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Task-Space Reinforcement Learning for Robotic Manipulation

Ralf Gulde, Khanh Nguyen, Marc Tuscher, Oliver Riedel and Alexander Verl

Abstract— Reinforcement Learning (RL) has gained popular-
ity for developing intelligent robots, but challenges such as sam-
ple inefficiency and lack of generalization persist. The choice
of observation space significantly influences RL algorithms’
sample efficiency in robotics. While end-to-end learning has
been emphasized, it increases complexity and inefficiency as the
agent must re-learn forward and inverse kinematics. To address
these issues, we propose a straightforward approach that
utilizes readily available control techniques, such as forward
and inverse kinematics, to capitalize on domain knowledge. Our
approach involves enhancing the observation space with task-
space features and utilizing task-space inverse kinematics. Our
contributions include a proposal for mathematical formulation
and a framework for RL algorithms in robotics.

Keywords: reinforcement learning, robotics application, task
space representation

I. INTRODUCTION

In recent years, Reinforcement Learning (RL) has gained
popularity as a technique for developing intelligent robotic
systems. RL algorithms enable robots to learn from experi-
ence and optimize policies through trial and error, offering
the promising potential for learning complex tasks and oper-
ating effectively in dynamic environments. As a result, Re-
inforcement learning has been implemented to solve various
robotics applications, such as robot manipulation, grasping,
locomotion, or autonomous driving.

Despite the notable advancements in RL with robotics,
researchers still face several challenges and open questions.
These challenges may include the requirement for efficient
exploration in large state spaces, the need to learn from
small amounts of data, the difficulties in dealing with non-
stationary environments, and the necessity of learning from
multiple agents [1]. These problems can be categorized
into two significant issues: sample inefficiency and lack
of generalization. Therefore, it is crucial to address these
issues to enhance the robustness and effectiveness of RL
algorithms for robotics applications. In this regard, the choice
of observation space has been identified as a critical factor
that significantly influences the sample efficiency of RL
algorithms in robotics [2], making it a critical research area
for advancing the state-of-the-art RL for robotics.

Recent advancements in reinforcement learning for
robotics have emphasized end-to-end learning, where no
prior knowledge of the system is used during training.
As a result, the agent is required to re-learn forward and
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inverse kinematics through interaction with the environment,
which has led to increased problem complexity and high
sample inefficiency. In contrast, we propose a straightforward
approach that utilizes readily available control techniques
such as forward and inverse kinematics, which capitalizes
on the domain knowledge of the problem.

Our approach involves enhancing the standard observation
space with robotics task-space feature sets and utilizing task-
space inverse kinematics to calculate the desired action for
the robot. These features may include the robot’s end-effector
positions, velocities, or more complex features such as the
distance between two shapes or accumulated collisions.
The augmented observation space provides more valuable
information to the RL agent, alleviating the need to learn
everything from scratch. Additionally, employing task-space
inverse kinematics eliminates the need for the robot to re-
learn the IK process, thereby reducing sample inefficiency.

Our key contributions are:
• A mathematical formulation integrates the manipulation

scene’s arbitrary complex task-space features (accumu-
lated collisions, oppose, etc.) into the vanilla Markov
Decision Process.

• A framework applies the mentioned mathematical for-
mulation into Reinforcement Learning algorithms for
robotics applications.

II. RELATED WORK

Deep Reinforcement Learning for Robotics Manipu-
lation Tasks. Ni et al. proposed a technique using Deep
Reinforcement Learning to train Robotic Arm Movement
with the DDPG algorithm [3]. The authors experimented
with this method on two tasks, Robot Reacher and Pick-And-
Place, showing a success rate above 80% with only 6000 to
8000 episodes. Saeed et al. utilized the DDPG algorithm
with Hindsight Experience Replay (HER) to address the
problem of sparse rewards for robotic hand manipulation [4].
The authors benchmarked three policy gradient algorithms
(DDPG, DDPG+HER, PPO) in two multi-goal environments,
achieving a 100% success rate for almost all tasks with
DDPG+HER and a sparse reward function after a few
hundred epochs. The method of DDPG and HER seems
promising in solving the sample inefficiency problem.

Observation Space in Deep Reinforcement Learning.
Recent research has examined the impact of environment
design and observation space on deep reinforcement learn-
ing algorithms. Reda et al. (2020) found that joint angles
augmented with joint Cartesian positions could enhance
learning speed for complex tasks, while adding binary con-
tact information to the state space may not be helpful [5].



Similarly, Kim et al. (2021) discovered that the observation
spaces they tested were adequate in most cases, except for
the raw information-only set [2]. Kozlov and Myasnikov
(2022) found that increasing the amount of information in
the observation space does not always improve performance
[6]. These studies emphasize the importance of selecting an
appropriate observation space for optimal performance in RL
processes.

Task-based robotics. The field of task-based robotics
has been widely studied for its potential to address general
problems of intelligent systems. For example, Gienger et al.
(2008) proposed a method to solve the coupled problem
of grasp choice and reaching motion by learning object-
dependent task maps [7]. Task space controllers have been
used to enable robots to safely and efficiently explore their
environment (Dries et al., 2017 [8]). Recent studies have
incorporated robotics task space into deep reinforcement
learning algorithms to increase sample efficiency. Bellegarda
and Byl (2019) used the Proximal Policy Optimization
(PPO) algorithm to train the quadrupedal spider-like robot
Robosiman for the complex locomotion task of skating
[9]. They found that the lack of prior knowledge of the
system during training in current reinforcement learning for
robotics leads to high sample inefficiency. To address this
challenge, they suggest incorporating commonly available
control techniques, such as forward and inverse kinematics,
to reduce the agent’s reliance on learning from scratch. Their
approach, ”Full system trained in Cartesian space with IK”
(FS in CS), has shown higher sample efficiency and better
performance than other systems tested. Similarly, Duan et
al. (2021) used the task space approach with PPO to train
the bipedal robot Cassie to walk [10]. Their work focuses
more on defining the RL reward, and their experiment re-
sults demonstrate increased sample efficiency. These studies
highlight the importance of incorporating domain knowledge
and using an appropriate observation space in the RL training
of robots for complex tasks.

III. BACKGROUND

A. Task Space Inverse Kinematics

We describe robot configurations as (differentiable) task
mappings φ : Rn → Rd, φ : q 7→ y, mapping a joint
configuration q ∈ Rn to an arbitrary feature y ∈ Rd [8].
The position and orientation of the end-effector are standard
task maps. However, this formulation of robot kinematics
allows us to incorporate more complex task maps, such as
distance, collision, and relative orientation. Task Space IK
can then be defined as an optimization problem

q∗ = arg min
q

‖φ(q)− y∗‖2 (1)

where φ incorporates all task maps and y∗ is the correspond-
ing desired task vector. Using its local linearization at q0, the
optimum of Eq. 1 is given by

q∗ = q0 + JT (JJT + εI)(y∗ − y0)

where JT (JJT + εI) is the singularity robust regularized
pseudo-inverse using the Jacobian J . The Jacobian for each
task map φ w.r.t. q is retrieved by applying the forward chain
rule

df

dx
=
∂f

∂x
+

∑
g ∈ π(f)

g 6= x

∂f

∂g

dg

dx

to each individual derivative within the kinematic tree.

B. Reinforcement Learning and Policy Optimization

Further, we define the Reinforcement Learning (RL) prob-
lem and introduce our notation throughout the paper. This
paper regards a finite-horizon, discounted Markov Decision
Process (MDP). At each timestep t, the RL-agent observes
the current state st ∈ S, chooses an action at ∈ A, and
then receives a reward rt+1 ∈ R. After that, the resulting
state st+1 will be observed, determined by the unknown
dynamics of the environment p(st+1|at, st). An episode has
a pre-defined length of T time steps. The goal of the agent
is to find a parameter θ of a policy πθ(a|s) that maximizes
the expected cumulated reward J over a trajectory

J(πθ) = Eτ∼πθ

[
T∑
t=0

π(at|st)
T∑
k=t

γk−trk+1

]
, (2)

where γ ∈ [0, 1] is the discount factor.
RL methods solve an MDP by interacting with the system

and accumulating the obtained reward. We consider several
model-free policy gradient algorithms with open source
implementations that frequently appear in the literature, e.g.,
Soft Actor-Critic approaches [11], Deep Deterministic Policy
Gradient (DDPG) [12], and Proximal Policy Optimization
(PPO) [13].

C. Deep Deterministic Policy Gradient (DDPG)

Our method combines demonstrations with one such
method: Deep Deterministic Policy Gradients (DDPG) [14].
DDPG is an off-policy model-free reinforcement learning al-
gorithm for continuous control that can utilize large function
approximators such as neural networks. DDPG is an actor-
critic method that bridges the gap between policy gradient
methods and value approximation methods for RL. At a
high level, DDPG learns an action-value function (critic) by
minimizing the Bellman error while simultaneously learning
a policy (actor) by directly maximizing the estimated action-
value function with respect to the parameters of the policy.

Concretely, DDPG maintains an actor functionπ(s) with
parameters θπ , a critic function Q(s, a) with parameters
θQ,and a replay buffer R as a set of tuples (st, at, rt, st+1)
for each transition experienced. DDPG alternates between
running the policy to collect experience and updating the
parameters. Training rollouts are collected with extra noise
for exploration: at = π(s) + N , where N is a noise
process. During each training step, DDPG samples a mini-
batch consisting of N tuples from R to update the actor and



Fig. 1: Overall framework architecture.

critic networks. DDPG minimizes the following loss L w.r.t.
θQ to update the critic:

yi = ri + γQ(si + 1), π(si + 1)) (3)

L =
1

N

∑
i

(yi −Q(si, ai, |θQ))2 (4)

The actor parameters θπ are updated using the policy gradi-
ent:

∇θπJ =
1

N

∑
i

∇aQ(s, a|θQ)|s=si,a=π(s)∇θππ(s|θπ)|si

(5)
To stabilize learning, the Q value in equation 5 is usu-

ally computed using a separate network (called the target
network) whose weights are an exponential average over
time of the critic network. This results in smoother target
values. Note that DDPG is a natural fit for using demon-
strations. Since DDPG can be trained off-policy, we can use
demonstration data as off-policy training data. We also use
the action-value function Q(s, a) learned by DDPG to use
demonstrations better.

D. Multi-Goal RL

Instead of the standard RL setting, we train agents with
parametrized goals, which lead to more general policies [15]
and have recently been shown to make learning with sparse
rewards easier [16]. Goals describe the task we expect the
agent to perform in the given episode; in our case, they
specify the desired positions of all objects. We sample the
goal gt at the beginning of every episode. The function
approximators, here π and Q, take the current goal as an
additional input.

E. Hindsight Experience Replay (HER)

We use Hindsight Experience Replay (HER) [17] to handle
varying task instances and parametrized goals. The critical
insight of HER is that even in failed rollouts where no reward
was obtained, the agent can transform them into successful
ones by assuming that a state it saw in the rollout was
the actual goal. HER can be used with any off-policyRL
algorithm, assuming that for every state, we can find a
goal corresponding to this state (i.e., a goal that leads to
a positive reward in this state). For every episode the agent
experiences, we store it in the replay buffer twice: once with
the original goal pursued in the episode and once with the

goal corresponding to the final state achieved in the episode,
as if the agent intended to reach this state from the very
beginning.

IV. FEATURE-SPACE OBSERVATIONS FOR RL

A. Problem Formulation

We consider robot manipulation tasks that can be formu-
lated as moving an object to a goal position. To perform com-
plex manipulation tasks, the robot can employ tools such as
grippers and screwdrivers. This family of problems includes
common household and industrial manipulation tasks, such
as assembling and disassembling parts together, inserting and
ejecting objects, and movement in high-friction domains. We
assume, that a sequence of robot actions exists to fulfill
the manipulation task. However, we make no particular
assumptions on the dynamics experienced throughout the
task execution, and in particular, do not restrict contacts and
friction.

Let φt and xt denote the state of the robot in configuration
space (or joint space) and task space, respectively, at time
t, and let ut denote the control command (target vector of
Task Maps) applied at that time. Given a goal state in task
space xg , an initial robot state φ0, and a time horizon T , our
manipulation problem is formulated as

min
u0,...,uT

L(xt = fFK(φt), sg), (6)

st+1 = f(φt, ut), t ∈ 0, ..., T. (7)

where f is the (unknown) system dynamics,fFK is the
forward kinematics function.

B. MDP Architecture

To provide a concrete example, we consider the robot
pick and place task for illustration purposes. Concerning
the introduced notation for Task-Space Robotics, we define
observations, actions and rewards of the Markov Decision
Process (MDP) as follows:

Observation. The Agents observation ot is described by
a Multi Task Map Φ (multiple Task Maps aggregated to a
vector) ot = Φot = (φ1, φ2, ..., φn) ∈ S. For a robotic pick
and place task the observations space can be defined using
the following Task Maps Φ = (φ1, φ2, ..., φ7):

• φ1: actual object position xact,obj,pos,
• φ2: goal object position xgoal,obj,pos,



Fig. 2: The observation space configurations affect the success rate during RL training. Graph notation: Orange: baseline,
Red: Simple Observation, Dark blue: Feature Set 0, Light Blue: Feature Set 1, Grey: Feature Set 2

• φ3: end-effector position xact,EE,pos,
• φ4: end-effector orientation in quaternion xact,obj,ori,
• φ5: position difference xact,obj,pos and xgoal,obj,pos,
• φ6: position difference xact,EE,pos and xgoal,obj,pos.
Action. The agents action at is defined by a Multi Task

Map at = Φat = (φ1, φ2, ..., φn). In the robotic pick and
place scenario, the actions are defined by at = Φat =
(φ1, φ2, ..., φ4):

• φ1: target end-effector position xtarg,EE,pos,
• φ2: scalar product of the x-axes of robot base frame and

end-effector frame < Fbase,x,FEE,x >,
• φ4: scalar product of the y-axes of robot base frame and

end-effector frame < Fbase,y,FEE,y >,
• φ3: scalar product of the z-axes of robot base frame and

end-effector frame < Fbase,z,FEE,z >,
• φ4: target gripper command xtarg,grip,pos.
Reward. We use a sparse reward signal to reinforce the

agent:

rt+1 =

{
1, L(Φact,Φdes) < ε
0, otherwise

, (8)

As stated in formula 8, we compute the scalar reward
signal by computing a loss functional L using an actual
and a desired Task Map. In case the threshold condition
L(Φact,Φdes) < ε is fulfilled, the agent receives a non-zero
reward. In the ick and place scenario, the threshold condition
can be formulated as L(φ

goal,obj,pos
, φxact,obj,pos) < ε

C. Feature-based observation RL framework

As illustrated in Figure 1, our proposed framework aims
to integrate the previously formulated Markov Decision
Process (MDP) into the reinforcement learning algorithms.
The framework comprises three fundamental components:
the robot environment, a task-space calculator, and rein-
forcement learning agents. The robot environment can be
instantiated as a physical or simulated system, which can
be accurately emulated using simulators such as MuJoCo,
PhysX, or Gazebo. The task-space calculator encompasses
two essential elements: a feature extractor and an inverse
kinematic solver. Inspired by the work of Saeed et al. [4],
we adopt a combined Deep Deterministic Policy Gradient
(DDPG) and Hindsight Experience Replay (HER) approach

within our framework, as it has been shown to achieve high
sample efficiency in robot learning.

The robot environment provides the current robot joint
state q to the feature extractor component of the task-
space calculator. The feature extractor processes the joint
state and augments the observation space with a set of
robotics features. Additionally, the rewards are computed and
provided to the reinforcement learning agents. Based on this
information, the DDPR+HER agent learns an optimal policy
and selects an appropriate action. The action, a set of robotics
features represented as a Multi-Task Map, is then processed
by the task-space calculator to obtain the inverse kinematic
and transmits the desired joint state to the robot environment
for execution.

V. EXPERIMENT

The experiment focuses on the Reacher robotics task,
wherein a robot aims to reach a randomly determined po-
sition within a 3D environment. To address this task, we
implement the framework illustrated in Figure 1. In light of
its reliability, efficiency, and versatility in robotics physics
simulation, we select the widely recognized Mujoco [18] as
our simulator.

In Figure 3, we simulate the Universal Robot 5 equipped
with a suction gripper as its end effector. In each episode,
a target, denoted by a red dot, is randomly designated,
and the robot’s objective is to navigate toward this tar-
get. As Mujoco solely provides information regarding the
robot’s joint state, we employ the Robotics AI (RAI)
[]toussaintNewtonMethodsKorder2014b library to extract
task space information and enhance the observation spaces
by incorporating this additional information. Moreover, the
action space operates in the task space domain. Subsequently,
after the agent selects an action, RAI calculates the in-
verse kinematics and communicates the resultant instructions
back to Mujoco for execution. Notably, the observation
space differs across each experiment. Regardless, we employ
the DDPG+HER (Deep Deterministic Policy Gradient with
Hindsight Experience Replay) algorithm as our Reinforce-
ment Learning agent for all experiments. The actor and critic
components of the agent are implemented as feed-forward
neural networks with hidden layer dimensions of [256, 256].



TABLE I: Observation space configurations

Configurations Dimension Features φ
Baseline 6

• End-effector 3D po-
sition

• End-effector 3D ve-
locity

Simple features 3
• 3D position differ-

ence between end-
effector and target.

• The velocity of the
3D position differ-
ence between the
end-effector and tar-
get.

Feature set 0 9
• End-effector 3D po-

sition
• Target 3D position
• 3D position differ-

ence between end-
effector and target.

Feature set 1 15
• Feature set 0.
• End-effector 3D ve-

locity
• The velocity of the

3D position differ-
ence between the
end-effector and tar-
get.

Feature set 2 (full state) 23
• Feature set 1.
• End-effector quater-

nion.
• Angular difference

between target and
end-effector.

The learning rate for both networks is set at 0.001, and
network updates occur after every two episodes.

As the baseline for our study, we utilize the Reacher-v3
Gymnasium environment developed by the Farama Founda-
tion [26]. This environment’s observation space comprises
the 3D position and 3D velocity of the robot’s end effector,
while the action space is limited to the 3D position of the
end effector.

We conduct a benchmark analysis of various observation
space configurations throughout the experiment. These con-
figurations encompass distinct robotic features, such as end
effector position, velocity, and quaternion representation. The
specific details of these configurations can be found in Table
I.

VI. RESULT AND DISCUSSION

Figure 2 illustrates the impact of observation space config-
urations on the learning process of Reinforcement Learning
algorithms. The graph provides clear evidence of the critical
importance of carefully selecting the observation space to
achieve sample efficiency and robustness in RL.

Fig. 3: Universal Robot 5e Reacher task

Our feature-based approaches, namely feature set 1 and
feature set 2, have demonstrated superior performance com-
pared to the standard baseline from the Gymnasium Reach
environment. These approaches exhibit faster convergence
and higher success rates by incorporating additional and
enriched feature-based information, particularly in velocity
and speed.

The Simple Features configuration achieves the highest
final success rate despite its slower initial convergence due
to limited information. This observation suggests that RL
performance can improve significantly even with relatively
low dimensions but highly informative feature sets.

These findings underscore the significance of selecting
observation space configurations that provide relevant and
enriched feature-based information, enabling RL algorithms
to converge more efficiently and achieve higher success
rates.

VII. CONCLUSION

In conclusion, Reinforcement Learning (RL) has become
a popular approach for intelligent robotic systems, but it
still faces challenges related to sample inefficiency and lack
of generalization. Our proposed approach utilizes readily
available control techniques and enhances the observation
space with task-space feature sets to reduce the need for the
agent to learn everything from scratch. Our approach also
helps eliminate the need for the robot to re-learn inverse
kinematics, resulting in increased sample efficiency. Future
work will focus on applying our approach to various robotics
applications to evaluate their effectiveness and robustness.
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