and the 13th FEuropean conference on Founda-
tions of software engineering - SIGSOFT/FSE ’11. p. 212. ACM
Press, Szeged, Hungary (2011). https://doi.org/10.1145/2025113.2025144,
http://dl.acm.org/citation.cfm?doid=2025113.2025144

Hojjat, H., Rimmer, P.. The ELDARICA Horn Solver. In: 2018 For-
mal Methods in Computer Aided Design (FMCAD). pp. 1-7 (Oct 2018).
https://doi.org/10.23919/FMCAD.2018.8603013

Howden, W.: Weak Mutation Testing and Completeness of Test Sets.
IEEE Transactions on Software Engineering SE-8(4), 371-379 (Jul 1982).
https://doi.org/10.1109/TSE.1982.235571, conference Name: IEEE Transactions
on Software Engineering

swtv kaist: MUtation analySIs tool with high Configurability and extensibility
MUSIC (Sep 2021), https://github.com/swtv-kaist/MUSIC, original-date: 2017-
07-11T07:21:16Z

Generating Mutation Tests Using an Equivalence Prover 17

14. Kiefer, M., Klebanov, V., Ulbrich, M.: Relational Program Reasoning Using Com-
piler IR. In: Blazy, S., Chechik, M. (eds.) Verified Software. Theories, Tools, and
Experiments. pp. 149-165. Lecture Notes in Computer Science, Springer Interna-
tional Publishing, Cham (2016). https://doi.org/10.1007/978-3-319-48869-1_12

15. von Leitner, F.: diet libc - a libc optimized for small size,
https://www.fefe.de/dietlibc/

16. Papadakis, M., Malevris, N.: Mutation based test case generation
via a path selection strategy. Information and Software Technology
54(9), 915932 (Sep 2012). https://doi.org/10.1016/j.infsof.2012.02.004,
https://www.sciencedirect.com/science/article/pii/S095058491200047X

17. Papadakis, M., Malevris, N.: Searching and generating test inputs for mutation
testing. SpringerPlus 2(1), 121 (Mar 2013). https://doi.org/10.1186/2193-1801-2-
121, https://doi.org/10.1186/2193-1801-2-121

18. Papadakis, M., Malevris, N., Kallia, M.: Towards automating the gen-
eration of mutation tests. In: Proceedings of the 5th Workshop on
Automation of Software Test - AST ’10. pp. 111-118. ACM Press,
Cape Town, South Africa (2010). https://doi.org/10.1145/1808266.1808283,
http://portal.acm.org/citation.cfm?doid=1808266.1808283

19. Pritesh: Learn Programming Tutorials Step By Step - c4dlearn.com,
https://www.cdlearn.com/

20. Riener, H., Bloem, R., Fey, G.: Test Case Generation from Mutants Using Model
Checking Techniques. In: 2011 IEEE Fourth International Conference on Soft-
ware Testing, Verification and Validation Workshops. pp. 388-397 (Mar 2011).
https://doi.org/10.1109/ICSTW.2011.55

21. VanderVoord, M., Karlesky, M., Williams, G.: Unity — Unit Testing for C,
http://www.throwtheswitch.org/unity

22. Zhang, L., Xie, T., Zhang, L., Tillmann, N., de Halleux, J., Mei, H.: Test
generation via Dynamic Symbolic Execution for mutation testing. In: 2010
IEEE International Conference on Software Maintenance. pp. 1-10 (Sep 2010).
https://doi.org/10.1109/ICSM.2010.5609672, iSSN: 1063-6773

A Pipeline Evaluation Results

This section includes the results of the evaluation of our pipeline described in
section 4. Each table includes the results for the 10 diet libc programs and the
18 cdlearn programs while using the mutant generators Dextool Mutate, MUSIC
and Universal Mutator. Tables 2 to 11 refer to diet libc programs while tables
12 to 29 refer to cdlearn programs.

The total number of mutants is divided into mutants already killed by previ-
ously generated test cases, mutants which are equivalent to the original program
under test, mutants which are each killed by a new counterexample found by
Eldarica, mutants for which Eldarica had a runtime longer than 60 seconds and
mutants which were either syntactically incorrect or contained features not sup-
ported by LLRéve or Eldarica.

The runtime of the pipeline is divided into three phases of the pipeline. In
the first phase, a set of mutants is generated for the original program under test.
In the second phase, the mutants are either checked for equivalence with the
original or killed by previously generated test cases. In the third phase, the final

18 C. Martin

set of test cases is generated and executed on the original. Each runtime is given
in the format hours:minutes:seconds.

Dextool Mutate| MUSIC|Universal Mutator

Total number of mutants 72 922 234
Mutants killed by previous test cases 60 770 149
Equivalent mutants 3 74 20
Mutants killed by new counterexample 9 42 17
Mutants with Eldarica timeout 0 3 3
Invalid mutants 0 33 45
Number of test cases 8 14 13
Time for generating mutants 0:01:12 0:00:05 0:00:03
Time for analyzing mutants 0:06:05 0:44:01 0:17:49
Time for generating final test cases 0:00:01 0:00:01 0:00:01
Error found by test cases? no no no

Table 2. Results for atoi v.1.1 which parses a string as an integer

Dextool Mutate| MUSIC|Universal Mutator

Total number of mutants 72 922 229
Mutants killed by previous test cases 56 768 149
Equivalent mutants 3 74 17
Mutants killed by new counterexample 9 41 17
Mutants with Eldarica timeout 2 6 3
Invalid mutants 0 33 43
Number of test cases 8 13 13
Time for generating mutants 0:01:39 0:00:07 0:00:07
Time for analyzing mutants 0:08:40 1:13:32 0:28:45
Time for generating final test cases 0:00:03 0:00:05 0:00:04
Error found by test cases? no no no

Table 3. Results for atol v.1.1 which parses a string as a long integer

Generating Mutation Tests Using an Equivalence Prover

19

Dextool Mutate| MUSIC|Universal Mutator

Total number of mutants 19 298 145
Mutants killed by previous test cases 8 169 35
Equivalent mutants 7 117 33
Mutants killed by new counterexample 4 6 5
Mutants with Eldarica timeout 0 0 0
Invalid mutants 0 6 72
Number of test cases 4 5 4
Time for generating mutants 0:00:31 0:00:04 0:00:03
Time for analyzing mutants 0:01:43 0:17:07 0:10:20
Time for generating final test cases 0:00:02 0:00:02 0:00:02
Error found by test cases? no no no

Table 4. Results for btowc v.1.1 w

Dextool Mutate

MUSIC

hich converts a byte to a wide character

Universal Mutator

Total number of mutants 67 649 130
Mutants killed by previous test cases 10 94 72
Equivalent mutants 55 484 47
Mutants killed by new counterexample 2 10 2
Mutants with Eldarica timeout 0 0 0
Invalid mutants 0 61 9
Number of test cases 2 8 2
Time for generating mutants 0:01:13 0:00:04 0:00:02
Time for analyzing mutants 0:04:22 0:38:35 0:04:41
Time for generating final test cases 0:00:01 0:00:01 0:00:01

Error found by test cases?

yes

yes

yes

Table 5. Results for isxdigit v.1.2 which checks whether a character is a hexadecimal

digit

Dextool Mutate| MUSIC|Universal Mutator

Total number of mutants 2 223 134
Mutants killed by previous test cases 0 197 47
Equivalent mutants 0 8 15
Mutants killed by new counterexample 2 10 7
Mutants with Eldarica timeout 0 0 0
Invalid mutants 0 8 65
Number of test cases 2 7 5
Time for generating mutants 0:00:09 0:00:02 0:00:02
Time for analyzing mutants 0:00:14 0:04:33 0:06:04
Time for generating final test cases 0:00:02 0:00:02 0:00:02
Error found by test cases? yes yes yes

Table 6. Results for memchr v.1.2 which searches for a character within a memory area

20 C. Martin

Dextool Mutate| MUSIC|Universal Mutator

Total number of mutants 14 249 118
Mutants killed by previous test cases 7 194 22
Equivalent mutants 0 0 0
Mutants killed by new counterexample 4 12 4
Mutants with Eldarica timeout 0 31 28

Invalid mutants 3 12 64
Number of test cases 3 4 4

Time for generating mutants 0:00:23 0:00:02 0:00:02
Time for analyzing mutants 0:02:03 0:41:46 0:33:58
Time for generating final test cases 0:00:02 0:00:02 0:00:02
Error found by test cases? no no no

Table 7. Results for stpncpy v.1.1 which copies part of a string to a new location and

returns a pointer to the end of the copy

Dextool Mutate| MUSIC|Universal Mutator

Total number of mutants 30 319 233
Mutants killed by previous test cases 14 248 54
Equivalent mutants 0 1 2
Mutants killed by new counterexample 7 26 13
Mutants with Eldarica timeout 6 20 45
Invalid mutants 3 24 119
Number of test cases 5 10 10
Time for generating mutants 0:00:38 0:00:03 0:00:03
Time for analyzing mutants 0:11:11 0:43:45 1:00:47
Time for generating final test cases 0:00:02 0:00:02 0:00:02
Error found by test cases? yes yes yes

Table 8. Results for strncmp v.1.5 whic

their lexicographic order

h compares parts two strings with respect to

Dextool Mutate|MUSIC|Universal Mutator
Total number of mutants 7 211 176
Mutants killed by previous test cases 0 108 11
Equivalent mutants 1 6 1
Mutants killed by new counterexample 5 15
Mutants with Eldarica timeout 1 61 68
Invalid mutants 0 21 88
Number of test cases 3 8 4
Time for generating mutants 0:00:13 0:00:02 0:00:03
Time for analyzing mutants 0:02:56 2:30:32 1:19:36
Time for generating final test cases 0:00:02 0:00:02 0:00:02
Error found by test cases? no no no

Table 9. Results for strncpy v.1.8 whic

returns a pointer to the start of the copy

h copies part of a string to a new location and

Generating Mutation Tests Using an Equivalence Prover

21

Dextool Mutate| MUSIC|Universal Mutator

Total number of mutants 11 281 242
Mutants killed by previous test cases 7 187 80
Equivalent mutants 0 0 0
Mutants killed by new counterexample 3 34 16
Mutants with Eldarica timeout 0 21 23
Invalid mutants 1 39 123
Number of test cases 2 12 11
Time for generating mutants 0:00:17 0:00:02 0:00:03
Time for analyzing mutants 0:00:40 0:36:01 0:36:41
Time for generating final test cases 0:00:02 0:00:02 0:00:02
Error found by test cases? yes yes yes

Table 10. Results for strsep v.1.1 which splits a string at a delimiter

Dextool Mutate| MUSIC|Universal Mutator

Total number of mutants 28 501 208
Mutants killed by previous test cases 0 0 0
Equivalent mutants 0 3 0
Mutants killed by new counterexample 0 0 0
Mutants with Eldarica timeout 21 306 56
Invalid mutants 7 192 152
Number of test cases 0 0 0
Time for generating mutants 0:00:39 0:00:04 0:00:03
Time for analyzing mutants 0:22:19 6:13:19 1:05:49
Time for generating final test cases 0:00:02 0:00:02 0:00:02
Error found by test cases? no no no

Table 11. Results for strtok_r v.1.1 which splits a string into tokens

Dextool Mutate| MUSIC|Universal Mutator

Total number of mutants 57 753 165
Mutants killed by previous test cases 25 598 87
Equivalent mutants 8 66 32
Mutants killed by new counterexample 16 47 18
Mutants with Eldarica timeout 0 0 0
Invalid mutants 8 42 28
Number of test cases 11 20 11
Time for generating mutants 0:01:00 0:00:04 0:00:02
Time for analyzing mutants 0:04:03 0:24:21 0:09:58
Time for generating final test cases 0:00:02 0:00:03 0:00:02
Error found by test cases? yes yes yes

Table 12. Results for “Program for deletion of an element from the specified location
from Array” with an error that the wrong element is deleted

22 C. Martin

Dextool Mutate| MUSIC|Universal Mutator
Total number of mutants 3 246 75
Mutants killed by previous test cases 0 163 40
Equivalent mutants 0 34 12
Mutants killed by new counterexample 2 15 5
Mutants with Eldarica timeout 0 2 0
Invalid mutants 1 32 18
Number of test cases 2 6 3
Time for generating mutants 0:00:10 0:00:02 0:00:01
Time for analyzing mutants 0:00:15 0:16:15 0:04:24
Time for generating final test cases 0:00:02 0:00:02 0:00:02
Error found by test cases? no yes no
Table 13. Results for the program “Find Factorial of Number without using function”

with an error that the factorial of 1 is calculated incorrectly

Dextool Mutate| MUSIC|Universal Mutator
Total number of mutants 21 250 71
Mutants killed by previous test cases 15 235 46
Equivalent mutants 1 0 0
Mutants killed by new counterexample 2 3 3
Mutants with Eldarica timeout 0 0 0
Invalid mutants 3 12 22
Number of test cases 2 3 3
Time for generating mutants 0:00:25 0:00:02 0:00:01
Time for analyzing mutants 0:00:39 0:03:25 0:02:13
Time for generating final test cases 0:00:02 0:00:02 0:00:02
Error found by test cases? no yes no

Table 14. Results for the program “Find Factorial of Number Using Recursion” with
an error that the factorial of 1 is calculated incorrectly

Dextool Mutate| MUSIC|Universal Mutator

Total number of mutants 66 979 176
Mutants killed by previous test cases 44 854 107
Equivalent mutants 15 60 30
Mutants killed by new counterexample 7 46 7
Mutants with Eldarica timeout 0 0 0
Invalid mutants 0 19 32
Number of test cases 6 23 5
Time for generating mutants 0:01:06 0:00:05 0:00:02
Time for analyzing mutants 0:01:45 0:14:43 0:22:41
Time for generating final test cases 0:00:02 0:00:02 0:00:02
Error found by test cases? yes yes yes

]

Table 15. Results for the program “Find greatest in 3 numbers” with an error that

ties are not considered

Generating Mutation Tests Using an Equivalence Prover 23

Dextool Mutate| MUSIC|Universal Mutator
Total number of mutants 33 454 87
Mutants killed by previous test cases 30 421 52
Equivalent mutants 0 4 14
Mutants killed by new counterexample 2 4
Mutants with Eldarica timeout 0 0 1
Invalid mutants 1 25 17
Number of test cases 2 4 3
Time for generating mutants 0:00:39 0:00:03 0:00:01
Time for analyzing mutants 0:00:27 0:05:37 0:03:54
Time for generating final test cases 0:00:01 0:00:02 0:00:02
Error found by test cases? yes yes yes

Table 16. Results for the program “Calculate gross salary of a person” with a rounding

error

Dextool Mutate| MUSIC|Universal Mutator

Total number of mutants 45 998 182
Mutants killed by previous test cases 21 749 81
Equivalent mutants 2 64 24
Mutants killed by new counterexample 16 117 34
Mutants with Eldarica timeout 0 1 0
Invalid mutants 6 67 43
Number of test cases 11 26 11
Time for generating mutants 0:00:52 0:00:05 0:00:02
Time for analyzing mutants 0:03:21 0:51:39 0:13:01
Time for generating final test cases 0:00:02 0:00:03 0:00:02
Error found by test cases? no no no

Table 17. Results for “Program Insert element in an Array” with an error that the

element in front of the inserted element is overwritten

Dextool Mutate| MUSIC|Universal Mutator

Total number of mutants 47 563 106
Mutants killed by previous test cases 34 487 64
Equivalent mutants 2 15 6
Mutants killed by new counterexample 3 7 5
Mutants with Eldarica timeout 5 31 18
Invalid mutants 3 23 13
Number of test cases 3 4 3
Time for generating mutants 0:00:48 0:00:04 0:00:02
Time for analyzing mutants 0:06:40 0:45:35 0:22:37
Time for generating final test cases 0:00:02 0:00:02 0:00:02
Error found by test cases? yes yes yes

Table 18. Results for the program “Check for Armstrong Number in C” with an error
that the loop in the program terminates too early if the last digit is a 1

24 C. Martin

Dextool Mutate| MUSIC|Universal Mutator

Total number of mutants 46 451 113
Mutants killed by previous test cases 5 138 13
Equivalent mutants 2 7 6
Mutants killed by new counterexample 2 6 1
Mutants with Eldarica timeout 25 220 58
Invalid mutants 12 80 35
Number of test cases 2 5 1
Time for generating mutants 0:01:13 0:00:03 0:00:03
Time for analyzing mutants 0:31:00 4:08:01 1:07:36
Time for generating final test cases 0:00:03 0:00:03 0:00:03
Error found by test cases? no no no

Table 19. Results for the program “Check Whether Number is Perfect Or Not” with
an error that the input divided by two is not considered

Dextool Mutate| MUSIC|Universal Mutator

Total number of mutants 28 393 116
Mutants killed by previous test cases 18 347 76
Equivalent mutants 0 0 0
Mutants killed by new counterexample 2 4 4
Mutants with Eldarica timeout 2 5 0
Invalid mutants 6 37 36
Number of test cases 2 4 4
Time for generating mutants 0:00:34 0:00:03 0:00:02
Time for analyzing mutants 0:03:11 0:14:01 0:04:52
Time for generating final test cases 0:00:02 0:00:02 0:00:02
Error found by test cases? no yes yes

Table 20. Results for the program “Check Whether Number is Prime or not” with an
error that the square root of the input is not considered

Dextool Mutate|MUSIC|Universal Mutator

Total number of mutants 101 1184 236
Mutants killed by previous test cases 87 1105 173
Equivalent mutants 6 53 26
Mutants killed by new counterexample 8 11 10
Mutants with Eldarica timeout 0 0 0
Invalid mutants 0 15 27
Number of test cases 8 10 10
Time for generating mutants 0:01:36 0:00:06 0:00:03
Time for analyzing mutants 0:01:40 0:13:59 0:05:01
Time for generating final test cases 0:00:02 0:00:02 0:00:02
Error found by test cases? yes yes yes

Table 21. Results for the program “Reads customer number and power consumed and
prints amount to be paid” with an error that one of the edge cases yields a result of 0

Generating Mutation Tests Using an Equivalence Prover 25

Dextool Mutate

MUSIC

Universal Mutator

Total number of mutants 34 389 97
Mutants killed by previous test cases 25 325 55
Equivalent mutants 4 31 22
Mutants killed by new counterexample 4 11 6
Mutants with Eldarica timeout 0 1 0
Invalid mutants 1 21 14
Number of test cases 4 6 4
Time for generating mutants 0:00:39 0:00:02 0:00:01
Time for analyzing mutants 0:01:20 0:12:30 0:04:44
Time for generating final test cases 0:00:02 0:00:02 0:00:02
Error found by test cases? yes yes yes

Table 22. Results for the program “Reverse a given number” with an error that the

last digit is ignored if it is a 1

Dextool Mutate| MUSIC|Universal Mutator

Total number of mutants 28 468 122
Mutants killed by previous test cases 20 385 60
Equivalent mutants 1 7 21
Mutants killed by new counterexample 3 27 7
Mutants with Eldarica timeout 2 5 1
Invalid mutants 2 44 33
Number of test cases 3 14 7
Time for generating mutants 0:00:37 0:00:03 0:00:02
Time for analyzing mutants 0:03:39 0:26:34 0:13:59
Time for generating final test cases 0:00:04 0:00:03 0:00:05
Error found by test cases? yes yes yes

Table 23. Results for “C Program to reversing an Array Elements in C Programming”
with an error that the middle two elements are ignored

26 C. Martin

Dextool Mutate| MUSIC|Universal Mutator

Total number of mutants 27 496 186
Mutants killed by previous test cases 7 238 36
Equivalent mutants 0 13 23
Mutants killed by new counterexample 18 163 42
Mutants with Eldarica timeout 0 6 0
Invalid mutants 2 76 85
Number of test cases 6 9 8
Time for generating mutants 0:00:32 0:00:03 0:00:02
Time for analyzing mutants 0:02:51 0:38:30 0:15:05
Time for generating final test cases 0:00:02 0:00:02 0:00:02
Error found by test cases? no no no

Table 24. Results for “C Program to read integers into an array and reversing them
using pointers” with an error that the result array is filled with copies of only one
element

Dextool Mutate| MUSIC|Universal Mutator

Total number of mutants 39 493 136
Mutants killed by previous test cases 18 414 74
Equivalent mutants 5 23 26
Mutants killed by new counterexample 6 15 11
Mutants with Eldarica timeout 0 3 0
Invalid mutants 10 38 25
Number of test cases 4 11 9
Time for generating mutants 0:00:48 0:00:04 0:00:02
Time for analyzing mutants 0:02:42 0:16:21 0:08:21
Time for generating final test cases 0:00:02 0:00:02 0:00:02
Error found by test cases? yes yes yes

Table 25. Results for the program “Searching element in array” with an error that
the position of any element not equal to the searched value is returned

Dextool Mutate|MUSIC|Universal Mutator
Total number of mutants 16 258 52
Mutants killed by previous test cases 12 226 18
Equivalent mutants 0 1 11
Mutants killed by new counterexample 3 3 3
Mutants with Eldarica timeout 0 0 1
Invalid mutants 1 28 19
Number of test cases 3 3 3
Time for generating mutants 0:00:25 0:00:02 0:00:01
Time for analyzing mutants 0:00:27 0:03:57 0:03:14
Time for generating final test cases 0:00:02 0:00:02 0:00:02
Error found by test cases? no no no

Table 26. Results for the program “Find the simple interest” with a rounding error

Generating Mutation Tests Using an Equivalence Prover 27
Dextool Mutate| MUSIC|Universal Mutator
Total number of mutants 31 651 124
Mutants killed by previous test cases 5 369 46
Equivalent mutants 2 24 20
Mutants killed by new counterexample 19 65 21
Mutants with Eldarica timeout 3 116 11
Invalid mutants 2 77 26
Number of test cases 10 22 12
Time for generating mutants 0:00:34 0:00:03 0:00:02
Time for analyzing mutants 0:07:03 2:30:19 0:23:41
Time for generating final test cases 0:00:02 0:00:03 0:00:02
Error found by test cases? yes yes yes

Table 27. Results for “C program to find Smallest Element in Array in C Program-
ming” with an error that the first element is not considered

Dextool Mutate

MUSIC

Universal Mutator

Total number of mutants 3 340 84
Mutants killed by previous test cases 0 276 51
Equivalent mutants 0 14 13
Mutants killed by new counterexample 2 7 4
Mutants with Eldarica timeout 0 0 0
Invalid mutants 1 43 16
Number of test cases 2 6 4
Time for generating mutants 0:00:11 0:00:03 0:00:01
Time for analyzing mutants 0:00:18 0:08:35 0:03:35
Time for generating final test cases 0:00:02 0:00:02 0:00:02
Error found by test cases? no yes yes

Table 28. Results for “C Program to calculate Addition of All Elements in Array”
with an error that the last element is ignored

Dextool Mutate|MUSIC|Universal Mutator

Total number of mutants 32 539 128
Mutants killed by previous test cases 24 481 50
Equivalent mutants 0 1 19
Mutants killed by new counterexample 7 11 9
Mutants with Eldarica timeout 0 0 0
Invalid mutants 1 46 50
Number of test cases 7 11 9
Time for generating mutants 0:00:38 0:00:04 0:00:02
Time for analyzing mutants 0:00:54 0:08:17 0:05:15
Time for generating final test cases 0:00:02 0:00:02 0:00:02
Error found by test cases? yes yes yes

Table 29. Results for the program “Calculate sum of 5 subjects and Find percentage”

with a rounding error

