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Binary classifiers are commonly used in software engineering research to estimate several software qualities, e.g., defectiveness or
vulnerability. Thus, it is important to adequately evaluate how well binary classifiers perform, before they are used in practice. The
Area Under the Curve (AUC) of Receiver Operating Characteristic curves has often been used to this end. However, AUC has been the
target of some criticisms, so it is necessary to evaluate under what conditions and to what extent AUC can be a reliable performance
metric.

We analyze AUC in relation to 𝜙 (also known as Matthews Correlation Coefficient), often considered a more reliable performance
metric, by building the lines in the ROC space with constant value of 𝜙 , for several values of 𝜙 , and computing the corresponding
values of AUC.

By their very definitions, AUC and 𝜙 depend on the prevalence 𝜌 of a dataset, which is the proportion of its positive instances
(e.g., the defective software modules). Hence, so does the relationship between AUC and 𝜙 . It turns out that AUC and 𝜙 are very well
correlated, and therefore provide concordant indications, for balanced datasets (those with 𝜌 ≃ 0.5). Instead, AUC tends to become
quite large, and hence provide over-optimistic indications, for very imbalanced datasets (those with 𝜌 ≃ 0 or 𝜌 ≃ 1).

We use examples from the software engineering literature to illustrate the analytical relationship linking AUC, 𝜙 , and 𝜌 . We show
that, for some values of 𝜌 , the evaluation of performance based exclusively on AUC can be deceiving. In conclusion, this paper provides
some guidelines for an informed usage and interpretation of AUC.

CCS Concepts: • General and reference→ Empirical studies;Measurement; Estimation; • Software and its engineering→
Risk management.

Additional Key Words and Phrases: Binary classifiers, predictors, accuracy, performance metrics, Pearson 𝜙 , Matthews Correlation
Coefficient.

1 INTRODUCTION

The usage of binary classifiers is increasingly frequent in software engineering research. For instance, binary classi-
fiers are commonly used in research aiming to define new methods for predicting faulty modules1, spotting code that
is hard to maintain, identifying vulnerabilities, etc. In many cases, the effectiveness of such research depends on the
degree to which modules are correctly classified, e.g., how well a technique separates faulty modules from not faulty
ones.

Classification activities have practical consequences. For instance, failing to correctly identify a module that is
actually faulty leads to classifying it as if it were not faulty and therefore not subjecting it to additional development
activities to identify and remove defects from it before the module is delivered, at which time potentially serious
consequences may ensue for the software development company and the customers. Conversely, failing to correctly
classify a module that is not faulty as such leads to dealing with it as it it were faulty and thus having it go through
unnecessary development activities, with unnecessary added costs for the software development organization.

1In this paper, by the term “module,” we denote any piece of software (e.g., routine, method, class, package, subsystem, system).
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Since perfect classification is hardly ever attained, real-life classifiers will classify some modules incorrectly. The
evaluation of a classifier needs to take into account both kinds of misclassifications, so overall performance metrics are
needed to have a comprehensive evaluation of a classifier.

To this end, Receiver Operating Characteristic (ROC) curves are widely used; specifically, the Area Under the Curve
(AUC) is used as an indicator of the extent to which binary classifiers make correct predictions [7, 12, 16, 21].

However, the usage of AUC as a performance2 indicator for binary classifiers has been criticized (as described in
Section 2.4 below). Hence, we are facing a potentially quite critical situation: if evaluations based on AUC are not
reliable, a significant fraction of software engineering research could have been incorrectly evaluated.

In this paper, we address the problem of assessing the reliability of AUC by establishing quantitative relationships
between AUC and 𝜙 (alias Matthews Correlation Coefficient), a performance metric that is considered more reliable
and whose usage is recommended by several researchers [1, 9, 23].

The results of our analysis show that the relationship between AUC and 𝜙 depends strongly on the prevalence of the
“positive” class in the set of modules, which is the proportion of those modules that belong to the “positive” class (for
instance, the proportion of defective modules). Accordingly, this paper contributes to the current research practices in
software engineering by investigating under what conditions AUC is a reliable indicator of performance and when it
should be regarded as possibly misleading.

The remainder of the paper is organized as follows: Section 2 provides some background, by illustrating ROC curves,
AUC, and reporting the main criticisms to AUC. Section 3 discusses the variation of AUC when 𝜙 is constant, depending
on the prevalence of the testing dataset. In Section 4, the obtained results are discussed and recommendations concerning
the usage of the considered performance metrics are given. Section 5 discusses the related work. Finally, Section 6
draws some conclusions and outlines future work.

2 BACKGROUND

We here concisely illustrate the basic concepts that are used throughout the paper.

2.1 The Confusion Matrix

The performance of a binary classifier on a set of 𝑛 modules3 is usually assessed based on a 2×2matrix called “confusion
matrix” (also known as “contingency table”) that shows how many of those 𝑛 modules are correctly and incorrectly
classified. As Table 1 shows, the cells of a confusion matrix contain the numbers of modules that are: correctly estimated
negative (True Negatives TN ); incorrectly estimated negative (False Negatives FN ); incorrectly estimated positive (False
Positives FP); and correctly estimated positive (True Positives TP).

The column totals AN and AP, i.e., the number of actually negative and positive modules, respectively, depend
exclusively on the dataset and not on the specific binary classifier. Instead, the row totals EN and EP, i.e., the number of
estimated negative and positive modules, respectively, depend on the binary classifier as well.

An especially important characteristic of a dataset is the prevalence of the positive class, i.e., 𝜌 = AP
n . Prevalence 𝜌 is

in the [0,1] range and is closely related to the notion of class imbalance as quantified by IR (Imbalance Ratio), which is

2Throughout this paper, we use the term “performance,” borrowed from the Machine Learning field, to indicate accuracy. This choice is also motivated by
the fact that “Accuracy” is the name of a specific performance metric.
3The concept of confusion matrix, as well as several others in the paper, is defined for sets of “instances,” and not just sets of “modules.” However, since
our goal is to use these concepts in the software engineering domain, we use the term “module” throughout the paper.
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Table 1. A confusion matrix.

Actual Neg. Actual Pos.
Est. Negative TN FN EN=TN+FN
Est. Positive FP TP EP=FP+TP

AN=TN+FP AP=FN+TP n=AN+AP
=EN+EP

the ratio of the number of elements of the majority class to number of the elements of the minority class

IR = max
{
AN
AP

,
AP
AN

}
= max

{
1−𝜌
𝜌

,
𝜌

1−𝜌

}
(1)

IR=1⇔𝜌 = 1
2 indicates that the dataset is perfectly balanced, as it includes as many positive modules as negative ones.

The greater
��𝜌− 1

2
��, the more imbalanced the dataset is. In software defect prediction, there is a majority of negative

modules, so, for instance, Song, Guo, and Shepperd [18] take IR = AN
AP =

1−𝜌
𝜌 . In this paper, we are interested in showing

that prevalence 𝜌 itself is always relevant in the evaluation of binary classifiers, even when the dataset is perfectly
balanced, so we use prevalence 𝜌 instead of imbalance throughout the paper. As a matter of fact, some shortcomings of
performance metrics are more serious for balanced datasets.

2.2 Performance Metrics

Performance metrics are computed based on the cells of a confusion matrix to obtain an overall evaluation of how well
a binary classifier classifies the modules in a dataset or focus on a specific aspect of performance.

Table 2 lists the performance metrics that are used in the paper. They are among the most relevant performance
metrics and the most frequently used in Empirical Software Engineering [15].

Table 2. Performance Metrics

Term Formula Name(s)

TPR TP
AP True Positive Ratio, Recall, Sensitivity

FPR FP
AN False Positive Ratio, Fall-out

𝜙 TP TN−FP FN√
EN EP AN AP

𝜙 , Matthews Correlation Coefficient [13]

TPR and FPR range between 0 and +1. For TPR, larger values indicate better performance, while for FPR is the opposite.
High values of TPR basically mean that the binary classifier is able to estimate actually positive modules correctly in
many cases. This is important in Empirical Software Engineering because the cost per false negative is usually quite
high. Conversely, low values of FPR mean that the binary classifier can correctly estimate actually negative modules. So,
there is a small proportion of actually negative modules that may undergo unnecessary additional actions because they
are incorrectly believed to be positive.

𝜙 is in the [−1, 1] range, with 𝜙 = 1 if and only if FP=FN=0, i.e., in the perfect classification case. 𝜙 = 0 is the expected
performance of the random binary classifier that estimates a module positive with any given probability 𝑝 . 𝜙 =−1 if
and only if TP=TN=0, i.e., in the perfect misclassification case. In general, 𝜙 <0 means that a binary classifier appears to
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be better at misclassifying modules than at classifying them correctly. By simply inverting the estimations, we obtain a
binary classifier that instead is better at classifying modules correctly—and better than random too. In general, when
𝜙 ≥ 0, higher values of binary classifier are preferable.

In essence, 𝜙 is an effect size measure, which quantifies how far the estimates given by a binary classifier are from
being random. A commonly cited interpretation guideline proposal [2] for 𝜙 uses 𝜙 =0.1, 𝜙 =0.3, and 𝜙 =0.5 respectively

to denote a weak, a medium, and a large effect size. 𝜙 is also related to the 𝜒2 statistic, since |𝜙 | =
√︃

𝜒2

𝑛 . The usage of
𝜙 has been recommended by several researchers [1, 9, 23].

2.3 The ROC Curve

A Receiver Operating Characteristic (ROC) curve is built by taking a scoring function 𝑓 that associates a value (e.g., a
probability) with each module, and estimating the target class of all modules for all possible thresholds that can be set
on 𝑓 . Each of these thresholds on 𝑓 leads to the definition of a binary classifier. For instance, with a specified threshold
𝑡 , a module is estimated positive if its value of 𝑓 is greater than or equal to 𝑡 and negative otherwise. This defines a
proper binary classifier, which will have a value of FPR and a value of TPR when applied to a dataset. The application of
all possible binary classifiers obtained for all values of 𝑡 to a dataset results in obtaining a set of pairs ⟨FPR, TPR⟩. The
ROC curve is the graphical representation obtained when conjoining these pairs in order of threshold in a plane (the
so-called “ROC space” [3]) with FPR as the x-axis and TPR as the y-axis, as shown in Figure 1.

Fig. 1. An example of ROC curve.

It can be shown that a ROC curve is monotonically increasing and goes through points (0, 0) and (1, 1).

2.4 AUC

The Area Under the Curve (AUC) of a ROC curve is a very commonly used performance metric for assessing the
discriminating ability of a family of binary classifiers.

The ideal classification is obtained by a classifier with FPR=0 and TPR=1, i.e., with no false positives and no false
negatives. Thus, a scoring function is good if the binary classifiers that can be derived from it with all possible thresholds
are represented by points close to the (0, 1) point. This happens when the ROC curve lingers near the y-axis (i.e., the
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FPR=0 line) and then near the TPR=1 horizontal straight line. As a consequence, the value of the area under the ROC
curve will be close to 1. Roughly speaking, the farther the points from the ideal classification point, the lower the
performance of their associated binary classifiers, the lower the overall performance of the scoring function, and the
lower the AUC. This is the rationale for selecting AUC as a measure for the overall performance of a scoring function.

Note that the minimum value of AUC is 0.5, in practice. When AUC is below 0.5, class estimations tend to be more
incorrect than correct, so we can always obtain a binary classifier with AUC above 0.5 by taking the original binary
classifier and simply inverting the estimations, in the same way as we described for values of 𝜙 less than zero.

Hosmer at al. [6] propose the intervals in Table 3 as interpretation guidelines for AUC as a measure of how well 𝑓
discriminates between positives and negatives for all values of 𝑡 .

Table 3. Evaluation of AUC

AUC range Evaluation
AUC = 0.5 totally random, as good as tossing a coin

0.5 < AUC < 0.7 poor, not much better than a coin toss
0.7 ≤ AUC < 0.8 acceptable
0.8 ≤ AUC < 0.9 excellent

0.9 ≤ AUC outstanding

Several authors criticized AUC as too general, because it includes unrealistic decision thresholds [10, 11]. In fact,
it accounts for the entire ROC curve, i.e., for all thresholds, including those very close to zero (when all modules are
classified as positive) and one (when all modules are classified negative).

3 AUC AND 𝜙

3.1 Iso-𝜙 Curves

It has been shown that, in the triangle above and to the left of the diagonal in the ROC space, the iso-𝜙 curves, i.e., the
lines characterized by a constant value of 𝜙 = 𝜙 , are arcs of ellipses [14]. Iso-𝜙 curves are described by Formula (2) in
implicit form.

𝜙 =

√︁
𝜌 (1 − 𝜌) (TPR − FPR)√︁

(𝜌TPR + (1−𝜌)FPR) (𝜌 (1 − FPR) + (1−𝜌) (1 − TPR))
(2)

Figure 2 shows the iso-𝜙 curves for values of 𝜙 = 𝜙 multiples of 0.1, when 𝜌=0.5. The diagonal is the line with 𝜙=0:
the greater 𝜙 , the higher the iso-𝜙 curve in the ROC space. In the extreme case in which 𝜙 = 1, the corresponding
iso-𝜙 curve in the ROC space reduces to the single point (0, 1), the one that corresponds to perfect estimation; it can be
proven that this is true regardless of the value of 𝜌 .

Formula (2) indicates that the iso-𝜙 curve is a parametric curve that depends on 𝜌 . For instance, Figures 3 and 4 show
the iso-𝜙 curves when 𝜌 is 0.1 and 0.9, respectively: these curves are quite different from those of Figure 2.

Also, Figures 3 and 4 graphically depict the case of two iso-𝜙 curves with complementary values of 𝜌 , i.e., 0.1 and
0.9. These figures show a symmetry between these two curves, which also holds in a more general case. Starting from
Formula (2), it can be proven that the iso-𝜙 curve with 𝜙 = 𝜙 when 𝜌 = 𝜌 is the symmetrical of the line with 𝜙 = 𝜙

when 𝜌 = 1 − 𝜌 , with respect to the 𝑦 = 1 − 𝑥 line (which is the diagonal of the ROC space passing through points (0,1)
and (1,0)). This symmetry implies that two iso-𝜙 curves with complementary values of 𝜌 have the same AUC.
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Fig. 2. Iso-𝜙 curves for various values of 𝜙 , when 𝜌=0.5.

Fig. 3. Iso-𝜙 curves for various values of 𝜙 , when 𝜌=0.1.

A few special cases occur depending on the values of 𝜌 and 𝜙 . When 𝜌 = 0 (and, therefore, when 𝜌 = 1), the dataset
contains modules belonging to only one of the two target classes, i.e., either only negative modules, so 𝜌 = 0, or only
positive modules, so 𝜌 = 1. It can be shown that the arc of ellipse representing the iso-𝜙 curve for any constant value of
𝜙 > 0 chosen degenerates into the union of two segments: one from (0, 0) to (0, 1) and the other from (0, 1) to (1, 1). In
the special sub-case in which 𝜌 = 0 or 𝜌 = 1 and also 𝜙 = 0, the iso-𝜙 curve in the ROC space is undefined.
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Fig. 4. Iso-𝜙 curves for various values of 𝜙 , when 𝜌=0.9.

3.2 AUC for Iso-𝜙 Curves

We computed AUC for iso-𝜙 curves for various values of 𝜙 and 𝜌 . We solved the equation in Formula (2) for TPR to have
an explicit representation of TPR as a function of FPR for any given values of 𝜙 and 𝜌 . Then, we computed AUC via the
trapezoidal numerical integration applied to the explicit representation. Specifically, we divided the [0, 1] interval of
FPR into 1,000 equally wide intervals and computed the approximation of the integral by summing the areas of the
resulting trapezoids. A finer-grain subdivision of the [0, 1] interval of FPR may lead to results that differ from ours only
starting from the fourth decimal digit.

Table 4 reports the results for a subset of values of 𝜙 and 𝜌 . As for 𝜙 , we used all multiples of 0.1 in the [0, 1] interval.
As for 𝜌 , we report AUC for values of 𝜌 multiples of 0.1 in the [0, 0.5] interval, because of the symmetry existing in the
iso-𝜙 lines for complementary values of 𝜌 ; for instance, the row of Table 4 reporting the results 𝜌 = 0.2 also reports the
results for 𝜌 = 0.8. Since 𝜌 = 0 represents a special case and all the AUC values are equal to 1, we also used 𝜌 = 0.01 as
a representative case of values very close to 𝜌 = 0. On a final note, the cell corresponding to 𝜌 = 0 and 𝜙= 0 is void
because the corresponding iso-𝜙 curve is undefined and so is the value of AUC.

To visually illustrate how 𝜌 affects the relationship between AUC and 𝜙 , Figure 5 shows the dependence of AUC on
𝜙 , for all 𝜌 values that are multiple of 0.01 in the [0.01, 0.99] range. The highest line corresponds to the extreme values
of 𝜌 , i.e., 0.01 and 0.99; the lowest line corresponds to 𝜌=0.5.

Table 4 and Figure 5 provide a first quite interesting insight in the relationship between AUC and 𝜙 . When 𝜌 is not
far from 0.5 (i.e., for not very unbalanced datasets), AUC and 𝜙 provide coherent indications. For instance, with 𝜌=0.5,
when 𝜙=0.3 (which indicates barely acceptable performance according to Cohen [2]), we have AUC just above 0.7 (the
acceptability threshold according to Hosmer at al. [6]). Likewise, when 𝜙=0.5 (which indicates good performance),
AUC is between 0.8 and 0.9 (indicating good performance as well). Instead, when 𝜌 is very low or very high, AUC appears
much more optimistic than 𝜙 : when 𝜌=0.1, 𝜙=0.2, which indicates poor performance, corresponds to AUC well above
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Table 4. AUC for constant 𝜙 , depending on 𝜌 .

𝜙

𝜌 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0 1 1 1 1 1 1 1 1 1 1
0.01 0.5 0.824 0.936 0.971 0.985 0.992 0.996 0.998 0.999 1 1
0.1 0.5 0.63 0.745 0.834 0.895 0.936 0.963 0.981 0.992 0.998 1
0.2 0.5 0.598 0.692 0.776 0.845 0.899 0.939 0.967 0.986 0.997 1
0.3 0.5 0.586 0.669 0.748 0.818 0.876 0.923 0.958 0.982 0.996 1
0.4 0.5 0.58 0.659 0.735 0.804 0.865 0.915 0.953 0.98 0.995 1
0.5 0.5 0.578 0.656 0.731 0.8 0.861 0.912 0.951 0.979 0.995 1

Fig. 5. AUC vs 𝜙 , for various values of 𝜌 .

0.7, which is usually interpreted as an indication of quite good performance. The closer 𝜌 to zero, the more divergent
the indications by AUC and 𝜙 are.

In conclusion, it seems that for very unbalanced datasets, AUC can be misleading, showing good (or even optimum)
performance when the considered classifier’s performance is actually poor.

3.3 An Example

We here present an example, based on real-life datasets from the collection by Jureczko and Madeyski [8]. The example
shows how AUC-based performance evaluations can be misleading.

Figure 6 shows the ROC curves of two defect-proneness models, which we obtained by using Binary Logistic
Regression (BLR). Specifically, one model is for the tomcat project, and was obtained using LOC (Lines Of Code) as the
independent variable. The other model was obtained for the xalan 2.6 project using CBO (Coupling Between Objects)
as the independent variable.

Both models have AUC=0.79. Therefore, if performance evaluation is based on AUC only, one should conclude that
the two models have equivalent performance, and a fairly good one, according to Table 3.
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However, tomcat and xalan 2.6 have quite different prevalence values: 𝜌=0.09 for tomcat and 𝜌=0.46 for xalan
2.6. It can be computed that the iso-𝜙 curve that has AUC=0.79 when 𝜌=0.46 is the one for which 𝜙=0.38. Accordingly,
we can conclude that the performance obtained for xalan 2.6 is actually fairly good. Instead, the iso-𝜙 curve that has
AUC=0.79 when 𝜌=0.09 has 𝜙 slightly less than 0.24. Hence, the performance obtained for tomcat (which has 𝜌=0.09)
cannot be regarded as good, according to 𝜙 .

Fig. 6. ROC curves of the model based on LOC for tomcat (𝜌=0.09) and the model based on CBO for xalan 2.6 (𝜌=0.46).

4 DISCUSSION OF RESULTS AND RECOMMENDATIONS

4.1 Practical Consequences

The example in Section 3.3 shows a performance evaluation that can lead to misleading conclusions. This can be the
case in practice, as we show via the following example.

Uchigaki et al. proposed a faultiness prediction technique that they introduced as “an ensemble of simple regression
models” to improve the performance of cross-project prediction [20]. They used NASA datasets [17, 19] to test the
proposed technique. Each project dataset was used to build a faultiness prediction model, which was then used to
estimate the faultiness of all of the other projects. The prevalence 𝜌 of the datasets is in the [0.005, 0.323] range. Table 5,
which is taken from [20], shows the results of the study, which are evaluated via AUC. For instance, when using project
MC2 to estimate the faultiness of project KC1, the value of AUC obtained is 0.734.

A closer look at Table 5 shows that the datasets for which the best performance is achieved (PC5, PC2 and MC1) are
also the ones having smallest values of 𝜌 . Instead, no prediction concerning MC2, the project with the highest 𝜌 , achieves
AUC≥0.7, that is, no prediction concerning MC2 is acceptable, according to Table 3. This fact is highly suspicious: it
may be the consequence of the “inflation” of AUC when 𝜌 is very small, as observed in Table 4 and Figure 5.

The constant 𝜙 corresponding to the ⟨𝜌,AUC⟩ combinations of Table 5 are presented in Table 6. Just a few predictions,
all concerning PC5, achieve 𝜙 ≥ 0.3, which is considered the acceptability threshold.

Therefore, Table 6 with its low values of𝜙 seems to confirm that the results reported in Table 5 and their interpretations
according to Table 3 are overoptimistic.
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Table 5. Results table from [20]

Fit data
CM1 JM1 KC1 KC3 MC1 MC2 MW1 PC1 PC2 PC3 PC4 PC5

CM1 (𝜌=0.095) 0.745 0.747 0.727 0.752 0.746 0.757 0.751 0.748 0.75 0.708 0.746
JM1 (𝜌=0.194) 0.655 0.645 0.661 0.658 0.654 0.665 0.658 0.648 0.649 0.664 0.643
KC1 (𝜌=0.154) 0.726 0.746 0.733 0.75 0.734 0.748 0.754 0.728 0.73 0.74 0.741
KC3 (𝜌=0.100) 0.77 0.778 0.775 0.78 0.773 0.776 0.781 0.77 0.782 0.781 0.768
MC1 (𝜌=0.015) 0.774 0.798 0.792 0.833 0.768 0.798 0.813 0.752 0.803 0.822 0.743

Test data MC2 (𝜌=0.323) 0.634 0.631 0.632 0.616 0.628 0.631 0.626 0.638 0.634 0.609 0.648
MW1 (𝜌=0.077) 0.749 0.76 0.758 0.742 0.777 0.726 0.777 0.717 0.757 0.754 0.696
PC1 (𝜌=0.072) 0.658 0.679 0.675 0.684 0.703 0.658 0.684 0.657 0.715 0.696 0.659
PC2 (𝜌=0.005) 0.845 0.856 0.854 0.837 0.859 0.847 0.851 0.853 0.856 0.848 0.849
PC3 (𝜌=0.106) 0.706 0.733 0.725 0.736 0.752 0.706 0.743 0.75 0.686 0.745 0.678
PC4 (𝜌=0.132) 0.63 0.66 0.645 0.715 0.672 0.631 0.645 0.687 0.626 0.706 0.635
PC5 (𝜌=0.033) 0.853 0.921 0.925 0.898 0.921 0.913 0.922 0.936 0.871 0.898 0.916

Table 6. Derived values of 𝜙 for [20]

Fit data
CM1 JM1 KC1 KC3 MC1 MC2 MW1 PC1 PC2 PC3 PC4 PC5

CM1 0.195 0.197 0.179 0.203 0.197 0.207 0.201 0.199 0.201 0.162 0.197
JM1 0.158 0.148 0.164 0.162 0.156 0.168 0.162 0.150 0.152 0.168 0.145
KC1 0.217 0.238 0.225 0.244 0.227 0.242 0.248 0.219 0.221 0.232 0.234
KC3 0.225 0.234 0.230 0.236 0.229 0.230 0.236 0.225 0.238 0.236 0.223
MC1 0.096 0.107 0.104 0.128 0.093 0.107 0.115 0.085 0.110 0.121 0.082

Test data MC2 0.160 0.156 0.158 0.139 0.152 0.156 0.150 0.166 0.160 0.131 0.178
MW1 0.182 0.191 0.189 0.176 0.207 0.162 0.207 0.154 0.189 0.186 0.139
PC1 0.105 0.121 0.118 0.125 0.139 0.105 0.125 0.105 0.148 0.134 0.107
PC2 0.079 0.084 0.083 0.076 0.086 0.080 0.082 0.083 0.084 0.081 0.081
PC3 0.168 0.193 0.186 0.195 0.211 0.168 0.203 0.209 0.150 0.205 0.143
PC4 0.113 0.141 0.127 0.193 0.152 0.113 0.127 0.166 0.109 0.184 0.117
PC5 0.205 0.305 0.313 0.262 0.305 0.289 0.305 0.340 0.225 0.262 0.293

Uchigaki et al. [20] concluded that the technique they proposed 1) achieves better results than conventional Multi-
variate Logistic Regression models, and 2) never gets worse than random performance, while conventional techniques
do. Our analysis does not disprove these conclusions; in fact, it can be used to confirm the conclusions by Uchigaki et al.
However, the performance of the proposed technique, although better than conventional techniques’, appears rather
low. In cases like this, evaluating predictive models by means of additional performance metrics could be useful, to
appreciate the real value of the results.

4.2 Recommendations

The observations in the previous sections suggest that, when evaluating binary classifiers, considering AUC alone
may provide an incomplete picture, especially if there is a noticeable difference between the numbers of positives and
negatives in the test dataset. However, this does not mean that AUC must be considered completely unreliable and
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misleading. In fact, there is a good concordance between AUC and 𝜙 in balanced test datasets, as apparent in Table 4
and Figure 5. Instead, AUC and 𝜙 disagree when 𝜌 is very small or very large, and 𝜙 is small: this fact is also apparent
in Table 4 and Figure 5.

Therefore, the results suggest that AUC can be used and should give reliable results when evaluating a binary
classifier if 𝜌 is not far from 0.5. As 𝜌 gets closer to either 0 or 1, the computation of AUC should be accompanied by
the computation of 𝜙 in order to understand whether the AUC is reliable or not.

4.3 Limitations

The relationship between AUC and 𝜙 described in Section 3 holds for ROC curves having constant 𝜙 . This gives us an
idea of how 𝜌 affects AUC, as shown also by the examples in Sections 3.3 and 4.1.

Fig. 7. ROC curve of the model based on CBO for xalan 2.6 and ROC curve having 𝜙=0.379.

However, we must consider that in general ROC curves are made of points having different values of 𝜙 . For instance,
Figure 7 shows the ROC curve of the model based on CBO for project xalan 2.6 and the iso-𝜙 curve with the same
AUC. Although the two lines are close to each other, it is easy to see that the binary classifiers corresponding to some
points of the ROC curve (namely those corresponding to the points above the thin black curve) have 𝜙 > 0.379, while
the binary classifiers corresponding to other points (those below the black thin curve) have 𝜙 < 0.379.

Studying the relationship between AUC and 𝜙 in the general case requires an empirical study that is among our
future objectives.

5 RELATEDWORK

Several scientific papers have investigated the properties of performance metrics used for binary classifiers in software
engineering applications. The ones that are most related to our study involve the comparison of performance metrics.
For instance, [1, 9, 22, 24] compare 𝜙 and the F-score, which is the harmonic mean of Precision and Recall. Our study
carries out a similar research, involving AUC and 𝜙 .

It is interesting to note that some results of the mentioned research highlight characteristics of performance metrics,
or, more precisely, of relationships among performance metrics, that are similar to those reported in this paper, but of
opposite sign. For instance, Lavazza and Morasca showed that the F-measure and 𝜙 provide coherent and well correlated
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results when prevalence 𝜌 is very small, while F-measure and 𝜙 can provide quite discordant indications when 𝜌 is not
very small (including when 𝜌=0.5) [9]. Hence, the results described in this paper, along with those described in previous
work by other researchers, suggest that performance metrics should be chosen carefully, considering the prevalence of
the dataset to which the classifier to be evaluated was applied.

AUC has been the subject of criticism outside the software engineering arena. For instance, Hand [5] shows thatAUC is
a weighted minimum misclassification cost function. However, the weights (i.e., the unit costs per misclassification)
used are variable, and essentially depend on the binary classifier used. This makes AUC an ill-defined performance
metric when it comes to interpreting it as being related to some kind of cost. As a result, Hand suggests the use of other
performance metrics, with a more direct correspondence with the objectives of the users of binary classifiers (software
development organizations and software engineering researchers, in our case).

An empirical comparison between AUC and 𝜙 was carried out by Halimu et al. [4]. They used 54 unbalanced datasets
and 23 balanced datasets to train binary classifiers built with four different algorithms and validated them using
cross-validation. The aim of the research was to investigate which of the two performance metrics AUC and 𝜙 is better,
by using as indicators the degree of consistency of ranking between the two performance metrics and the degree of
discrimination that they provide: in these respects, Halimu et al. found that AUC is better than 𝜙 .

There are a few important differences between the evaluation carried out by Halimu et al. and ours. They perform
an empirical evaluation, while our evaluation is based on analytical grounds, and descends directly from the definitions
of the considered performance metrics. In addition, Halimu et al. address only the behavior of 𝜙 and AUC in comparing
two (or more) given models: they do not provide any conclusion concerning the reliability of 𝜙 or AUC; i.e., they do
not guarantee that if any of the two metrics states that a model’s performance is good (respectively, not good) then
the model has actually good (respectively, not good) accuracy. Instead, we provide also an evaluation of how reliable
𝜙 and AUC are in assessing the performance of a single given model. Finally, we can note that our study confirms, on
theoretically solid ground, that 𝜙 and AUC provide concordant indications when comparing the performances of two
given models applied to the same dataset: this property is guaranteed by the fact that all 𝜙 vs. AUC functions for a
given 𝜌 are monotonic, as shown in Figure 5.

6 CONCLUSIONS

In this paper, we have investigated under what conditions and to what extent AUC, which is one of the leading
performance metrics used in software engineering to assess binary classifiers [15], can be considered reliable. We
therefore compared it to the results that can be obtained by using 𝜙 , another performance metric that has been shown
to be reliable under many circumstances and recommended by several researchers [1, 9, 23].

Our analysis studies the impact of prevalence on the relationship between AUC and 𝜙 . This relationship is quite
strong for balanced datasets; however, when a dataset is very unbalanced, AUC has a tendency to provide overoptimistic
evaluations.

As a result, we also provide some guidelines that can be useful when using AUC to assess classifiers. Also, they can
be used to evaluate the reliability of results that are published in the scientific literature.

Concerning future work, there are two activities that we intend to carry out to extend the work presented here.
The first one is intended to overcome the limitations described in Section 4.3: we will study the relationship between
AUC and 𝜙 in the general case, via suitable empirical studies. The second one is motivated by the critical aspects
of AUC that have been highlighted by several authors [10, 11]. Specifically, it has been observed that AUC includes
unrealistic decision thresholds, as it accounts for the entire ROC curve, i.e., for all thresholds, including those very close
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to zero (when all modules are classified as positive) and one (when all modules are classified negative). To overcome
this limitation, Morasca and Lavazza proposed to limit the computation of the area under the curve to the “Region of
Interest” where the points of the ROC curve represent classifiers having acceptable performance [14]. For instance, a
possible way to define the Region of Interest is by considering only the region where both TPR and FPR are better than
the values achieved (on average) via random classification. The work reported here, as well as the extension to the
general case, can be repeated for indicators based on the area under the curve, but limited to the Region of Interest.

We also plan to extend the work to study the relationship between AUC and misclassification cost, i.e., the cost due
to false positives and false negatives.
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