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BND*-DDQN: Learn to Steer Autonomously
through Deep Reinforcement Learning

Keyu Wu, Han Wang*, Mahdi Abolfazli Esfahani and Shenghai Yuan

Abstract—It is vital for mobile robots to achieve safe au-
tonomous steering in various changing environments. In this
paper, a novel end-to-end network architecture is proposed for
mobile robots to learn steering autonomously through deep
reinforcement learning. Specifically, two sets of feature repre-
sentations are firstly extracted from the depth inputs through
two different input streams. The acquired features are then
merged together to derive both linear and angular actions
simultaneously. Moreover, a new action selection strategy is also
introduced to achieve motion filtering by taking the consistency in
angular velocity into account. Besides, in addition to the extrinsic
rewards, the intrinsic bonuses are also adopted during training
to improve the exploration capability. Furthermore, it is worth
noting the proposed model is readily transferable from the simple
virtual training environment to much more complicated real-
world scenarios so that no further fine-tuning is required for
real deployment. Compared to the existing methods, the proposed
method demonstrates significant superiority in terms of average
reward, convergence speed, success rate, and generalization
capability. In addition, it exhibits outstanding performance in
various cluttered real-world environments containing both static
and dynamic obstacles. A video of our experiments can be found
at https://youtu.be/19jrQGG1oCU.

Index Terms—Deep reinforcement learning; depth image; dif-
ference image; autonomous steering; intrinsic reward

I. INTRODUCTION

AUTONOMOUS robots have been extensively studied
throughout the history of artificial intelligence and they

can be used in a wide range of applications, such as explo-
ration, inspection, surveillance, information collection, and so
on [1]. A great many of methods have thereby been developed
to enable mobile robots to steer safely in various unknown
cluttered environments autonomously [2], [3]. Nevertheless,
conventional methods typically build on a variety of assump-
tions which may not hold in practical applications [4], [5] and
are also likely to be associated with intensive computational
cost [6], [7]. In addition, conventional methods generally
include a quantity of manually designed parameters [8] instead
of learning automatically from previous experiences [9]. As a
result, it is challenging to generalize these approaches well to
unseen circumstances due to their limited adaptability.

In recent years, approaches developed based on various
deep learning techniques have been introduced to address the
bottlenecks of conventional methods and explore solutions
to the aforementioned issues [10]–[13]. As an important
category, deep reinforcement learning (DRL) based methods
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have gained rapidly growing popularity since they demonstrate
promising performance while impose no requirement on la-
beled data. So far, many impressive DRL-based methods have
validated that control commands can be derived efficiently
from raw sensor inputs [14]–[17]. For instance, both networks
proposed in [18] and [19] acquired control commands from
2D laser inputs with the former used an asynchronous DRL
model while the latter applied an external controller assisted
DRL method. These laser range sensor based methods take
advantage of the negligible difference between the synthetic
and actual scenarios, and hence present high transferability
to real deployments. This is important because training DRL
models directly in real-world environments is typically im-
practical due to the extremely heavy workload on interaction
and the consequent excessive consumption of time.

However, the input observations of these laser-based DRL
approaches are provided by 2D laser range finders and contain
quite limited sensing information which may fail to be descrip-
tive enough of the three-dimensional scenarios. In contrast,
visual sensors are able to provide more sensing information
of the surroundings. In addition, they are generally more
affordable as well. Therefore, Zhu et al. proposed a DRL
architecture which mapped RGB images to control policies di-
rectly [20]. Instead of using raw RGB images, segmented ones
were adopted in [21] to control humanoid robots. Nevertheless,
although RGB images are more informative, they suffer from
the significant deviations between the simulated and real-
world domains. As a result, DRL models with RGB inputs are
deficient in generalization capability and often require further
fine-tunings.

In order to relieve the burden of real-world deployment,
depth images can be utilized rather than RGB images since
they exhibit much better visual fidelity in virtual environments
because of their textureless nature [22]. Therefore, both Tai et
al. [23] and Zhang et al. [24] chose raw depth maps as the
network inputs. Instead of acquiring depth inputs directly, Xie
et al. used depth maps converted from RGB images as the
inputs [8]. In their work, the depth information was firstly
estimated from RGB images through the FCRN introduced
in [25]. And the predicted depth maps were then fed into
the network as inputs for action determination. In most of
these works, Deep Q-Network (DQN) [26] and its well-known
variants, were utilized to train the networks. And in [27],
a noisy branching architecture was embedded in the double
DQN (DDQN) [28] to derive control commands from raw
depth input with improved performance.

Extended from [27], in this paper, a novel deep neural
network architecture is proposed to substantially improve the
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effectiveness of the DRL model for autonomous steering.
Distinctive from the previous depth-based methods which feed
merely the raw depth images into the network, we additionally
calculate the difference images between successive depth maps
and pass them as an implicit set of inputs. In this way,
the performance of our model can be improved through
extracting spatio-temporal feature representations. Generally,
spatio-temporal features are important for motion-related ap-
plications, and thus many studies have been conducted in
this field [29], [30]. As an important category, a variety
of Convolutional Neural Network (CNN) based architectures
have been explored. For instance, two-stream 2D CNNs,
3D CNNs, 3D Residual CNNs and two-stream inflated 3D
CNNs were proposed in [31], [32], [33] and [34] to learn
spatiotemporal features from video sequences. Besides, in [35]
and [36], 3D CNNs were separated to spatial and temporal
convolutions to improve the computational efficiency. Inspired
by works where depth motion maps were adopted to improve
the extraction of spatio-temporal features for human action
recognition [37], [38], we extract the spatio-temporal features
from the depth maps and their difference images in this paper,
which is simple, computationally efficient and proved to be
highly effective in our experiments. Specifically, after feeding
the raw depth images into the network, the difference images
between successive depth maps are calculated and processed
in the network as an implicit set of inputs. The two sets
of images are then regarded as the inputs of two separate
streams of the network respectively. For each stream, CNNs
are implemented to extract features from the input images. And
the generated feature representations are subsequently com-
bined and mapped to two vectors of Q-values using separate
branches of the succeeding noisy fully connected layers. In
this manner, both linear and angular control commands are
yielded simultaneously according to the estimated Q-values.

In addition, a β-consistency action selection strategy is
introduced in this paper so that the consistency in angular
control command is also taken into account during action
selection. Therefore, an angular velocity is determined in con-
sideration of both the estimated Q-values and the previously
executed velocity command. In this manner, the stability of
the developed system is improved essentially through motion
filtering while the agent is also capable to drive itself out of
dead ends through executing consistent actions. In the mean-
while, the training framework of our network is also modified.
Besides extrinsic rewards, intrinsic rewards are adopted as well
during training to improve the exploration capability, and the
intrinsic rewards are calculated as the random network distil-
lation (RND) exploration bonuses [39]. Different from other
intrinsic rewards, the RND bonus overcomes the problem that
the prediction errors can be caused by stochastic transitions
instead of experience novelty. And generally, it grants higher
rewards to more dissimilar states so as to motivate efficient
exploration.

Therefore, the main contributions of our work can be
summarized as follows. Firstly, a new end-to-end network
architecture is proposed to improve the quality of feature
representations through feeding the temporal changes into an
additional input stream of the network. Secondly, a novel

action selection scheme is also introduced and acts as a motion
filter. By considering the consistency in angular velocity
command, the proposed β-consistency strategy is capable to
increase the stability of the system, and in the meantime,
improve the model’s capability to cope with dead ends. More-
over, in addition to extrinsic reward, the RND-based intrinsic
bonus is adopted as well to augment the reward signal and
improve the exploration ability. Last but not least, although
the proposed model is trained in a simple virtual environment,
it is directly deployable in complex cluttered environments
without any fine-tuning. Hence, the trained model is readily
generalizable to various real-world environments containing
both static and dynamic obstacles. Experiments have been
carried out in various virtual and real-world scenarios to
demonstrate the superiority of our model.

The rest of this paper is organized as follows. Section II
introduces the related work. In Section III, the proposed deep
neural network architecture and the DRL-based autonomous
steering algorithm are described in detail. Section IV presents
the experimental results and discussions. Finally, conclusions
are given in Section V.

II. RELATED WORK

Proposed by Mnih et al. [26], [40], DQN has already been
applied in a broad range of fields, such as video games
[26], object localization [41], robotic manipulation [42], and
autonomous steering [43]. The remarkable success of DQN
mainly attributes to two techniques which increase the stability
of the training and addresses the issue of convergence. Firstly,
the experience replay technique significantly improves the data
efficiency and removes the temporal correlation among data.
Moreover, a separate target network is also adopted to stabilize
bootstrap updates. In [23], a DQN model was used to generate
control commands for a mobile robot based on input depth
maps to achieve collision avoidance in unknown environments.

Built upon these two techniques, many variants of DQN
have been introduced. As one of the most representative
extensions, the double DQN (DDQN) decoupled action se-
lection from evaluation to solve the over-estimation problem
by correcting biases of Q-value functions [28]. Specifically,
DDQN utilized the behavior network to choose the action
while used the target network to calculate the corresponding
action value. Rather than computing Q-values directly, the
dueling network architecture introduced in [44] decomposed
Q-values into state values and advantage functions. As a result,
it calculated the state values and the advantages separately
to generalize the learning across actions. In [8], the dueling
architecture based DDQN was applied to map the estimated
depth images to control commands for autonomous steering.

Rather than adopted the commonly used ε-greedy strategy to
achieve exploration, Fortunato et al. introduced the NoisyNet
version of DQN which enhanced the efficiency of exploration
through adding noise to parameters of the network [45].
In spite of the success of DQN and its variants mentioned
above, the competence of these algorithms is restricted when
coping with high-dimensional action spaces [46]. And as a
consequence, merely quite limited number of discrete control
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outputs are allowed typically. In order to address this limita-
tion and improve the performance of autonomous steering, a
new variant of DQN was introduced in [27] which derived
linear and angular velocities simultaneously from the raw
depth inputs via incorporating a branching noisy architecture
in the dueling DDQN. It is worth noting that in all the
previous depth-based algorithms, the feature representations
were directly extracted from the depth maps through CNNs.
Nevertheless, the approach proposed in this paper extract
feature representations simultaneously from both the raw depth
maps and the difference images between successive depth
maps, which distinguishes it from all the existing works. As
a second set of inputs, the difference images are processed by
an additional stream of CNNs so that critical features can be
extracted explicitly from the encoded temporal variations.

In addition, the proposed method also employs intrinsic
rewards along with the extrinsic rewards. Intrinsic motivation
is responsible of spontaneous curiosity and thereby can facil-
itate the exploration. For instance, an intrinsically motivated
active learning algorithm was proposed in [47] to improve
the exploration in sensorimotor spaces, and goal-directed ex-
ploration was introduced for motor control based on intrinsic
motivation in [48]. Typically, intrinsic rewards are used to
quantify the intrinsic motivation [49] and the rationale is
to predict the consequences resulted from taking an action
[50], [51]. Firstly, visitation counts of states are measures
that can be used as intrinsic rewards for effective exploration
[52], [53]. Besides, intrinsic rewards can be modeled based
on comparisons between the current observation and the past
episodic memories [54]. Moreover, the differences between the
actual and predicted consequences can also be regarded as a
measure of surprise [55], [56]. Generally, the latter dynamic-
based rewards are straightforward to scale and parallelize [57].
And in these exploration methods, since the intrinsic rewards
were induced by prediction errors, the agents were motivated
to explore regions that were difficult to predict [58], [59]. In
the meantime, the dynamics models were updated to improve
the predictions in these regions. However, an important limi-
tation of these methods is that the prediction errors can also
be induced by stochastic transitions in addition to experience
novelty [58]. By combining intrinsically motivated learning
with imitation learning, the algorithm introduced in [60] was
able to improve performance in stochastic environments. More
recently, Burda et al. [39] proposed the random network distil-
lation bonus to obviate undesirable stochasticity and achieved
remarkable success in playing various Atari games which in-
volved challenging exploration. Although the intrinsic rewards
were typically employed in tasks with sparse extrinsic reward
signals, they can also be used jointly with dense extrinsic
rewards for better exploration of the environments. In [61],
the reward signals were augmented by intrinsic motivation to
learn laser-based navigation policies for mobile robots. And
it was also demonstrated in [62] that the intrinsic motivation
can be combined with dense extrinsic reward to improve the
learning of reaching and grasping skills. In this paper, we adopt
the random network distillation bonus as the intrinsic reward
and incorporate it into our training framework for performance
improvement.

III. METHOD

A. Problem Statement

The goal of our work is to enable mobile robots to learn
autonomous steering effectively via DRL. And the developed
model is required to yield effective control commands from
raw depth images with high performance. In addition, the
acquired depth-based model is also expected to have great
transferability capability so that it can be deployed to practical
applications without any fine-tuning.

In this paper, the autonomous steering problem is considered
as a Markov Decision Process (MDP) defined using a tuple
M = (S,A,R, P, γ), where S, A, R, P and γ ∈ [0, 1]
represent the state space, action space, immediate reward,
transition function, and discount factor, respectively [63].
Therefore, at time step t, the robot executes an action at ∈A
based on the input state st ∈S. It then receives a reward rt and
transits to the next state st+1. In an MDP, the mapping from
a state s to an action a is specified by a policy π(a|s). And
given a policy π, the Q-value is defined as the expectation of
discounted cumulative rewards for taking action a in state s,
which can be formulated as follows:

Qπ(s, a) = Eπ[
∞∑
t=0

γtR(st, at)|s0 = s, a0 = a]. (1)

The objective of the MDP is then to find a policy which
maximizes this expected discounted accumulative reward. The
Q-learning algorithm can be used to solve this problem by
approximating the optimal Q-value iteratively using the fol-
lowing Bellman equation:

Q∗(st, at) = r(st, at) + γmax
at+1

Q(st+1, at+1). (2)

In our work, a state is composed of a series of four depth
maps which are all resized to 80 × 100. Besides, rather than
outputting simple commands, such as ‘forward’, ‘right’, and
‘left’, the action space of our model comprises a set of
velocities to avoid the issue of coarse action discretization.
And in the meanwhile, both angular and linear velocities can
be executed separately at the same time in accordance with the
input state. With the aforementioned design of state and action
space, the proposed network is aimed to learn a more effective
policy which leads to higher rewards, increased success rates,
as well as improved generalization capability.

B. Network Architecture

To achieve the objectives mentioned above, a novel deep re-
inforcement learning model named advanced branching noisy
dueling DDQN (BND*-DDQN) is proposed. It is essentially
an extension of the BND-DDQN model [27] and its network
architecture is illustrated in Fig. 1. Distinct from previous
works, the feature representations in the proposed network
are not only extracted from the raw depth images, but also
from a second set of implicit inputs which are the difference
images between consecutive frames. The difference image
generation unit is embedded at the beginning of our network.
And in addition to performing subtraction operation between
successive depth images, it is also critical for the generation
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Fig. 1: Network architecture of the BND*-DDQN model. Input of the network is a sequence of depth images obtained at
four successive steps. Based on the input depth maps, three difference images between consecutive frames are generated
accordingly. The feature representations are then extracted from these two sets of inputs separately through different CNN
streams. Subsequently, the network splits into three branches to map the extracted features to a state value and two advantage
functions, respectively. The vectors of Q-values are then calculated through the aggregation layers. And based on the estimated
Q-values, the linear and angular control commands are determined simultaneously.

unit to implement instance normalization so as to enhance
the quality of the difference images and thereby improve the
training performance. In this way, the temporal changes and
dynamic processes can be better expressed by the generated
difference images, whereby more crucial information can be
contributed from these temporal variations via extraction of
feature representations.

Therefore, at each time step, a stack of four sequential depth
images of size 80 × 100 are concatenated together as the
first set of inputs of the network. And then, a sequence of
three difference images are calculated according to the input
depth maps using the difference image generation unit. As
depicted in Fig. 1, feature representations are extracted from
both the explicit depth map inputs and the implicit difference
image inputs separately through two streams of CNNs. And
for each stream, three convolutional layers are adopted to
extract features. Specifically, the first CNN layer maps the
input images to 16 feature maps of size 20× 25 using filters
with size 8×12 and stride four. Then, another CNN layer filters
the obtained feature maps using 32 4× 4 kernels applied with
stride two. Next, the final CNN layer subsequently generates
32 feature maps through 3 × 3 filters with stride one. The
yielded feature maps are then flattened to form a vector of
features. Therefore, one feature vector is generated from the
raw depth images via the first stream of CNNs while another
feature vector is produced from the difference images through
the second stream of CNNs. Subsequently, the two feature
representations are concatenated together and fed into the
succeeding fully connected layers.

After feature extraction, our network is split into three
branches with one of them being used to predict the state
value. Meanwhile, the other branches are aimed to estimate the

two advantage functions corresponding to angular and linear
control commands, respectively. Generally, each of these three
branches consists of two dense layers. In the first branch, the
state value is estimated by passing the feature representations
to two fully connected layers with 512 units and 1 unit,
respectively. And in the second branch, the action advan-
tages corresponding to various linear velocities are predicted
through two fully connected layers with 512 and N neurons,
respectively, where N denotes the number of discretized linear
velocity commands. Similarly, the feature representations are
also mapped to the advantage functions associated to various
angular velocities through two dense layers which contain 512
and N hidden units, respectively.

In most of the previous works, the exploration is achieved
by adopting the ε-greedy strategy. However, the exploration
introduced in this way can be insufficient and is also lack of
consistency due to the sudden switches. Hence, in the pro-
posed model, the exploration is achieved via adding Gaussian
noises to network parameters. Therefore, instead of employing
conventional dense layers, we adopt the noisy ones [45] in
our model to improve the efficiency as well as consistency
of exploration. A linear layer can typically be written as
y = ωx + b, where x and y are the inputs and outputs,
respectively, while ω and b denote the weight matrix and
biases, respectively. In noisy layers, uncertainty can be induced
by perturbing the weights and biases, and the outputs can be
expressed as:

y = (µω + σω � εω)x+ µb + σb � εb, (3)

where � represents element-wise multiplication, µω , σω , µb,
and σb are the network parameters, whereas εω and εb denote
the random noises.
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Despite of the improvement in exploration capability, the
addition of noise in this manner results in a large number
of additional noise variables. To alleviate the computational
burden, factorized Gaussian noises are applied instead of the
above independent ones. Therefore, the elements of weight
matrix ω can be rewritten as:

ωi,j = µωi,j + σωi,jf(εi)f(εj), (4)

and the biases b can be restated accordingly as:

bj = µbj + σbjf(εj), (5)

where εi and εj are random values from normal distributions
and f is a function defined as f(ε) = sgn(ε)

√
|ε|. In Equations

(4) and (5), the initial values of µω and µb are randomly gen-
erated from the uniform distribution in the range [− 1√

N
, 1√

N
),

where N is the number of hidden neurons in the input layer.
Meanwhile, the initial values of σω and σb are set to 0.4√

N
.

In dueling DDQN, the network estimates the state value
function V (s) and the advantage function A(s, a) separately
through two different streams. The Q-value is then predicted
by combining these two streams through an aggregation layer.
In general, the Q-value can be specified as:

Q(st, at; θ, θV , θA) =V (st; θ, θV ) +A(st, at; θ, θA)

− 1

N

∑
a

A(st, a; θ, θA),
(6)

where θ, θV , θA represent the parameters of the common
layers, the value stream and the advantage stream, respectively,
while N signifies the total number of actions. On account
of the dueling architecture, both the action-independent state
values and action-dependent advantage functions can be cal-
culated straightforwardly, which improves the reliability for
Q-value estimation.

In our model, the dueling architecture is also adopted.
Nevertheless, instead of outputting one Q-value vector which
mixes up linear and angular actions, the proposed network
yields two Q-value vectors which associated with angular and
linear velocities, respectively. As introduced above, the state-
value function V (s) and the advantage functions A1 and A2

are predicted using three separate branches. And each of the
branches is consisted of different noisy fully connected layers.
The state value is thereafter combined with each advantage
function through an aggregation layer to estimate the Q-value
functions Q1 and Q2 respectively. Therefore, each of the Q-
values can be expressed as:

Qi(s, ai) = V (s) +Ai(s, ai)

− 1

Ni

∑
a′i

Ai(s, a
′
i), i = 1, 2 (7)

where Ni is the size of the i-th dimension of the 2D action
space.

C. Training Framework

The training framework for the proposed deep neural net-
work is demonstrated in Fig. 2. During training, the supervi-
sion signals are contributed from both the the extrinsic and

intrinsic rewards. Hence, the total reward signal r is defined
as the weighted sum of these two types of rewards, and hence
can be expressed as:

r = λere + λiri. (8)

where λe and λi are the scaling coefficients. Specifically, an
instructive extrinsic reward is devised as shown in Equation
(9). In general, our agent is expected to move forward rapidly
and only turns when it is necessary to avoid obstacles. There-
fore, to simplify and speed up the training process, the desired
behaviors are articulated in the extrinsic reward function.

r(st, at) =

{
−10 if in collision

λ1v
2cos(λ2vω)− λ3 otherwise (9)

In Equation (9), v denotes the linear velocity while ω rep-
resents the angular velocity. Besides, λ1, λ2 and λ3 are three
constant coefficients. In specific, the constants λ1 and λ3 are
the scaling factor and bias of the reward function, respectively.
And these two factors can be tuned to prescribe the ranges of
the extrinsic reward signals so that an appropriate distribution
of rewards is defined with the highest reward approximately
equaling to one. In the meantime, the second coefficient λ2 is
designed to regulate the influence of linear control commands
at different angular velocities. In general, if a small angular
velocity is executed, the agent is expected to maneuver forward
as speedily as possible. In these cases, the difference in linear
velocity can lead to substantial variance in extrinsic reward.
In addition, since safety is given the first priority, the largest
penalty is resulted from collision. Therefore, larger angular
velocities are expected to be chosen when it is essential for the
agent to avoid collision via changing its heading orientation.
And under these circumstances, the influence of linear control
command to extrinsic reward is lessened. In consideration of
the safety issue, the increase in linear velocity is even possible
to cause a decrease in extrinsic reward when a large angular
velocity need to be executed. Generally, the effect of linear
and angular velocities in various situations can be customized
by tuning λ2.

Besides extrinsic supervision, the random network distilla-
tion (RND) bonuses are regarded as intrinsic rewards during
training to achieve better exploration. The RND bonus is em-
ployed because it is efficient to compute, simple to implement,
and can be used to deal with image-based inputs effectively.
Moreover, it removes the interference caused by undesirable
stochastic transitions, which outperforms the other prediction
error based exploration bonuses. As depicted in Fig. 2, two
neural networks are involved in calculating the RND bonuses.
The first one is the fixed target network which is initialized
randomly and the other one is the prediction network which
need to be trained on collected data. In our case, both target
network and prediction network map the depth inputs at time
step t+1 to embeddings through multiple CNN layers followed
by fully connected layers. The parameters of the prediction
network θP are updated by minimizing the following mean
squared error:

L(θP ) = ||f̂(st+1; θP )− f(st+1)||2, (10)

where st+1 represents the next state while f and f̂ indicate
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Fig. 2: Training framework of the BND*-DDQN model. At each iteration, the current state is fed into the online network to
calculate the Q-values of the executed actions. If intrinsic rewards are adopted, the next state is passed into the RND network to
calculated the exploration bonus. In the meantime, the next state is also passed into the online and target networks to determine
the target Q-values along with the reward signal and the discounted factor. The online network is then updated based on the
loss function which is defined as the weighted sum of three terms, including the differences between the estimated Q-values
and their target values, and the difference between the two estimated Q-values.

the mapping functions of the target and prediction networks,
respectively. And in the meanwhile, the prediction errors are
normalized and thereafter regarded as the intrinsic rewards to
motivate the exploration of novel states. With the designed
extrinsic and intrinsic reward signals, the goal of training is
to learn a policy which maximizes the discounted cumulative
reward received by the agent.

Throughout the training, the online network is responsible
for action selections based on the input states, and the target
network is used to determine the target Q-values. At every
time step, the agent executes the predicted control commands,
transits to the next state and receives an immediate reward.
The current state is then updated to determine the actions in
the next step. The experience replay buffer used to store the
interactions are updated continuously and its maximum capac-
ity is set to 20,000. It is worth noting that the exploration is
achieved by adding Gaussian noises to the network instead of
using the the ε-greedy strategy. Hence, the velocity commands
can be greedily selected according to the Q-values predicted by
the online network. Furthermore, instead of the deterministic
policy, the β-consistency action selection strategy introduced
in this paper can be adopted to improve the performance
of the learned policy. The motivation of the β-consistency
strategy is to mitigate the left-right swing behavior of the
agent while also enable the agent to steer itself clear of
dead ends. In essence, the β-consistency strategy acts as an
additional motion filter by taking account of the consistency in
angular velocity command. Therefore, while the linear control
commands are still greedily chosen, an angular velocity is

selected in consideration of both the estimated Q-values and
the command executed in the previous step. And the selection
scheme for angular control commands can be described as:

a2∗k =

 a2∗k−1 if
exp(Q2∗(sk,a2i;θ))−exp(Q2(sk,a2

∗
k−1;θ))∑N

i=1 exp(Q2(sk,a2i;θ))
< β,

argmax
a2i

Q2(sk, a2i; θ) otherwise,

(11)
where β is the threshold and a2∗k−1 denotes the previously
executed action.

As described in the pseudo-code in Algorithm 1, the pa-
rameters of the online network are initialized randomly in the
beginning of training, whereas the parameters of the target
network are duplicated from θ. And then, at each training
step, we sample a batch of transitions from the buffer to
update the parameters of the online network. Specifically, the
online network estimates the two Q-value vectors, Q1(st; θ)
and Q2(st; θ), based on the input current state st. And the two
vectors of Q-values are in correspondence with the discretized
angular and linear velocities, respectively. The actions to be
executed, a1t and a2t, are then determined by following either
the deterministic or the β-consistency strategy. And their Q-
values, Q1(st, a1t; θ) and Q2(st, a2t; θ), are also extracted
accordingly. Complying with DDQN, the next state st+1 is,
in the meantime, passed into the online network to determine
the best actions at time step t+1. Besides, it is also fed into the
target network to calculate the Q-values of the selected actions.
If the intrinsic reward is adopted, the next state st+1 is also
used to calculate the exploration bonus. Next, in consideration
of the Q-values at step t + 1, the current reward rt, and the
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Algorithm 1: BND*-DDQN

1 for t = 1 to T do
2 Select a1∗k = argmax

a1i

Q1(sk, a1i; θ)

3 if use β-consistency AND
exp(Q2∗(sk,a2i;θ))−exp(Q2(sk,a2

∗
k−1;θ))∑N

i=1 exp(Q2(sk,a2i;θ))
< β then

4 Select a2∗k = a2∗k−1
5 else
6 Select a2∗k = argmax

a2i

Q2(sk, a2i; θ)

7 end
8 Execute a1∗k and a2∗k simultaneously, transit to the

next state sk+1, and receive reward rk
9 Store transition (sk, a1

∗, a2∗, rk, sk+1) in replay
buffer D

10 Sample noise variables εi, εj , ε−i , ε
−
j ∼ N(0, 1)

11 Sample a batch of NB transitions
(st, a1t, a2t, rt, st+1) from D

12 if episode terminates at t+1 then
13 Set y1 = rt and y2 = rt
14 else
15 Set y1 = rt +

γQ1(st+1, argmax
a1t+1

Q1(st+1, a1t+1, ε; θ), ε
−; θ−)

16 Set y2 = rt +

γQ2(st+1, argmax
a2t+1

Q2(st+1, a2t+1, ε; θ), ε
−; θ−)

17 end
18 Compute loss
19 L(θ) = E[α1(y1 −Q1(st, a1t, ε; θ))

2

20 +α2(y2 −Q2(st, a2t, ε; θ))
2

21 +α3(Q1(st, a1t, ε; θ)−Q2(st, a2t, ε; θ))
2]

22 Update parameters of the online network θ
23 if t mod NT = 0 then
24 Update parameters of the target network θ− ← θ

25 end
26 end

discount factor γ, the target Q-values at time step t can be
calculated using:

yi = rt + γQi(st+1, argmax
ait+1

Qi(st+1, ait+1, ε; θ), ε
−; θ−),

(12)
where i indicates the dimension of the action space. Besides,
ε and ε− denote the noise variables of the online and target
network, respectively, while θ and θ− represent the parameters
of the online and target network, respectively.

According to the target Q-values and their current values
estimated by the online network, our loss function is then

defined as:

L(θ) = E[α1(y1 −Q1(st, a1t, ε; θ))
2

+ α2(y2 −Q2(st, a2t, ε; θ))
2

+ α3(Q1(st, a1t, ε; θ)−Q2(st, a2t, ε; θ))
2],

(13)

where α1, α2, and α3 are three scaling factors. The first two
terms in Equation (13) are aimed at minimizing the differences
between the predicted Q-values and their corresponding target
values. And because the angular and linear velocities are
performed concurrently during the interaction, the last term
is designed to minimize the difference between the Q-value
estimates corresponding to the two commands. The weights
and biases of the online network are updated constantly
through backpropagation and the Adam optimizer is used
with a learning rate of 1e-5. During the backpropagation, the
gradients with regard to the CNN layers are divided by 2 in
consideration of the branching architecture. On the contrary,
the target network is not trainable and its parameters are
synchronized with those of the online network every 1000
steps.

IV. EXPERIMENTS

A. Experiments in Virtual Environments

A 10× 10 virtual training environment with various obsta-
cles is created in Gazebo [64] as demonstrated in Fig. 3 and
a simulated Pioneer 3-AT robot is used for interaction. The
training is performed using Tensorflow [65] on a desktop with
Intel i7-7700 CPU, 32GB RAM and NVIDIA GeForce GTX
1080 Ti GPU, and the average training time for each iteration
is approximately 0.22 second. It is noteworthy that even if
trained in a simple virtual environment, the proposed model
can generalize well to various complex virtual as well as real-
world environments without any fine-tuning. During training,
the raw depth images are captured using the depth sensor of a
simulated Kinect. As introduced in Section III, after the input
depth maps are fed into the network, the difference images
are generated accordingly and both sets of images are then
used to extract the crucial features. Subsequently, the control
commands are derived based on the feature representations.
During the experiments, the velocities are published as a
ROS twist message, and in the meantime, the ROS odometry
message is subscribed to calculate the extrinsic reward signal.

Fig. 3: The virtual training environment.
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In addition to the proposed model, a series of baseline mod-
els, including DQN, DDQN, Dueling DDQN, Noisy Dueling
DDQN, and BND-DDQN, are also trained in the same envi-
ronment for comparison. To extract features from depth inputs,
these baseline models adopt the same CNN architecture as our
depth image stream illustrated in Fig. 1. Besides, all models
are trained from scratch with the batch size and discount factor
being set to 64 and 0.99, respectively. And for models which
adopt the ε-greedy strategy to achieve exploration, the value of
ε is initially set to 0.1 and reduced constantly to 0.0001 within
the first 200,000 steps. In all experiments, seven discrete linear
velocities are considered, including 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
and 0.7 m/s. Meanwhile, the angular velocity is also chosen
from seven values, including −π/4, −π/6, −π/12, 0, π/12, π/6,
and π/4. Since there is no branching architecture embedded in
the first four baseline models for Q-value calculation, these
four models can only select either an angular or a linear
velocity at each step. However, for the BND-DDQN and the
proposed models, both velocities are picked and executed at
every time step. Besides, the weighting factors, α1, α2 and
α3, of the loss function defined in Equation (13) are set to
0.4, 0.4 and 0.2, respectively. During training, all baseline
models are supervised only by the extrinsic rewards introduced
in Equation (9), where λ1, λ2 and λ3, are set to 2, 2, 0.1,
respectively. To demonstrate the superiority of the proposed
network architecture, the training of our BND*-DDQN is
firstly carried out without implementing the β-consistency
strategy while driven only by the extrinsic rewards as well.
And then the β-consistency strategy is adopted additionally
and the corresponding model is indicated as BND*-DDQN
w/ β-Consistency. During training, the threshold β in Equation
(11) is increased from the initial value of 0.001 to the final
value of 0.05 within 2e5 training iterations. On this basis, the
network, denoted as BND*-DDQN-RND w/ β-Consistency,
is trained by employing the RND exploration bonus together
with the extrinsic reward. The scaling coefficients, λe and λi,
in Equation (8) are set to 1 and 0.1, respectively. Since the
extrinsic reward is adopted to yield the optimal policy for
the autonomous steering task while the intrinsic reward is to
improve the exploration capability during the training, a larger
scaling coefficient is assigned to the extrinsic rewards because
it is associated to our primary objective more closely.

For each model, the maximum training iterations is set to
5e5, and the maximum length of an episode is set to 500 so
that an episode terminates without any penalty after 500 steps.
At the beginning of each episode, the agent starts from the
center of the training environment with a random orientation.
And throughout the training, each model is evaluated every
5000 iterations. The evaluation is performed by calculating
the average episodic reward of 5 episodes. And the episodic
reward refers to the sum of the instantaneous extrinsic re-
wards received within an episode. To achieve better statistical
significance, each model is trained from scratch three times
using different random seeds and the means of the average
episodic rewards obtained by the eight models are illustrated
in Fig. 4. It can be observed that, at the end of training,
the DQN model results in the lowest average episodic reward
while the DDQN and Dueling DDQN models achieve better

and similar performance. Compared to these three models,
the Noisy Dueling DDQN model leads to a higher episodic
reward through enhancing the exploration. However, it is less
competitive than the BND-DDQN model which results in
improved average episodic reward as well as convergence
rate. Compared to these baseline models, the proposed BND*-
DDQN model exhibits the most prominent performance. It
leads to notably increased average episodic rewards throughout
the training with a convergence rate similar to that of the
BND-DDQN model. And it is worth noting that if the β-
consistency action selection strategy is employed additionally,
the proposed model is able to yield even higher average
episodic rewards and the stability of the training process is
also improved at the same time. Moreover, the introduction of
the RND-based intrinsic reward enables our model to reach
the convergence more rapidly, and hence further improves the
training efficiency.

Besides average episodic reward, a comparison of success
rate is also performed. The success rate is defined as the
proportion of successful episodes and an episode is identified
to be successful if it terminates without any punishment.
To examine the generalization capability, the trained models
are evaluated in three different types of virtual environments
shown in Fig. 5. The first Willow Garage world is an office-
like environment which contains a number of narrow corridors
and cramped rooms with small entrances. The second world is
a constrained indoor scenario containing a number of unseen
furnitures [66] and the third world provides an outdoor envi-
ronment. Generally, the situations encountered in these virtual
environments are much more complex compared with those
involved in the training environment. And it is noteworthy
that the models trained in the simple scenario are applied in
these virtual environments directly without any fine-tuning.
During the evaluation, an episode’s maximum length is set to
300. In each environment, a model’s success rate is computed
based on 50 episodes and the starting poses are specified in
Fig. 5 where the red dots indicate the starting locations and
the yellow arrows denote the starting orientations. In the first
and third environments, the robot starts with each pose 10
times. And in the second environment, the robot starts with
the orientations denoted by the left and right arrows 20 times,
respectively, and starts with the orientation indicated by the
down arrow 10 times.

The comparison results of success rate are described in
Table I. As expected, the proposed model outperforms the
existing methods consistently. In the first scenario, the success
rates achieved by the DQN and DDQN models both plunge
below 25%. With more sophisticated network architectures,
the Dueling DDQN, Noisy Dueling DDQN, and BND-DDQN
models leads to increased success rates. However, the highest
success rate attained by the baseline methods is merely 40%.
On the contrary, the proposed BND*-DDQN model yields
a success rate of 84%. Moreover, the BND*-DDQN w/ β-
Consistency and the BND*-DDQN-RND w/ β-Consistency
models further raise the success rate up to 96% and 98%,
respectively. Similarly, the proposed model also achieves no-
ticeably increased success rate in the second environment.
Although the BND-DDQN and the BND*-DDQN models
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Fig. 4: Average episodic rewards obtained by different models.

(a) (b) (c)

Fig. 5: The virtual environments used for evaluation. The red dots indicate the starting locations during the experiments and
the yellow arrows illustrate the corresponding starting orientations. (a) The office-like Willow Garage environment. (b) An
indoor environment with a number of unseen furnitures. (c) An outdoor environment.

achieve the same success rates in the third environment, the
proposed BND*-DDQN w/ β-Consistency and the BND*-
DDQN-RND w/ β-Consistency models retain their superiority.
And it is worth noting that the success rate of our model is
higher than 90% in all scenarios if the β-consistency action
selection strategy is adopted. Therefore, the proposed approach
exhibits much superior generalization capability compared
with the existing methods.

In general, the competence of our model is firstly attributed
to the improvement in feature abstraction. By extracting ad-
ditional features from the generated difference images sep-
arately, the temporal changes are taken into account explic-
itly to provide critical information for action determination.
From the experimental results, it is also noticed that the

performance improvement contributed from the addition of
the extra difference image stream is more noticeable in more
constrained environments. Specifically, in the less constrained
outdoor environment, no obvious improvement in success rate
is observed by adopting the BND*-DDQN model. However,
the BND*-DDQN model leads to a much higher success rate
in the constrained indoor environment and the superiority
becomes even more significant in the most constrained Willow
Garage world. Typically, in constrained environments, the dif-
ference images are more informative and thereby more likely
to improve performance. Besides, the outdoor environment
also contains more unfamiliar patterns, which imposes more
difficulties in adaptability. In addition to feature extraction,
the response capability of the BND*-DDQN model is also

TABLE I: Comparison of success rate between the proposed model and the existing methods.

Env DQN DDQN Dueling Noisy Dueling BND- BND*- BND*-DDQN BND*-DDQN-RND
DDQN DDQN DDQN DDQN w/ β-Consistency w/ β-Consistency

1 20% 24% 32% 34% 40% 84% 96% 98%
2 30% 34% 30% 44% 70% 82% 94% 90%

3 56% 62% 66% 60% 70% 70% 92% 94%
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(a) 0.7 m/s, 0 rad/s (b) 0.1 m/s, π/12 rad/s (c) 0.1 m/s, −π/6 rad/s

(d) 0.7 m/s, 0 rad/s (e) 0.5 m/s, −π/4 rad/s (f) 0.5 m/s, 0 rad/s

(g) 0.5 m/s, −π/4 rad/s (h) 0.6 m/s, π/12 rad/s (i) 0.7 m/s, π/12 rad/s

Fig. 6: Intermediate steps of the first real-world experiment. In this experiment, the BND*-DDQN model is deployed in an
office environment. For each step, the depth image is demonstrated on the top left corner, the first-person view is shown on the
bottom left corner, and the corresponding third-person view is displayed on the right. Besides, the derived linear and angular
velocity commands are indicated in the sub-caption.

outstanding because angular and linear velocity commands
are selected and executed concurrently. Moreover, the β-
consistency strategy substantially improves the performance as
well through increasing the stability and motion consistency
of the agent. Last but not least, the training efficiency can
also be improved by introducing the RND-based intrinsic re-
wards. Although the proposed model outperforms the existing
approaches in terms of average episodic reward, convergence
speed, success rate, as well as generalization capability, it still
has room to improve. For instance, although the difference
images are generated as an additional set of inputs, the input
information can still be insufficient to describe the situations
since only four successive time steps are considered. This issue
can be alleviated by integrating more past memories into the
network in an efficient way. Besides, the current sensor can be
replaced by one with larger field of view so that more sensing
information can be exploited for decision making.

Last but not least, since our BND*-DDQN requires only
0.0068s on average to map the depth images to a pair of veloc-
ity commands, it is quite competent for real-time autonomous
steering tasks. Besides the aforementioned evaluations, various
real-world experiments are also conducted and presented in the
following to further demonstrate the superiority and general-
ization capability of the proposed BND*-DDQN approach.

B. Experiments in Real-World Environments
In all the real-world experiments, a Pioneer 3-AT mobile

robot is used to execute the steering commands derived by

our model and a Kinect is used to capture the depth images.
The proposed model is evaluated in three different types of
real-world scenarios, including a cluttered office environment,
a constrained workshop environment, and a changing outdoor
environment. Similar to the previous experiments, after train-
ing in the simple virtual environment, our model is applied
in these real-world scenarios directly with no fine-tuning and
the β-consistency strategy is adopted while determining the
control commands based on the predicted Q-values. For all
the following experiments, the intermediate steps are demon-
strated, and for each step, the raw depth image is shown
on the top left corner, and the first-person view is presented
on the bottom left corner. Besides, a third-person view is
also presented on the right to describe the situation in a
more intuitive way. Moreover, the linear and angular velocity
commands determined at each step are indicated in the sub-
caption correspondingly.

First, our model is deployed in a cluttered office environ-
ment. As shown in Fig. 6(a), the mobile robot is controlled
to move forward with the maximum linear velocity at the
beginning. And when a cabinet is detected, the minimum
linear velocity along with an angular velocity of π/12 rad/s
is selected for the mobile robot to change its orientation in
the constrained space without any collision. Similarly, the
robot is commanded to slow down again when the second
turning point is reached, however, a larger negative angular
velocity is executed in this case to make a right turn safely.
After the second turn, the robot starts to receive the maximum
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(a) 0.7 m/s, 0 rad/s (b) 0.6 m/s, −π/4 rad/s (c) 0.7 m/s, π/12 rad/s

(d) 0.2 m/s, π/6 rad/s (e) 0.2 m/s, π/4 rad/s (f) 0.7 m/s, π/12 rad/s

Fig. 7: Intermediate steps of the second real-world experiment. In this experiment, the BND*-DDQN model is evaluated in a
workshop environment. For each step, the depth image is demonstrated on the top left corner, the first-person view is shown
on the bottom left corner, and the corresponding third-person view is displayed on the right. Besides, the derived linear and
angular velocity commands are indicated in the sub-caption.

linear velocity again in order to pass through the corridor
rapidly. As demonstrated in Fig. 6(e)-6(g), at the third turning
point, a decreased linear velocity and the maximum negative
angular velocity are chosen at first to avoid bumping into
a cabinet. And in a later step, a linear velocity of 0.5 m/s
and a zero angular velocity are derived so that the robot
is able to pass through between the cabinet and the chair.
The robot is subsequently controlled to turn right with the
maximum angular velocity in order to continue the maneuver
without colliding with the wall. Then, the robot travels forward
until it is necessary to make a left turn to avoid a chair, as
shown in Fig. 6(h). And near the end of the first experiment,
the robot is commanded to make a left turn again with the
minimum angular velocity to avoid another chair. Therefore,
the mobile robot succeeds in maneuvering in the cluttered
office environment autonomously and safely by following the
commands derived by the proposed model.

In addition, our BND*-DDQN model is evaluated in a
workshop environment as well. And the purpose of the second
experiment is to demonstrate the capability of the proposed
model in dealing with dynamic obstacles and dead ends.
Firstly, an example of avoiding a walking human is illustrated
in Fig. 7(a)-7(c). At the beginning, the robot is traveling
forward with the maximum linear velocity when the walker
begins to appear in its field of view. And as the walker keeps
moving ahead, the commanded linear velocity is reduced to
0.6 m/s. Meanwhile, the orientation of the robot is adjusted
by executing the maximum negative angular velocity so as
to avoid colliding with the walker. Subsequently, the robot
is controlled to pass through between the two chairs with a
linear velocity of 0.7 m/s. In the second example as depicted
in Fig. 7(d)-7(f), the robot drives itself out of a dead end. At
the beginning of the second scenario, the robot is running into
a dead end. Therefore, as shown in Fig. 7(d), a smaller linear
velocity of 0.2 m/s and a larger angular velocity of π/6 rad/s
are chosen to change the steering orientation of the robot while

preventing it from bumping into the wall. And at a later step
in the more imperative situation, the robot is commanded to
maintain a small linear velocity while continuing to turn left
with the maximum angular velocity. After steering clear of the
danger, the maximum linear velocity is yielded and sent to the
robot again while the angular velocity is reduced accordingly.
In this example, the mobile robot steers clear of the dead end
by turning left consistently without any left-right swing, which
exemplifies the importance of the β-consistency strategy.

Furthermore, the proposed BND*-DDQN model is also
evaluated in a changing outdoor environment as shown in
Fig. 8. While steering in the outdoor environment, the robot
is capable of responding rapidly to both static and dynamic
obstacles. For instance, as demonstrated in Fig. 8(d), a wall is
detected near the end of the experiment. Therefore, the min-
imum positive angular velocity is commanded to the mobile
robot at first to avoid collision with the wall. However, as
shown in Fig. 8(e), some plants are perceived after the turning,
and hence a negative angular velocity is subsequently selected
by our BND*-DDQN model to change the robot’s steering
direction quickly. In this way, the robot is able to pass through
between the wall and the plants. And it is then commanded
to move forward with the maximum linear velocity again to
pass through a narrow passage rapidly.

The experimental results demonstrate the effectiveness,
efficiency, as well as high transferability of the proposed
BND*-DDQN model. In comparison to existing methods, our
approach exhibits significant improvement in terms of average
reward, success rate, and convergence speed. Moreover, even
though our model is trained in a simple virtual environment, it
is readily transferable and can be directly deployed in various
complex virtual and real-world scenarios with no fine-tuning.

V. CONCLUSION

Conventional methods are typically built upon various as-
sumptions and require manual tuning of a number of pa-
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(a) 0.2 m/s, π/6 rad/s (b) 0.7 m/s, π/12 rad/s (c) 0.7 m/s, 0 rad/s

(d) 0.7 m/s, π/12 rad/s (e) 0.7 m/s, −π/4 rad/s (f) 0.7 m/s, 0 rad/s

Fig. 8: Intermediate steps of the third real-world experiment. In this experiment, the BND*-DDQN model is deployed in a
changing outdoor environment. For each step, the depth image is demonstrated on the top left corner, the first-person view is
shown on the bottom left corner, and the corresponding third-person view is displayed on the right. Besides, the derived linear
and angular velocity commands are indicated in the sub-caption.

rameters. Therefore, it is challenging for them to derive
general control policies which can adapt to various unseen
scenarios. In this paper, an end-to-end model named BND*-
DDQN is proposed for mobile robots to learn depth-based au-
tonomous steering effectively via deep reinforcement learning.
Our BND*-DDQN model derives the control commands from
depth images directly through a novel network architecture.

In specific, in addition to the input depth maps, difference
images between successive frames are generated within the
network as well and regarded as an implicit set of inputs.
The feature representations are then extracted from both the
depth and the difference images through two separate CNN
streams. In this way, the quality of the extracted feature
representations can be improved through considering the tem-
poral variations explicitly. The extracted features are then
combined and mapped to two vectors of Q-values through
different branches of noisy layers so that both angular and
linear velocities can be determined simultaneously. Moreover,
a new action selection scheme named β-consistency strategy
is also introduced, which takes the consistency in angular
velocity into account during action selection. In essence, the
β-consistency strategy works as a motion filter to increase the
stability of the system and improve the capability of coping
with dead ends. Besides, in addition to extrinsic rewards,
we also adopt the RND bonuses as intrinsic rewards during
training to improve the exploration capability. Lastly but
not least, it is noteworthy that although our BND*-DDQN
model is trained in a simple virtual environment, it is readily
transferable and can be applied to a variety of complex real-
world environments directly without any fine-tuning. Our next
challenge will be to develop a new model for goal-directed
autonomous navigation tasks.
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