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Abstract

We introduce a novel neural model for detecting propositional entailment, a benchmark
task for learning on logical structures, based upon learned graph convolutions on directed
syntax graphs. The model removes some inflexible inductive bias found in previous work
on this domain, while producing competitive results on the benchmark datasets. Model
performance on larger problems surpasses all previous work. We also introduce a similar
first-order learning problem and show good performance of the same model on this task.
Such models have many applications for learned guidance of first-order theorem provers.

1 Introduction

Neural networks are ubiquitous in tasks in which features must be extracted from unstructured
data — tasks such as computer vision, or natural language processing. However, learning from
data that are already highly-structured is under-studied, but sorely needed in fields such as
program synthesis or automated reasoning. We approach this area from guidance of automatic
theorem provers for first-order logic: an undecidable setting that nevertheless might benefit
from heuristic guidance, as strategies for a subset of “useful problems” can be learned this way.
It should be noted that we do not aim to solve known computationally-hard or undecidable
problems with a neural approach, merely approximate these functions for practical purposes. In
this work we explore the use of neural models for heuristic tasks on logical data using detection
of logical entailment in both propositional and first-order settings as a benchmark task.

Propositional Task and Dataset Evans et al. [3] introduce a dataset for studying the ability
of neural networks to perform tasks which are “primarily or purely about sequence structure”.
The dataset consists of tuples of the form (A,B, y) where A and B are propositional formulae
and y is the binary output variable. The task is to predict logical entailment: whether or not
A |= B holds in classical propositional logic. A and B use only propositional variables and the
connectives {¬,∧,∨,⇒} with the usual semantics. The dataset provides training, validation
and test sets, with the test set split into several categories: “easy”, “hard”, “big”, “massive”
and “exam”. The “massive” set is of particular interest to us as it contains larger entailment
problems, more similar in size to those found in real-world problems where redundant axioms
and voluminous structures are commonplace.

Previous Approaches PossibleWorldNet is introduced alongside this dataset as a possible
solution to the task: an unusual neural network architecture making use of algorithmic assis-
tance in generating repeated random “worlds” to test the truth of the entailment in that world,
in a similar way to model-based heuristic SAT solving. This approach performs exceptionally
well, but does suffer from inflexibility: it is unclear how this model would perform on harder
tasks without a finite number of possible worlds, or tasks where model-based heuristics don’t
perform as well. Tending instead toward a purely-neural approach, Chvalovský introduces Top-
DownNet [1], a recursively-evaluated neural network with impressive results on this dataset.
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Figure 1: Producing an exemplar DAG representation of (¬P ∧Q) ∨ ¬¬P . A propositionally-
equivalent formula can be retrieved from the final DAG.

These two neural models are the most accurate learned estimators for logical entailment to date.
Graphical representations have been used with some success for other logical tasks: Oľsák et
al. introduce a model based on message-passing networks working on hypergraphs [14], while
Paliwal et al [15] use undirected graph convolutions for a higher-order task. An interesting
effort not directly related to this task is that of NeuroSAT [19], a neural network that learns to
solve SAT problems presented in conjunctive normal form.

Graph Neural Networks Graphs have historically proven difficult for learning algorithms
of various varieties, mostly due to a very rich structure. However, recent advances [12] have
produced a family of methods generally known as Graph Neural Networks, with graph convo-
lutions as a central technique. These are simple, efficient networks practically useful for many
tasks operating on graph data.

Contributions Our main contribution is a neural model that scores well on this propositional
dataset, surpassing PossibleWorldNet in several test categories, yet not suffering from the in-
ductive bias applied by this approach. To achieve this performance we introduce a directed
graph convolution which appears crucial for this domain. In order to demonstrate the gener-
ality of our method, we also design a first-order classification problem and show good learning
performance of the same model.

2 Input Encoding

Directed acyclic graphs (DAGs) are a natural, lossless representation for most types of logical
formulae the authors are aware of; including modal, first-order and higher-order logics, as
well as other structural data such as type systems or parsed natural language. A formula-
graph is formed by taking a syntax tree (such as that produced by a parsing routine) and
merging common sub-trees, followed by mapping distinct named nodes to nameless nodes that
nonetheless remain distinct: an example is shown in Figure 1. This translation takes only
polynomial time, and clearly does not trivialise the problem. Such graphs have previously
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been used for problems such as premise selection [23] or search guidance of automatic theorem
provers [18]. It should be noted that the acyclic property of these graphs does not seem to
be particularly important — it just so happens that convenient representations happen to be
acyclic. This representation has several desirable properties:

Compact size. Sufficiently de-duplicated syntax DAGs have little to no redundancy, and in
pathological cases syntax trees are made exponentially smaller.

Shared processing of redundant terms. Common sub-trees are mapped to the same DAG
node, so models that work on the DAG can identify common sub-terms trivially.

Bounded number of node labels. By use of nameless nodes, a finite number of different
node labels are found in any DAG. This allows for simple node representations and does
not require a separate textual embedding network.

Natural representation of bound variables. Representing bound variables such as those
found in first-order logic can be difficult [17] — this representation side-steps most, if not
all, of these issues and naturally encodes α-equivalence.

One drawback of such DAGs as a representation for logical formulae is that they lack ordering
among node children: with a näıve encoding, the representation for A ⇒ B is the same as
B ⇒ A, but the two are clearly not equivalent in general. Similar problems might also arise
with first-order terms: f(c, x) is indistinguishable from f(x, c). However, this problem can be
mitigated by use of auxiliary nodes and/or edges such that an ordering can be retrieved, as
shown in Section 6. For this particular dataset, the classical equivalence A ⇒ B ≡ ¬A ∨ B
is used to rewrite formulae without implication, thus avoiding ordering issues as ∧ and ∨ are
commutative operators. We also recast the entailment problem A |= B as a satisfiability
problem: is A∧¬B unsatisfiable? These methods reduce the total number of node labels used
(4 in total — one for propositional variables, and one for each of {¬,∧,∨}), and allow the
network to re-use learned embeddings and filters for the existing operators.

3 Model

We introduce and motivate a novel neural architecture — EntailmNet — for learning based
on DAG representations of logical formulae. Certain unusual neural structures were found to
be useful, and are described first. These blocks are then combined into the model architecture
used for the entailment task.

3.1 Bi-directional Graph Convolutions

We assume the input DAG is a graph (X,A) where X is the node feature matrix and A
is the directed graph adjacency matrix. Various graph convolution operators [24] (denoted
conv(X,A) here as an arbitrary operator) have enjoyed recent success. These generalise the
trainable convolution operators found in image-processing networks to work on graphs, by
allowing each layer of the network to produce an output node per input node based on the
input node’s existing data and that of neighbouring nodes connected with incoming edges.
This can be seen as passing messages around the graph: with k convolution layers, a conceptual
“message” may propagate k hops across the graph. Here, we use the standard convolutional
layer found in Graph Convolutional Networks [12]. This operator suffers from a shortcoming
(illustrated in Figure 2) on DAGs such as those used here: information will only pass in one
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Figure 2: Information flow in a formula DAG representing P ∧Q ∨ P .

direction through the DAG, as messages propagate only along incoming edges. Unidirectional
messages are not necessarily a problem: bottom-up schemes such as TreeRNNs [22] exist, and
Chvalovský uses [1] a top-down approach. Cyclic edges are another possible solution. However,
to play to the strengths of the graphical approach the ideal would have messages passed in
both directions, with messages from incoming and outgoing edges dealt with separately. It is
possible to simply make the input graph undirected, but this approach discards much of the
crucial encoded structure and was not found to perform much better than chance on this task.
Instead, a bi-directional convolution is one possible solution:

biconv(X,A) = conv(X,A)‖conv(X,AT)

where the ‖ operator denotes feature concatenation. By convolving in both edge directions
and concatenating the node-level features produced, information may flow through the graph
in either direction while retaining edge direction information. A concern with the use of bi-
directional convolution in deep networks is that each unidirectional convolution must decrease
the size of output features by a factor of at least 2 in order to avoid exponential blowup in
the size of feature vectors as the graph propagates through the network. Due to the use of a
DenseNet-style block with feature reduction built-in, this was not an issue here.

3.2 DenseNet-style blocks

Recent trends in deep learning for image processing suggest that including shorter “skip” con-
nections between earlier stages and later stages in a deep convolutional network can be ben-
eficial [9]. DenseNets [10] take this to a logical extreme, introducing direct connections from
any layer in a block to all subsequent layers. We found a graphical analogue of this style of
architecture very useful for this task. Suppose that Xi−1 is the input of some convolutional
layer Hi. Then, by analogy with DenseNets, Hi should also be given the outputs of previous
layers as input:

Xi = Hi (X0‖X1‖ . . . ‖Xi−1,A)

However, in later layers this node-level input vector becomes very large for a computationally-
expensive convolutional layer such as Hi. DenseNets also include measures designed to reduce
the size of inputs to convolutional layers, such as 1 × 1 convolutions. We include an analo-
gous “compression” fully-connected layer h, which reduces the input size before convolution by
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allowing the network to project relevant node features from previous layers:

Xi = Hi (h (X0‖X1‖ . . . ‖Xi−1) ,A)

3.3 Graph Isomorphism Networks and Pooling

It has been shown that the standard graph convolution layer is incapable of distinguishing some
types of graph. Since this task is almost entirely about graph structure and is known to be com-
putationally hard, it was expected that the more-powerful Graph Isomorphism Networks [24]
would produce better results, but this was not found to be the case. Similarly, localised pooling
is well-known to be useful in image processing tasks, and its graphical analogues such as top-k
pooling [5] and edge contraction pooling [2] also perform well on some benchmark tasks. These
also appear useful for this task, perhaps corresponding to the human approach of simplifying
propositional sub-formulae. However, these were also not found to be useful, possibly due to
the lack of redundancy in formula graphs. Further investigations into integrating these powerful
methods is left as future work.

3.4 Architecture

A simplistic neural architecture is described. Batch normalisation (BN) [11] is utilised before
convolutional and fully-connected layers, and rectified linear units (ReLU) [13] are used as
nonlinearities throughout, except for the embedding layer (no activation) and the output layer.

Embedding. An embedding layer maps one-hot input node features into node features of the
size used in convolutional layers.

Dense Block. DenseNet-style convolutional layers follow, including the fully-connected net-
work so that each layer consists ReLU-BN-FC-ReLU-BN-BiConv. Only one block is used,
with each layer using all previous layers’ outputs.

Global Average Pooling. At this point the graph is collapsed via whole-graph average pool-
ing into a single vector. Passing forward outputs from all layers in the dense block to be
pooled was found to stabilise and accelerate training significantly.

Output Layer. A fully-connected layer produces the final classification output.

A relatively large number of convolutional layers — 48 — are included in the dense block, for
both theoretical and practical reasons. Theoretically, if information from one part of the graph
must be passed to another some distance away in order to determine entailment or otherwise,
then a greater number of layers can prevent the network running out of “hops” to transmit this
information. Practically, more layers were found to perform better, particularly on the larger
test categories, confirming the theoretical intuition. In principle there is no limit to the number
of layers that might be gainfully included: the more layers, the larger the problems that may
(theoretically) be tackled.

4 Experimental Setup

Source code for an implementation using the PyTorch Geometric [4] extension library for Py-
Torch [16] is available1.

1https://github.com/MichaelRawson/gnn-entailment
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Table 1: Network and Training Hyper-Parameters

network training

input features 4 batch size 64
convolutional features 16 momentum 0.9
convolutional layers 48 weight decay 0.0001

initial min. learning rate 0.01
initial max. learning rate 0.1
learning rate decay factor 0.99995
learning rate cycle length 8000

Training Training setup generally follows that suggested for DenseNets [10]: the network
is trained using stochastic gradient descent with Nesterov momentum [21] and weight decay,
with the suggested parameters. Parameter initialisation uses PyTorch’s defaults: “Xavier”
initialisation [7] for convolutional weights and “He” initialisation [8] for fully-connected weights.
A cyclic learning rate [20] was found to be useful for this model — we applied a learning rate
schedule (“exp range” in PyTorch) in which the learning rate cycles between minimum and
maximum learning rates over a certain number of minibatches, while these extremes themselves
decay over time. Training continued until validation loss ceased to improve. See Table 1 for
training parameter details.

Augmentation No data augmentation is used as the dataset is relatively large already, and
further it is unclear what augmentation would be applied: the “symbolic vocabulary permu-
tation” approach [3] is not applicable here due to the nameless representation, but randomly
altering the structure of the graph does not seem useful as it could well change the value of y
unintentionally. One could imagine a semantic augmentation in which A is made stronger or
B weaker — this would produce data augmentation without invalidating the value of y.

Reproducibility Results are reproducible, but with caveats. Training runs performed on a
CPU are fully deterministic, but tediously slow. Conversely, training runs performed on a GPU
are not fully deterministic2, but are significantly accelerated. The results reported here are
obtained with a GPU, but produce very similar results on repeated runs in practice. This is a
significant limitation of this work that we hope to address if and when a suitable deterministic
implementation becomes available.

5 Propositional Results

Experimental results are shown in Table 2. Results reported from the best-performing models
to date, PossibleWorldNet and TopDownNet (d = 1024) are also included verbatim, with-
out reproduction, for comparison. Test scores of the best-performing model on each data
split are highlighted. Results show that our model is competitive on all categories, both with
algorithmically-assisted approaches (PossibleWorldNet), and with the best-known pure neural
approach (TopDownNet). The model significantly outperforms all known approaches on the
“massive” test category. We conjecture that our model generalises to some degree the approach

2An unfortunate consequence of GPU-accelerated “scatter” operations. See https://pytorch.org/docs/

stable/notes/randomness.html
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Table 2: Propositional Entailment Accuracy

model valid easy hard big massive exam

PossibleWorldNet 98.7 98.6 96.7 93.9 73.4 96.0
TopDownNet 95.5 95.9 83.2 81.6 83.6 96.0

EntailmNet 99.4 99.3 91.2 88.3 89.2 97.0

taken with TopDownNet. In EntailmNet arbitrary message-passing schemes within the entire
DAG are permitted, rather than TopDownNet’s strict top-down/recurrent approach, which
may go some way to explaining the difference in performance. However, the relationship with
PossibleWorldNet is less clear-cut, and this is reflected in results: PossibleWorldNet remains
unbeaten on the “hard” and “big” categories, but is surpassed on all others.

6 First-Order Logic

In order to demonstrate EntailmNet’s generality, we design a new dataset for first-order logic.
The dataset consists of a balanced mixture of valid and invalid sequents F1, . . . , Fn ` G1, . . . , Gm

expressed in full classical first-order logic. The task is to differentiate valid from invalid sequents.

Generation Producing a balanced set of randomised propositional entailment examples is
computationally expensive, particularly if the formulae are generated completely randomly and
checked for entailment afterwards [3]: this problem is only worsened in the first-order case.
Instead, we employ a generative approach3 in the style of natural deduction: first symbols and
variables are randomly generated, then compound terms, and finally valid first-order sequents
via randomised applications of rules in System LK [6]. Invalid sequents are produced by per-
verting the “axiom” rule such that any formula may entail any other formula. 100,000 sequents
are used in this work, with 1,000 reserved for the test set.

Constraints Näıve generation of such sequents produces trivial, duplicative training exam-
ples easily discriminated by simple heuristics. To improve matters, we constrain generation.
Generating α-equivalent samples is avoided by discarding sequents with duplicate graph repre-
sentations. Trivial sequent sets can be made more complex by weighting the generated space
toward more “interesting” rule applications: the rules of cut or quantifier introduction are used
more often than weakening, for example. Limiting the number of available symbols makes
invalid sequents closer in structure to valid ones and also generates more complex sequents.

Representation A similar representation to that in the propositional case is used here. How-
ever, argument order in function and predicate application must be preserved in order to main-
tain a lossless representation. This is achieved by use of an auxiliary “argument node” for each
argument in an application, connected by edges indicating the order of arguments, shown in
Figure 3. Quantifier nodes have two children: the variable which they bind, and the sub-formula
in which the variable is bound. More space-efficient or performant graph representations are a
possibility left as future work. 17 node types are used in total.

3Implementation and data available at https://github.com/MichaelRawson/fol-entailment-dataset.
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Figure 3: First-order graph encodings, showing (a) argument ordering and (b) variable binding.

Training and Results A very similar model and training regime to that used for proposi-
tional entailment is used for this classification problem, only differing in the number of convo-
lutional layers: 32 rather than 48. More layers did not appear to harm performance but were
not necessary in this case. The model achieved a classification accuracy of 98.3% on unseen
problems. Training converged in a comparable length of time to propositional entailment.

Limitations We do not claim that this synthetic task is representative of real-world reasoning
problems, or that the example generation procedure is completely free of systematic bias. Prob-
lems are also relatively small compared to those found in competitive benchmarks for first-order
theorem provers. The experiment does show the flexibility of this approach, and the ability of
the network architecture to perform well on more complex tasks than propositional entailment.

7 Conclusions and Future Work

We introduce EntailmNet, a new architecture for predicting propositional entailment and show
that it has good performance characteristics, especially on larger entailment problems. The
approach appears to work well with other logics, and performs well on a synthetic first-order
benchmark. The network does not utilise any algorithmic assistance as PossibleWorldNet does,
yet achieves competitive performance — this allows the network to process similar tasks which
do not have a useful concept of “possible worlds”. Additionally, the network is not based on
a TreeNet, instead utilising graph neural network techniques. In some applications, such as
guiding automatic theorem provers, network prediction throughput is crucial. Graph neural
networks parallelise [4] more naturally than previous approaches, suggesting that this style of
network may be more applicable to these domains.

Much future work is possible. No systematic effort has been made to tune network hyper-
parameters or overall architecture yet. In particular, we suspect that multiple dense blocks
might use fewer parameters or perform better than one large block. Other convolution methods
and the conspicuous absence of local pooling may also be investigated. In order to produce a
comparative result, sensible baselines and other competitive models should be applied to the
first-order benchmark. Additionally, the performance of this model suggests that further testing
may require harder benchmark tasks. Real-world settings are yet to be investigated.
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