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Abstract—We focus on two classes of problems in graph mining
here: (1) finding trees and (2) anomaly detection using network
scan statistics in complex networks. These are fundamental
problems in a broad class of applications. Most of the parallel
algorithms for such problems are either based on heuristics,
which do not scale very well, or use techniques like color
coding, which have a high memory overhead. In this paper, we
develop a novel approach for parallelizing both these classes
of problems, using an algebraic representation of subgraphs
as monomials—this methodology involves detecting multilinear
terms in multivariate polynomials. Our algorithms show good
scaling over a large regime, and they run on networks with close
to half a billion edges. The resulting parallel algorithm for trees
is able to scale to subgraphs of size 18, which has not been
shown before, and it significantly outperforms the best prior
color coding based method (FASCIA) by more than two orders
of magnitude. Our algorithm for network scan statistics is the
first such parallelization, and it is able to handle a broad class of
scan statistics functions (both parametric and non-parametric),
with the same approach.

I. INTRODUCTION

Many problems in graph mining and social network analysis
can be reduced to questions about different kinds of subgraphs;
two important classes of such problems, which are the focus
of our paper, are: (1) Detecting and counting subgraphs, such
as paths and trees, of a given size k—these are used for
characterizing different kinds of networks, especially in bio-
logical models [1], [2]. (2) Anomaly detection in network data
using graph scan statistics, which involves finding connected
subgraphs of size k, optimizing different kinds of anomaly
score functions [3], [4], [5], [6]—this arises in a number of
applications, such as social network analysis, epidemiology,
finance, and bio-surveillance (see [7] for a survey).

Both problems are computationally very challenging. For
instance, exact detection of paths is NP-hard and the cor-
responding counting problem is #P-hard. Development of
parallel algorithms for these problems has been an active area
of research. Many parallel algorithms exist for counting local
subgraphs, such as triangles [8], [9], [10], [11]. Finding trees is
much harder, and a number of heuristics have been developed.
One of the few techniques that gives rigorous approximation
guarantees is color coding [1], [12], [2]. Parallel adaptations
have been developed using MapReduce [13] and MPI [14],
[15]. The MPI based FASCIA algorithm [14], [15] is the
state-of-the-art in terms of counting trees in massive networks,

scaling to finding trees with up to 12 vertices in networks
with one billion edges. However, it seems very challenging to
scale the color coding method to larger subgraphs, even on
small networks. The main reason is that the time and space
complexity of the color coding technique both scale as 2k,
where k denotes the subgraph size. In this paper, we take the
first steps towards beating this bound, which has remained a
significant open problem since [15]. Our approach involves
parallelization of a powerful algebraic technique for detecting
multilinear terms in a multivariate polynomial, developed by
Koutis [16] and Williams [17].

Optimizing network scan statistics leads to challenging
optimization problems as well. Color coding has also been
used to develop the first method with rigorous approximation
guarantees [18]; however, this has not been parallelized be-
cause of its high memory overhead. In [19], we have developed
a parallel adaptation of the multilinear detection technique
using both GraphX and Giraph. However, none of these scaled
beyond networks with 40 million edges.

In this paper, we develop a distributed algorithm for mul-
tilinear detection, which immediately leads to highly scalable
algorithms for both paths and trees, and network scan statistics.
Our contributions are:
1. MIDAS: Distributed algorithm for multilinear detection
and applications to subgraph analysis. We develop MIDAS,
a distributed MPI based algorithm for finding paths and trees
through detection of multilinear terms with k variables of
the form xi1xi2 . . . xik (i.e., a term in which all variables
have exponent 1) in a multivariate polynomial P (x1, . . . , xn).
The sequential algorithm uses a matrix representation of a
group algebra (as will be described later) [16], [17], and
its structure lends itself to a natural parallelization. We give
rigorous bounds on the performance in terms of the time and
space complexity, which scale as O(2k) and O(k), respec-
tively, compared with O(2kek) and O(2k) for color coding,
respectively [13], [14], [15]. For random graphs, we show a
rigorous scaling with N , the number of processors for N ≤ 2k.
2. Cache optimization and weak scalability. Our algorithm
partitions the graph G into N1 parts. The computation in-
volves 2k iterations, and N1 processors together perform one
iteration—this allows us to schedule N/N1 such computations
to occur in parallel. The total compute time exhibits good weak
scaling. Additionally, our data structures for supporting Galois



field operations during the iterations support a temporal cache
locality, which actually leads to a reduction in the compute
time as N1 increases. On the other hand, the communication
cost increases with N1, leading to an optimal value of N1 for
the best performance.
3. Experimental results. We evaluate our results on a number
of real and synthetic networks with up to 250 million edges
and subgraph sizes up to k = 18. The reduced memory
footprint allows us to scale to paths of size 18, which has
not been done before. Our algorithms for both problems
show reasonable scaling up to 512 processors, supporting our
theoretical analysis. The running time grows linearly with the
network size and as 2k for the subgraph size k.
4. Comparison with prior methods. Our algorithm for
finding paths gives over two orders of magnitude improvement
in time compared to FASCIA, the state of the art method based
on color coding [14], [15]. Our algorithm for scan statistics
improves on the Giraph based implementation [19] by over
an order of magnitude, and it scales to significantly larger
networks.

One additional advantage is that our parallel algorithm based
on multilinear detection is conceptually much simpler than
color coding based algorithms, though it requires the language
of algebra. It also requires far less bookkeeping than color
coding. As we discuss later in Section IV, the obvious ways
to try to parallelize multilinear detection do not perform well;
instead, we find that a careful interplay between the degree
of partitioning, as well as batching a set of iterations and the
data structures help yield the optimal results.

II. PRELIMINARIES

A. Problem Formulation and Notation

We will focus primarily on the following two classes of
problems in this paper; our approach can be extended more
broadly.

1) Finding Paths and Trees: Given a graph G = (V,E)
with n = |V |, m = |E|, and a subgraph H = (V H , EH),
with k = |V H |, find a mapping f : V H → V , such that
(i, j) ∈ EH only if (f(i), f(j)) ∈ E. Such a mapping is
referred to as a non-induced embedding of H in G.

Problem 1: (k-Tree) Given a weighted graph G = (V,E)
with a weight vector w, and a tree denoted by H = (V H , EH)
with |V H | = k, the objective is to determine if there exists an
embedding of H in G.

We will consider the following approximate version of
problem 1: determine if a non-induced embedding exists with
probability at least 1 − ε, where ε ∈ (0, 1) is a parameter.
Other common variants of this problem are: (1) counting all
embeddings, and (2) finding a maximum weight embedding in
a weighted version of the graph; our approach can be extended
to all these variants.

2) Anomaly Detection Using Graph Scan Statistics: We use
the notation of [18] here. We assume each node v ∈ V has two
associated values, which vary with time (we will not show the
time to avoid complicating the notation): (1) a baseline count,
b(v), which indicates the count that we expect to see at the

node v—e.g., the number of people in a county corresponding
to node v—and (2) an event count or weight, w(v), which
indicates how many occurrences of an event of interest are
seen at the node—e.g., the number of cases of a disease in a
county.

Graph scan statistics are among the most commonly used
methods for detecting anomalies or “hotspots” in network data
[3], [4], [5], [20], [6]. Informally, this approach formalizes
anomaly detection as a hypothesis testing problem. Under the
null hypothesis H0, it is business as usual, and the event counts
for all nodes are generated proportionally to their baseline
counts. Under the alternative hypothesis H1(S), counts of
a majority of the vertices are generated (again) with rate
proportional to the baseline counts, but there exists a small
connected subset S ⊆ V of vertices for which the counts are
generated at a higher rate than expected. Then, the goal is to
find a set of vertices S that maximizes an appropriate scan
statistic function F (S), typically a log-likelihood ratio that
compares event counts to baseline counts. We define a scan
statistic in terms of the event and baseline counts of a node
set:

F (S) = F (W (S), B(S), θ),

where W (S) =
∑
v∈S w(v) is the total event count or weight

of S, B(S) =
∑
v∈S b(v) is the baseline count of the set, and

θ represents possible additional arguments to F .
The graph anomaly detection problem can be posed as the

following constrained optimization problem.
Problem 2: Given a graph G = (V,E), a scan statistic F (·),

the associated counts for vertices—w and b—and a parameter
k, find a connected subset S ⊆ V that maximizes F (S) =
F (W (S), B(S), θ) with B(S) ≤ k.

Problem 2 is NP-hard, in general, as shown in [18]. We
consider the following approximate version: find a subset S
such that B(S) ≤ k and F (S) equals the optimum, with
probability at least 1− ε, where ε ∈ (0, 1) is a parameter.

III. k-MULTILINEAR DETECTION AND SEQUENTIAL
ALGORITHMS

We describe the sequential multilinear detection algorithm.
This will start with some introduction to group algebras and
Galois fields and end with the sequential algorithm for finding
k-paths. Because of the limited space, we only describe the
main ideas here and refer to [16], [17] for more details.

Let X = x1, . . . , xn be a set of variables, and let P (X) be
a polynomial, which is a sum of monomials on X . We will
denote P (X) =

∑
S Πi∈Sxi as a monomial, where the sum is

over multisets S. An example of a polynomial on six variables
is P (x1, x2, x3, x4, x5, x6) = x21x2+x2x3x4+x3x4x5+x5x6.
A monomial is called multilinear or square-free if all its
variables have exponent 1, and its degree is the sum of the
exponents of all its variables. For instance, in the example
above, x2x3x4, x3x4x5, and x5x6 are multilinear monomials,
but x21x2 is not multilinear. Given variables X = x1, . . . , xn
and a polynomial P (X), the goal in the k-Multilinear Detec-
tion (k-MLD) problem is to decide whether or not P (X) has
a multilinear monomial of degree exactly k.



We note that the polynomial P (X) may have an ar-
bitrary number of terms—i.e., exponential on the size of
n—therefore, the problem is not as simple as writing the
polynomial explicitely and checking each term. Rather, we
assume that P (X) is given succintly in a recursive form, and
the “yes”/“no” decision has to be made without unrolling
this recursion. In general, we also have a weight wS for
each multinomial Πi∈Sxi. Formally, we have the following
problem.

Problem 3: (k-MLD problem) Given a polynomial P (·)
defined recursively, in which each monomial has degree at
most k and weight weight wS , determine: (1) if P (·) has a
multilinear term of degree k, and (2) the maximum weight of
any multilinear term, if one exists.

A. Group Algebras
We discuss some notation from group algebras that is crucial

for the paper. Let Zk2 be the group formed by all the k-
dimensional binary vectors, and define the group multiplica-
tion operation as entry-wise XOR. For example, Z2

2 consists of
the vectors v0 = (0, 0), v1 = (0, 1), v2 = (1, 0), v3 = (1, 1).
We note that v0 is the multiplicative identity of the group, and
each element is its own multiplicative inverse: vi · vi = v0.
Now, we define a group algebra Z2[Zk2 ]. Each element in the
group algebra is a sum of elements from Zk2 with coefficients
from Z2 (i.e., either 1 or 0):

∑
v∈Zk

2
avv, where av ∈ {0, 1}.

The addition operator of the group algebra is∑
v∈Zk2

avv +
∑
v∈Zk2

bvv =
∑
v∈Zk2

(av + bv)v,

where the addition of the coefficients is modulo 2, and the
multiplication is defined as∑

v∈Zk2

avv


∑

u∈Zk2

buu

 =
∑
v∈Zk2

(av · bu)(v · u).

Example. For k = 2, the group algebra Z2[Zk
2 ] has 22

2
= 16 elements, such

as

x1 = 0·
[
0

0

]
+1·

[
0

1

]
+1·

[
1

0

]
+0·

[
1

1

]
, which we also write as

[
0

1

]
+

[
1

0

]

x2 =

[
0

0

]
+

[
1

0

]
We have

x1 + x2 =

[
0

0

]
+

[
0

1

]
+ 2

[
1

0

]
=

[
0

0

]
+

[
0

1

]

x1x2 =

([
0

1

]
+

[
1

0

])
·
([

0

0

]
+

[
1

0

])
=

[
0

0

]
+

[
0

1

]
+

[
1

0

]
+

[
1

1

]
It is easy to check that

x
2
1x2 = 0 ·

[
0

0

]
+ 0 ·

[
0

1

]
+ 0 ·

[
1

0

]
+ 0 ·

[
1

1

]
= 0̄ (additive identify)

B. Sequential algorithm for Multilinear Detection
We briefly discuss the algorithm of Koutis [16], which forms

the basis of our paper. An important property is that for any
vi ∈ Zk2 , the square of the term (v0 + vi) ∈ Z2[Zk2 ] evaluates
to 0:

(v0+vi)
2 = v20+2(v0·vi)+v2i = v0+(0 mod 2)vi+v0 = 2v0 = 0.

We can show that, if we choose a vi ∈ Zk2 uniformly at
random and set xi = v0+vi, then a multilinear monomial does
not evaluate to 0̄ with high probability, whereas a monomial
with squares is always 0̄ (as in the box above). The algorithm
was later refined in [17] by evaluating the polynomial over the
group algebra GF (23+log2 k)[Zk2 ], where GF (p) is the Galois
field of order p [21], and this is the version that we implement.
But, to simplify the discussion below, we assume that we are
working on the group algebra Z2[Zk2 ].

A polynomial P (x1, . . . , xn) with variables from
Z2[Zk2 ] can be evaluated in time O(2kpoly(n)) and space
O(2kpoly(n)), resulting in Theorem 1.

Theorem 1 (Koutis [16] and Williams [17]) There exists
an algorithm that, given an instance P (x1, . . . , xn) of the
k-MLD problem, correctly returns “no” if P (X) does not
contain a k multilinear term. Otherwise, if P (X) has a k
multilinear term, it returns “yes” with probability at least 1/5.
The algorithm has time complexity O(2kpoly(n)) and space
complexity O(2kpoly(n)).

C. Implementation Using a Matrix Representation of Z2[Zk2 ]

Theorem 1 performs operations in the group algebra Z2[Zk2 ],
which takes O(2kpoly(n)) space. Koutis [16] showed that
the space complexity can be reduced to O(kpoly(n)) by
using the idea of matrix representations. The main idea is
that every element of the group algebra can be represented
as a 2k × 2k matrix, and the polynomial P (X) evaluates
to 0̄ if and only if the trace of its corresponding matrix
representation is 0 mod 2k+1. We can compute the trace by
evaluating the polynomial over the group of all integers 2k

times, once for each element of the diagonal. For each variable
xi = v0 + vi, the tth diagonal element in the corresponding
matrix representation is 1+(−1)v

T tbin , where tbin is the k-bit
binary representation of t.

D. Application to k-Path
As an example of the multilinear detection technique, we

now describe a sequential algorithm for the k-Path problem,
which is a special case of Problem 1. We are given a graph
G(V,E) and a parameter k, and the algorithm decides whether
or not the graph has a path of length k. First, we reduce k-Path
to a k-MLD instance (this follows from [16], [17]). Given a
graph G(V,E), let xi denote a variable associated with each
node i ∈ V . We define poynomials P (i, j) for all i ∈ V ,
j ≤ k in the following manner.
• P (i, 1) = xi for all i ∈ V
• For j > 1, P (i, j) =

∑
u∈NBR(i) P (i, 1)P (u, j − 1)

• Define the polynomial P (x1, . . . , xn) =
∑
i P (i, k)

Intuitively, a polynomial P (i, j) encodes all the possible
walks of length j ending at node i. Each monomial in P (i, j)
corresponds to one walk. It can be verified that the graph G has
a path of length k if and only if the polynomial P (x1, . . . , xn)
has a multilinear term—i.e., a walk with no repeated vertices.

Algorithm 1 presents the full procedure. With the matrix
representation, the polynomial for k-Path is evaluated over



2k iterations (lines 6—12). In each iteration, we first initial-
ize P (i, 1) (lines 7–8). From there, we compute recursively
P (i, j), a polynomial where each term contains xi and has
degree j (lines 9–11). The computation of P (i, j) for a
node i uses data from the immediate neighbors of i and all
the polynomials of degree j − 1, which have already been
computed at this point. The two applications that we consider
in Section V have this structure.

Algorithm 1 MULTILINEARDETECTPATH(G(V,E), k).

1: Input: Graph G(V,E) and parameter k
2: Output: “Yes” if G has a k-Path, “No” otherwise.
3:
4: For each node i, pick a random vector vi ∈ Zk

2

5: P = 0
6: for t = 0 to 2k−1

7: I Base case
8: for i ∈ V do
9: P (i, 1) = 1 + (−1)v

T
i ·tbin

10: I Inductive step
11: for i ∈ V , j = 2 to k do
12: P (i, j) =

∑
u∈NBR(i) P (i, 1)P (u, j − 1)

13: P (k) =
∑

i P (i, k) for i ∈ V
14: P = P + P (k) mod 2k+1

15: return “Yes” if P 6= 0, else “No”

IV. PROPOSED PARALLEL ALGORITHM MIDAS FOR
k-PATH

Opportunities and challenges for parallelization. Part of
the outer for loop in lines 6–14 involves iterations which
are uncoupled, in the sense that they can be done separately,
as long as we are able to sum up the result P from each
iteration, modulo 2k+1. This gives us an easy source of
parallelism, namely, run each iteration in parallel. However,
this would not work if the graph does not fit in one processor’s
memory. The computation in the inductive step of Algorithm
1 has a local structure: a vertex only needs to data from its
immediate neighbors in the graph. An alternative approach is
to partition the graph into N parts, and then try to parallelize
the local computation. However, neither extreme works well,
and instead, MIDAS partitions the graph into N1 parts, and
runs N/N1 iterations in parallel. This approach can lead to
significant savings on the computation time, but has a high
communication overhead. Since the values exchanged between
nodes are small, we introduce an idea of combining the
communications of multiple iterations together as a way to
reduce the overhead.

A. Overview of Algorithm MIDAS

Let N denote the total number of processors or parallel units
available. Quantities N1 and N2 are parameters for controlling
the parallelism in different parts of the algorithm. We assume
2k/N2 and N/N1 are integers, in order to avoid cluttering
the notation using ceiling and floor of these quantities. The
algorithm involves solving a dynamic program 2k times; these
2k loops are independent, and we divide them into phases of
size N2 each, so that a total of 2k/N2 phases have to be run.

These are run in 2k/(N2N/N1) batches, where each batch
involves running N/N1 phases. A phase involves a call to the
subroutine PAREVALUATEPOLYNOMIALPATH. See Figure 1
for an illustration of this structure.

TABLE I: Summary of notation
Symbol Description
N Total number of processors

N1 Number of parts in graph partitioning

N2 Size of each phase

Phase Group of N2 iterations for which communication is done simulta-
neously

Batch A set of N/N1 phases

P Partition of G in N1 parts, G1, . . . , GN1

We partition the graph G into N1 parts, denoted by P =
{G1, . . . , GN1}; desirable properties of the partition will be
discussed later. For a partition j, let DEG(j) be the degree of
j, defined as the number of edges connecting nodes in j to
nodes in some other partition:

DEG(j) = |{(u, v) : (u, v) ∈ G, u ∈ Gi, v 6∈ Gi}|,

and let MAXDEG = maxj DEG(j). Also, let MAXLOAD =
maxj |Gj | be the maximum “load” or number of vertices
on any partition. We will analyze the performance of our
algorithm in terms of MAXLOAD and MAXDEG.

We describe the main steps of MIDAS below.
1) The algorithm starts with the partitioning P of the graph

G.
2) The algorithm runs log 1/ε log 5/4 rounds, each of

which involves 2k iterations. Here, ε ∈ (0, 1) is a
parameter, which governs the success probability1. Each
such round with 2k iterations is partitioned into 2k/N2

phases in the while loop in lines 8–12 of MIDAS, which
are completely independent of other phases.

3) In the tth phase, Algorithm PAREVALUATEPOLYNOMI-
ALPATH uses a vector of size N2 to store polynomials
〈P (i, tN2, j), . . . , P (i, (t+1)N2−1, j)〉 for each node i
and j ∈ [1, k]. P (i, q, j) corresponds to the polynomial
of node i and degree j for the qth diagonal element in
the matrix representation.

4) In the tth phase, for each node i, we use the
vector for each neighbor u of i to compute
〈P (i, tN2, j), . . . , P (i, (t+ 1)N2 − 1, j)〉. If u is in the
same partition, then its data is available on that proces-
sor. For every neighbor u in a different partition, u has
to send a message with 〈P (u, tN2, j−1), . . . , P (u, (t+
1)N2−1, j−1)〉, introducing a communication overhead.

5) We use SUM`
t =

∑
i∈V P (i, tN2, k) + . . . +∑

i∈V P (i, (t + 1)N2 − 1, k) to denote the sum of the
polynomial evaluations for phase t, within round `.
These are summed up over all the phases within round
` to compute the total, denoted by P `.

1As per Theorem 1, Algorithm MULTILINEARDETECTPATH succeeds with
probability 1/5, so we need to run it multiple times



phases sN/N1,.. (s+1)N/N1-1

+
batch s

repeat 
2kN1/(N2N) 
batches in 
each round

batch s-1: phases (s-1)N/N1,.. sN/N1-1

batch s+1: phases (s+1)N/N1,.. (s+2)N/N1-1

Fig. 1: Schematic structure of MIDAS: we run (log 1/ε)/(log 5/4)
rounds. Each round is partitioned into 2kN1/(N2N) batches, and
each batch involves N/N1 phases being run simultaneously. Each
phase involves an evaluation of the polynomial on N2 iterations in
algorithm PAREVALUATEPOLYNOMIAL, which are then summed up.

Algorithm 2 MIDAS(G, k, ε,N1, N2).

1: Input: Graph G = (V,E), parameter k, confidence parameter
ε ∈ (0, 1), parameters N1 and N2, which guide the parallelism.

2: Output: “Yes” if G has a k-Path, “No” otherwise.
3:
4: Let vi ∈ Zk

2 be a random vector for each node i
5: Let P = 0 be the polynomial
6: Let N1 denote the number of processors used for each iteration.

Let P = {G1, . . . , GN1} denote the corresponding partition of
the graph into N1 parts.

7: for ` = 1 to (log 1/ε)/(log 5/4)
8: P ` = 0
9: while s ≤ 2k/N2

N/N1
do

10: for t = sN/N1 to (s+ 1)N/N1 do in parallel
11: SUM`

t = PAREVALUATEPOLYNOMIAL(G, k,v, t, N2, N1,P)
12: MPIBARRIER
13: P ` = P ` +

∑(s+1)N/N1

t=sN/N1
SUM`

t mod 2k+1 using MPIRE-
DUCE

14: if P ` 6= 0 for some `
15: return “Yes”
16: else
17: return “No”

B. Computation and Communication Complexity

Recall the definition of MAXDEG corresponding to the
partitioning P . Further, let c1 and c2 denote the time for unit
computation at any node in G and the unit communication
along any edge, respectively, in the Algorithm PAREVALU-
ATEPOLYNOMIALPATH. The time and communication com-
plexity of algorithm MIDAS is summarized below in terms
of these parameters.

Theorem 2: For any ε ∈ (0, 1), Algorithm MIDAS
solves the k-PATH problem for an instance G, k with prob-
ability at least 1 − ε. The total time for computation
and communication are O

(
c1

2kN1

N kMAXLOAD log 1/ε
)

and

O
(
c2

2kN1

NN2
kMAXDEG log 1/ε

)
, respectively.

Proof: (Sketch) First, we argue the correctness. The call

Algorithm 3 PAREVALUATEPOLYNOMIAL-
PATH(G, k,v, t, N2, N1,P)

1: Input: Graph G, parameter k, random assignment v, phase
number t, number of iterations within phase N2, number of
partitions N1, and partitioning P

2: Output: The value of the polynomial corresponding to k-path in
the iterations within a phase

3:
4: for each processor s do in parallel
5: Base case
6: for node i ∈ Gs and iteration q ∈ [tN2, (t+ 1)N2 − 1] do
7: P (i, q, 1) = 1 + (−1)v

T
i ·qbin

8: Recursive step
9: for j = 2 to k do

10: for node i ∈ Gs do
11: for all q set P (i, q, j) = 0
12: for each incoming message 〈u, P (u, q, j − 1)〉 do
13: P (i, q, j) = P (i, q, j) + P (i, q, 1)P (u, q, j − 1)
14: Send result to neighbors
15: for u ∈ NBR(i) \Gs do
16: Send 〈i, P (i, q, j)〉
17: MPIBARRIER
18: return

∑
q

∑
i P (i, q, k)

to PAREVALUATEPOLYNOMIALPATH evaluates the polyno-
mial bottom up in parallel for all iterations in the tth
phase, namely iterations tN2, . . . , (t + 1)N2 − 1. The vector
〈P (tN2, k), . . . , P ((t + 1)N2 − 1, k)〉 is the final evaluation
of the polynomial for each iteration in this phase. Each call
to PAREVALUATEPOLYNOMIALPATH in Algorithm MIDAS
returns the sum of these values for phase t. Each round
of Algorithm MIDAS, corresponding to the value of ` in
the outer for loop in lines 6–12 in the sequential algorithm,
goes over all phases, and calls PAREVALUATEPOLYNOMI-
ALPATH. Therefore, within round `, P ` denotes the sum of
the polynomial evaluation over all the 2k iterations within
that round. If P (·) has a multilinear term, from [16], [17],
P ` 6= 0 mod 2k+1 with probability at least 1/5. This implies
that Pr[P ` = 0, ∀`] = (4

5 )(log 1/ε)/(log 5/4) ≤ ε, so that with
probability at least 1 − ε, MIDAS returns “Yes” if G has a
k-path. On the other hand, if P (·) has no multilinear term,
then with probability 1, P ` = 0 for all `. Therefore, MIDAS
correctly solves the k-PATH problem with probability at least
1− ε.

Next, we consider the computation and communication time
complexity. The algorithm PAREVALUATEPOLYNOMIALPATH
computes the polynomial for each degree up to k within each
iteration. Therefore, the computation time in a phase t is
O(c1kmaxj |Gj |N2) = O(c1kMAXLOADN2), which is the
maximum time for any processor. Therefore, the total compute
time over all the rounds is O( 2k/N2

N/N1
c1kMAXLOADN2), which

corresponds to the bound in the theorem. After the evaluation
in the recursive step, the results have to be sent on all
neighbors, for every pair of processors s, s′. Therefore, the
maximum number of messages in one iteration of the loop in
lines 8–15 is MAXDEG, and the total number of messages, over
all the rounds, is O( 2k/N2

N/N1
MAXDEG) = O( 2kN1

NN2
MAXDEG).



Memory Access: The recursive step in PAREVALUATEPOLY-
NOMIALPATH has some interesting properties of a highly
memory bound region. Recall that polynomial multiplication
terms are summed up for each of the incoming messages.
This computation loop may be subjected locality effects of the
memory sub-system and pipe-lining by the logical processor.
Therefore, selecting appropriate values for N2 is important
to leverage fast memory access2 and achieve desired parallel
performance.

Lemma 1: For a graph G = (V,E) drawn from the
Erdös-Renyi model, G(n, p), the computation and communi-
cation times for a random partition are O(c1

2knk
N log 1/ε) and

O(c2 log 1/ε 2
kmk
NN2

), respectively, with high probability.
Proof: (Sketch) For a random partition into N1 parts of equal
size, we have MAXLOAD = n/N1, and the bound for the total
compute time follows from Theorem 2. Since G ∈ G(n, p), it
follows that MAXDEG = O( n

N1
(n− n

N1
p)) = O(m/N1), with

high probability, and the Lemma follows.

V. PARALLEL ALGORITHMS FOR k-TREE AND NETWORK
SCAN STATISTICS

We now describe how MIDAS for the k-path problem
can be extended to parallel algorithms for finding trees and
optimizing scan statistics. We discuss here how the corre-
sponding polynomials are constructed recursively and eval-
uated in the subroutines PAREVALUATEPOLYNOMIALTREE
and PAREVALUATEPOLYNOMIALSCANSTAT; the main Algo-
rithm MIDAS remains unchanged. We recall the notation from
Section II.

A. k-Tree

1

2
3

6
4 5

1

2

3

6

4 5

root(H2) = 1

Fig. 2: Tree H with ROOT(H) = 1. It is decomposed into trees
H1 and H2 by removing the edge (1, 2). ROOT(H1) = 1 and
ROOT(H2) = 2.

We describe how an instance of k-Tree with graph G =
(V,E) and tree H = (V H , EH) is reduced to a k-MLD
instance. We consider the tree H to be rooted, and let
ROOT(H) be the root node, selected arbitrarily. We consider
a hierarchical structure among subtrees of H in the following
manner: consider any node u ∈ NBR(ROOT(H)). Let H1 and
H2 denote the subtrees or children obtained upon deleting
the edge (u, ROOT(H)), with ROOT(H) ∈ H1 and u ∈ H2.

2cache affinity in-terms of spatial and temporal locality results in fast
memory access

We set ROOT(H1) = ROOT(H) and ROOT(H2) = u. This
process is illustrated in Figure 2. The subtrees H1 and H2 are
further partitioned in a recursive manner until all trees have a
single node. We define the polynomials P (i,H ′), which will
correspond to all layouts (not necessarily isomorphisms) of
H ′ with ROOT(H ′) = i for all nodes i ∈ V , in the following
manner:
• If H ′ consists of a single node, P (i,H ′) = xi
• Else, P (i,H ′) =

∑
u∈NBR(i) P (i,H ′1)P (u,H ′2), where

H ′1 and H ′2 are the children of H ′.
• Finally, we have P (x1, . . . , xn) =

∑
i∈V P (i,H)

By using ideas from [1], it can be verified that the tree H is
a subgraph of G if and only if the polynomial P (x1, . . . , xn)
has a multilinear term. Algorithm PAREVALUATEPOLYNOMI-
ALTREE evaluates this polynomial analogous to Algorithm
4 from Section IV. The performance of MIDAS, using
PAREVALUATEPOLYNOMIALTREE is summarized below.

Lemma 2: For any ε ∈ (0, 1), Algorithm MI-
DAS, using PAREVALUATEPOLYNOMIALTREE, solves the
k-TREE problem for an instance G,H with probabil-
ity at least 1 − ε. The total time for computation and
communication are O

(
c1

2kN1

N |T |MAXLOAD log 1/ε
)

and

O
(
c2

2kN1

NN2
|T |MAXDEG log 1/ε

)
, respectively.

Algorithm 4 PAREVALUATEPOLYNOMIAL-
TREE(G(V,E), H(V H , EH),v, t, N2, N1,P)

1: Input: Graph G(V,E), tree H(V H , EH) with k vertices, ran-
dom assignment v, phase number t, number of iterations within
phase N2, number of partitions N1, and partitioning P

2: Output: The value of the polynomial corresponding to k-tree in
the iterations within a phase

3:
4: Let T be a collection of subtrees of H sorted by size
5: for each processor sdo in parallel
6: for each subtree j ∈ T do
7: for node i ∈ Gs and iteration q ∈ [tN2, (t+ 1)N2 − 1] do
8: if |j| = 1 then
9: P (i, q, j) = 1 + (−1)v

T
i ·qbin

10: else
11: set P (i, q, j) = 0
12: let j′ and j′′ be the children of subtree j
13: for each incoming message 〈u, P (u, q, j′′)〉 do
14: P (i, q, j) = P (i, q, j) + P (i, q, j′)P (u, q, j′′)
15: Send result to neighbors
16: for u ∈ NBR(i) \Gs do
17: Send 〈i, P (i, q, j)〉
18: MPIBARRIER
19: return

∑
q

∑
i P (i, q,H)

B. Scan Statistics

Let W (V ) =
∑
i∈V w(i) be the total weight of the nodes in

G. For each node i, we define a variable xi, and we construct
a polynomial over the set of variables {xi : i ∈ V }. Every
term—i.e., monomial—in this polynomial will represent a con-
nected subgraph of size at most k and weight at most W (V ).
For j ≤ k and z ≤ W (V ), let P (i, j, z) be the polynomial
corresponding to a subgraph (1) containing node i, (2) of size



j, and (3) total weight z. The following recurrence relations
describe how the polynomials P (i, j, z) are computed:
• P (i, 1, z) = xi for all i ∈ V , z = w(v)
• For i ∈ V , j = 2 to k, z = 0 to W (V ), P (i, j, z) =∑

u∈NBR(i)

∑j−1
j′=1

∑z
z′=0(P (i, j′, z′)·P (u, j−j′, z−z′))

• P (j, z) =
∑
i P (i, j, z) for j ≤ k, z ≤W (V )

Algorithm 5 maintains variables P (i, q, j, z) for every node i,
j ≤ k, z ≤ W (V ), and iteration q within phase t. It can be
verified [19] that the input graph G has a connected subgraph
S of size j and weight z if and only if the corresponding
polynomial P (j, z) has a multilinear term. We have the
following lemma.

Lemma 3: For any ε ∈ (0, 1), Algorithm MIDAS, using
PAREVALUATEPOLYNOMIALSCANSTAT, solves the SCAN
STATISTICS problem for an instance G, k,w, with probability
at least 1 − ε. The total time for computation and com-
munication are O

(
c1

2kN1

N W (V )2k2MAXLOAD log 1/ε
)

and

O
(
c2

2kN1

NN2
W (V )2k2MAXDEG log 1/ε

)
, respectively.

We note that the performance for scan statistics can be im-
proved significantly by rounding the weights, using a standard
technique as in the Knapsack problem (see [19]).

Algorithm 5 PAREVALUATEPOLYNOMIALSCAN-
STAT(G(V,E), k,w,v, t, N2, N1,P)

1: Input: Graph G(V,E), parameter k, node weights w, random
assignment v, phase number t, number of iterations within phase
N2, number of partitions N1, and partitioning P

2: Output: The value of the polynomial corresponding to the scan
statistics in the iterations within a phase

3:
4: for each processor s do in parallel
5: for node i ∈ Gs and iteration q ∈ [tN2, (t+ 1)N2 − 1] do
6: P (i, q, 1, w(v)) = 1 + (−1)v

T
i ·qbin

7: for j = 2 to k and z = 0 to W (V ) do
8: for node i ∈ Gs do
9: for all q set P (i, q, j, z) = 0

10: for each incoming message 〈u, P (u, q, j−j′, z−z′)〉 do
11: P (i, q, j, z) = P (i, q, j, z) + P (i, q, j′, z′)P (u, q, j −

j′, z − z′)
12: Send result to neighbors
13: for u ∈ NBR(i) \Gs do
14: Send 〈i, P (i, q, j, z)〉
15: MPIBARRIER
16: return

∑
q

∑
i P (i, q, k, z) for all z ≤W (V )

VI. EXPERIMENTS

The performance study of the proposed parallel algorithms
covers the following topics.
• Effect of partition size investigates the performance vari-

ation with partition size as N1 is varied (Section VI-B)
• Scalability with subgraph size depicts the total runtime

as subgraph size is increased. (Section VI-C)
• Strong scaling looks at the total runtime as the number

of parallel processors is increased, thereby reducing the
computing workload per process. (Section VI-D)

• MIDAS vs. FASCIA presents the runtime comparison of
our implementation compared to FASCIA. (Section VI-E)

• Performance of Scan Statistics and its applications
provides performance results for the parallel Scan Statis-
tics implementation and presents a real life application of
it. (Section VI-F)

A. Experimental Setup

1) Hardware: Experiments were conducted on Juliet, an
Intel Haswell HPC cluster. Up to 32 nodes were used for
the evaluation, where each node has 36 cores (2 sockets x
18 cores each). A node consists of 128GB of main memory
and 56Gbps Infiniband interconnect. We also tested on another
HPC cluster, Shadowfax-Haswell, where we used 32 nodes
each with 32 cores (2 sockets x 16 cores each). Memory and
interconnect of this cluster are similar to those of Juliet.

2) Datasets: A summary of the datasets is provided in
Table II. In addition, we perform experiments in two Erdos-
Renyi networks of 1 and 10 million nodes with an expected
number of edges of n log n, where n is the number of nodes.

TABLE II: Datasets used in our experiments
Dataset Nodes (×106) Edges (×106)
miami 2.1 51.5

com-Orkut 3.1 234.3

random-1e6 1 13.8

random-1e7 10 161.8

B. Effect of Partition Size

The multilinear detection based parallel k-Path and Multi-
linear Scan algorithms exhibit two levels of parallelism: vertex
and iterations. On one hand, the 2k iterations are pleasingly
parallel except for a global reduction at the end. The parallel
vertex computation within each iteration, on the other hand,
requires message passing between neighbors for k−1 steps (in
the case of trees, this would be the number of sub templates
instead of k − 1).

Given these two levels of parallelism and a total of N
processes, we can split the 2k iterations among a = N/N1

parallel phases. Each phase decomposes the graph across N1

processes and performs the k-Path computation in parallel for
2k/a. To reduce the communication over computation cost,
the algorithm packs a user defined N2 number of iterations
into one computation step, so each parallel phase only has to
perform 2k/(a ∗N2) compute and communication phases.

To illustrate this with an example, consider the case of
k = 6, N = 128, N1 = 32, and N2 = 8. The total
number of iterations is 2k = 64. The number of parallel phases
corresponding to N1 = 32 is 128/32 = 4. Each phase only
needs to run 64/4 = 16 iterations. Since N2 = 8, the 16
iterations can be completed in just 16/8 = 2 batches.

Increasing N2, for example N2 = 16 in the previous case,
would allow us to finish the entire program in one compute
and communicate batch. This results in higher parallel effi-
ciency as the overhead of communication to computation is
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reduced. However, it increases the message size by N2 factor3.
Depending on the number of total processes, MPI may fail to
accommodate very large message sizes requiring to reduce N2

such that some form of chunking method may be required.
Figures 3, 4, 5 illustrate the performance of MIDAS on

three different datasets when N2 = 1. We observed that
running times of MIDAS when N2 is scaled for a fixed
value of N for each problem size—this effectively tested our
parallel algorithm for a large range of configurations. Our
observations confirm the existence of an optimal point (i.e., a
minimum) between two levels of parallelism discussed before.
The communication cost gradually increases when moving
from one extreme end of parallelism to the other because of the
increase in number of messages exchanged 4. However, at the
optimal point, the cost of communication can be sufficiently
amortized by the amount of parallelism gained. In other words,
the optimal solution for MIDAS algorithm can be found in
a point between vertex level and iteration based parallelism.

3Increasing message size for a communication step is not necessarily a bad
occurrence. Reducing number of small messages in communication may lead
to increased network performance. [22]

4Number of messages exchanged can be approximated to O(logN1) for
small message sizes where N1 ranges from N1 = 1 to N1 → N

Interestingly, when N2 is increased (Figures 6, 7, 8) we
observe further relative performance gains on the same set
of experiments. The observed speedup (between ∼1x - ∼2x)
is due to cache affinity effects on the main loop (Section IV-B)
and reduction of communication phases by increasing the
message size. Furthermore, speedups are evident for each
experiment instance of the k-path problem when problem size
is scaled.

C. Scalability with subgraph size

In Figure 11, we increase the subgraph size, k, in both
FASCIA and MIDAS, while keeping N and N1 fixed. Note,
Figure 6 through Figure 8 suggest it is best to keep N2 as high
as possible to leverage the cache locality benefits discussed
above. However, the total message size communicated out of
a process increases with N2 leading to diminishing returns.
Therefore, we’ve kept N2 < 1024.

D. MIDAS Strong Scaling

Strong scaling of MIDAS can be investigated in two ways.
The first is to fix N1 and change N , thereby increasing the
parallel phases to split the 2k iterations. We could observe
the effect of this behavior by examining the values along a
fixed N1 value in Figures 3 through 8. Dividing the runtime
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Fig. 13: Discovering highway segments with unexpected con-
gesion in the Los Angeles road network.

corresponding to the minimum N (the top most line) by the
given N gives speedup indicating the strong scalability of
MIDAS.

Figure 9 presents such speedup for a set of N1 values over
varying N . We observe the results do not necessarily scale
linearly due to the fact that communication within a phase is
dominant. We get the best speedup by going along points in
Figures 3 through 8 that gave the minimum runtime. This is
shown as the N1 = Best line in Figure 9.

The other form of strong scalability we can test is by setting
N1 = N . This produces a single phase and is the classic

strong scaling of parallel graph algorithms. Figure 10 presents
the speedp values for different datasets. While, the speedups
are less than ideal, they still scale well up to a considerable
number of processes.

E. MIDAS vs. FASCIA

Figure 11 compares the running time of FASCIA to MIDAS
for varying subgraph sizes. We see FASCIA fails to support
beyond subgraphs of size 12 on this random-1e6 dataset,
whereas MIDAS scales to well over 18. Also, MIDAS shows
a significant improvement over FASCIA in runtime.

F. Performance of Scan Statistics and Its Applications

In Figure 12, we present strong scaling results for Scan
Statistics problem where N1 is set to N . We do this for
multiple datasets and observe they show considerable strong
scalability similar to k-Path problem in Figure 10.

Congested Highways Clusters in Road Networks We
apply our algorithm for scan statistics to find clusters with
unexpectedly low-moving traffic in the highway network of
Los Angeles County5. Nodes in the graph are sensors next
to the road that record the average speed and the number of
vehicles passing through. We have 30-minute snapshots for
May 2014. We assume that the average speed recorded by
each sensor follows a normal distribution. Then, the p-value
of a node i is the cumulative distribution function of a normal
distribution with mean µ[1,t−1]

i and standard deviation σ[1,t−1]
i ,

where µ[1,t−1]
i and σ[1,t−1]

i are, respectively, the sample mean
and standard deviation for node i from snapshots 1 to t− 1.

We use our algorithm with k = 12 on this dataset. In
Figure 13, we show with blue dots highway segments that
our algorithm identifies as having unexpectedly low average
speed during rush hour (16:00 to 19:00) on Friday May 9,
2014. These segments are not necessarily the ones with most
congestion. For instance, the center of Los Angeles city has
higher congestion; however, such activity is normal on Friday
afternoons according to the previous snapshots. The clusters

5http://pems.dot.ca.gov/



shown in the map are selected because they have significantly
lower average speeds than in previous observations.

VII. RELATED WORK

There is a huge literature on a variety of subgraph analysis
problems, arising out of a number of applications, such as
bioinformatics, security, social network analysis, epidemiology
and finance (see [7] for a survey). We discuss some of
three main directions here: subgraph isomorphism and clique
enumeration (for which parallel algorithms exist), and anomaly
detection (for which there has been limited work on parallel
algorithms).

The basic frequent subgraph detection problem involves
finding subgraphs having frequency higher than a threshold.
Parallel approaches for this problem involve a “bottom-up”
candidate generation approach, combined with careful prun-
ing, which builds embeddings of larger subgraphs using all
possible embeddings of smaller subgraphs[23], [24]. While
these results allow scaling to very large networks with millions
of nodes, they give no guarantees on the performance. Our
work is more closely related to the use of the color coding
technique for finding tree-like subgraphs [1], [2], which guar-
antees a fully polynomial time approximation to the number of
embeddings with running time and space of O(2kekm log n)
and O(2km), respectively. This has been parallelized using
MapReduce [13] and OpenMP [14], [15], enabling subgraph
counting in graphs with tens of millions of nodes with rigorous
guarantees. Slota et al. [14], [15] use threading and techniques
for reducing the memory footprint of the color coding dynamic
programming tables, in order to scale.

Another area where parallel algorithms have been devel-
oped is for dense subgraph enumeration. There are several
implementations for finding maximal cliques in parallel by
careful partitioning, pruning and backtracking heuristics [9],
[25], [10], [26], [11]. Our results do not extend to the clique
enumeration problem.

Finally, there are only two prior works on parallel graph
scan statistics [19], [25]. However, these do not scale to very
large instances.

VIII. CONCLUSIONS

We present a new class of distributed MPI-based algorithms
for various subgraph detection problems based on the recent
multilinear detection technique. Even with a naive partitioning
scheme, we observe significant performance improvement
over the state-of-the-art color coding based methods. Our
algorithms are conceptually much simpler than color coding
and scale to subgraphs of size 18, which hasn’t been done
before. Our method combines parallelization of two different

REFERENCES

[1] N. Alon, P. Dao, I. Hajirasouliha, F. Hormozdiari, and S. C. Sahinalp,
“Biomolecular network motif counting and discovery by color coding,”
Bioinformatics, 2008.

parts of the sequential multilinear algorithm, with a batched
communication, and a data structure that gives cache locality.
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