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2 Federal Institute of Paraná (IFPR), Paranavaı́, Brazil
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Abstract— In ultrasound research, an important subject is
the quality of image assessment. Despite a myriad of techno-
logical solutions, qualitative and quantitative metrics are crit-
ical indicators to measure and compare the quality of ultra-
sound images. This paper presents a simulation of a model
that implements step-by-step an image reconstruction based on
delay-and-sum (DAS) method from the Matlab/Simulink en-
vironment. The general objective was to validate this model
to compare the quality metrics of images against the compu-
tational one. Model results were validated using the Field II
as gold reference, a program for simulating ultrasound trans-
ducer fields and ultrasound imaging using linear acoustics. The
model implements DAS beamforming to process 65 scanlines
generated by a 128-element transducer. For quantitative anal-
ysis, the following metrics have been used: contrast resolution
(CR), contrast-to-noise (CNR), signal-to-noise ratio (SNR), nor-
malized root mean square error (NRMSE), normalized resid-
ual sum of squares (NRSS), and full width at half maximum
(FWHM). According to those metrics, the proposed model per-
formance is strongly correlated comparatively to the reference,
showing errors of 1.49 %, 1.29 %, 0.22 %, 2.45 %, 7.38 % for
the CR, CNR, SNR, FWHM, and NRMSE, respectively. As indi-
cated by metrics the Matlab/Simulink model images are similar
to the computational ones.

Keywords— Ultrasound, delay-and-sum, B-mode image,
quality indicators, image quantifiers.

I. INTRODUCTION

Ultrasound (US) medical images are non-invasive, free
of ionizing radiation, and relatively cost-effective compared
with x-ray systems. For these reasons, US technology has be-
come widely used in diagnosis medicine.

In US research, it is necessary to assess the quality of
an image despite of a myriad of technological solutions.
As these various solutions address image quality compari-
son problems, studies on qualitative and quantitative metrics

are justified as critical indicators to measure and compare the
quality of US images.

The objective of this work was to validate a simulated
model by comparing its image quality metrics against the
computational model. Simulated model results were vali-
dated using the Field II [1] as gold reference, a program for
simulating ultrasound transducer fields and ultrasound imag-
ing using linear acoustics.

First, a computational (Matlab/Field II) model imple-
mented a step-by-step image reconstruction. Next, a simu-
lated (Simulink) model do the same approach to be validated.
Both implementations were based on delay-and-sum (DAS)
method to reconstruct a US image [2], [3]. This technique
is considered well-established. However, to improve the im-
age quality and accuracy of medical diagnosis, the raw radio-
frequency (RF) signal needs to be manipulate directly [4],
customizing the simulation of signal processing in real-time.
More than that, it is necessary to measure the quality of im-
ages generated.

The functional block diagram Fig. 1 shows a general
overview of the computational and simulated models. Next,
the diagram and the US image processing steps will be ex-
plained briefly.

Fig. 1: Receive beamformer - functional steps to obtain DAS B-mode
images

It illustrates the main steps of DAS beamforming sig-



nal processing for US images: filtering, delay/focalization,
windowing/apodization, coherent summation, envelope de-
tection, logarithmic compression, and image composition.

About that mentioned computational model, to sim-
ulate the transmission/reception, the aperture for emis-
sion/reception, the impulse response, and the excitation were
configured by Field II functions.

Special attention was paid to the backscattered signal ob-
tained by reception process. So with Matlab code and tools
with Field II functions, it was implemented Hanning window-
ing focalization, filtering, coherent summation, envelope de-
tection, logarithmic compression and image forming by scan-
lines juxtaposition.

Table 1: Transducer parameters and excitation data

Parameter Values Units

Linear array transducer 128 un

Active elements in the transducer 64 un

Transducer center frequency 3.2 MHz

Scanlines generated 65 un

Sampling frequency 40 MHz

Speed of sound (soft tissue) 1540 m.s−1

Wavelength (λ ) 481.25 µm

Width of element 481.25 µm

Height of element 5 mm

Kerf 8 µm

Fixed focal point (x,y,z) [0,0,50] mm

Elements in x-direction 1 un

Elements in y-direction 5 un

Targets simulated with phantom 20 un

Axial target separation 10 mm

Apodization Hanning -

II. METHODS

Simulations have been done in Field II [1], a program for
simulating ultrasound transducer fields and ultrasound imag-
ing using linear acoustics, to reconstruct a 20-target axial im-
age with focalization at 50 mm depth. For transmission, the
parameters were set up considering a 128-element linear ar-
ray transducer available in our laboratories. Table 1 shows
usual units of measurement. The ”un” symbol means quanti-
ties of units or elements.

A DAS model to generate the US image was built using
Matlab/Simulink, whose quality was evaluated. There are two
major tasks to reach the main goal of this work: the recon-

struction of the B-mode image and the appliance of metrics
to assess the image’s quality.

A. B-mode image reconstruction

A 128-element transducer, with an aperture of 64 ele-
ments, has been used to receive scattered echoes (raw RF
signal) to reconstruct US images. The received signals are
processed using a low-pass filter (LP Filter, Fig. 2) and de-
layers (Z−1, Fig. 2) to provide a more precise and the correct
focalization. The same approach described in [5] has been
used to implement the LPF.

Next, a signal processing windowing technique, the
apodization (Apod, Fig. 2) eliminates distortions caused by
the lateral channels of the aperture. Here, a symmetric aper-
ture was applied using the delay and apodization coefficients
calculated by Field II.

The coherent summation, an adding operation of the 64
resulting signals x(:,1) to x(:,64) was executed recursively
to generate the 65 scanlines (128 transducer’s elements - 64
aperture’s elements + 1). Fig. 2 illustrates these steps per-
formed by 64 channels signal processing.

Fig. 2: Ultrasound DAS beamforming method. Block diagram illustrating
the 64-channels of the first steps (acquisition, filtering, delay, apodization,

and coherent summing)

The envelope detector will apply a Hilbert Transform (FIR
Filter Hilbert Transformer, Fig. 3) to perform quadrature de-
modulation and determine an envelope curve (E(n), Fig. 3)
from an input RF signal (x(n), Fig. 3). This detection corre-
sponds to a tangent curve that involves each scanline x(n).

As found in [6], envelope detection can be performed by
modeling a Hilbert filter, using finite impulse response (FIR)
techniques to obtain the phase I(n) and quadrature Q(n) com-
ponents. A block diagram (Fig. 3) illustrates the concept be-
hind these steps, whose details can be found in [7].

Usually, the dynamic range of the signal is restricted, as in
[4] and [8], because of a limitation to viewing grayscale. The



Fig. 3: Functional block diagram of envelope detector (quadrature
demodulation)

dynamic range of human eyes can distinguish a 30 dB order.
The dynamic range used in this work was restricted from -
60 dB to 0 dB and the grayscale gradients from 0 (white) to
128 or 256 (black) with a so-called logarithmic compression.
Additionally, this compression improves the contrast of the
US image.

The rest of the process is related to conforming the gener-
ated image to the screen. A juxtapose operation is sufficient
for the linear array transducer used to exhibit a B-mode im-
age.

B. The B-mode image assessment

US B-mode images can generated following the steps de-
scribed in the last section and illustrated by Fig. 1. For quan-
titative analysis, following metrics have been used: contrast
resolution (CR), contrast-to-noise (CNR), signal-to-noise ra-
tio (SNR), normalized root mean square error (NRMSE), nor-
malized residual sum of squares (NRSS), and full width at
half maximum (FWHM). Those metrics were evaluated after
logarithmic compression to assess the overall image process-
ing. Moreover, the region of interest (ROI) was defined at the
target located at 50 mm and its neighborhood where appli-
cable. Only the central scanline was considered for metrics
dependent on scanlines to calculate the image quality met-
rics.

A straightforward notion about these quality image quan-
tifiers is described in the following lines.

B..1 Contrast metrics

Contrast is a measure of the ability to distinguish lumi-
nance between different regions of the displayed images [2].
Logarithmic compression, image memory, dynamic range,
and contrast agents are variables that influence this param-
eter. In this work, CR (1) was employed as defined in [9], and
CNR (2) as defined in [10]. These two contrast quantifiers
were applied like [11] and [7] using equations 1 and 2:

CR =
∣∣µtgt −µbck

∣∣ , (1)

CNR =

∣∣µtgt −µbck
∣∣√

σ2
tgt +σ2

bck

, (2)

where µtgt e µbck are mean intensities of target (tgt) and
background (bck) regions, respectively. The σtgt and σbck are
standard-deviations of the signal intensities in tgt and bck re-
gions.

B..2 Signal-to-noise ratio

The signal-to-noise ratio (SNR) compares the signal and
the noise levels at a determined ROI. Its general goal is
to quantify the image quality through speckle measurement
[12]. Speckles are a kind of artifact (alteration) that accentu-
ates the granular aspect, making the image resultant not cor-
respond to the target’s actual image.

A well-known approach to measuring SNR is through the
mean intensity (µs) and the standard deviation (σs) of the sig-
nal [13], [14], defined as:

SNR =
µs

σs

=

1
mn

·∑m
j=1 ∑

n
i=1 E(i, j)√

1
mn−1

·∑m
j=1 ∑

n
i=1

(
E(i, j)− 1

mn
·∑m

j=1 ∑
n
i=1 E(i, j)

)2

(3)
where E(i, j) is the intensities of signals, i and j are a row
and a column within an ROI, respectively.

B..3 Evaluating the goodness of fit

In regression analysis, it is common to measure the
strength of the relationship between data. In our experiments,
data are relative to numerical computation and simulated
model one. The normalization data operation is to guarantee
the same proportion.

In this work, the normalized residual sum of squares
(NRSS) was used as a technique that quantifies the amount
of error variance in the dataset. So, as residual summing, the
nearer to zero is the NRSS metric, the best fit it is [15].

The normalized root mean square error (NRMSE) or nor-
malized root mean square deviation (NRMSD) is the standard
deviation of residuals (error prediction) and measures the av-
erage squared error between data. Although smaller NRMSE
reflects greater accuracy, it is essential to remark that there
is no best value for it [16]. The comparison of the computa-
tional and modeled system, the NRSS [17], and the NRMSE



[18] were employed with algorithms similar to [7],

NRSS =
∑

M−1
k=0 |E(k)−ht(k)|2

∑
M−1
k=0 |ht(k)|2

(4)

NRMSE = 100 ·

√√√√∑
M−1
k=0 |E(k)−ht(k)|2

∑
M−1
k=0

∣∣ht(k)−ht
∣∣2 (5)

where ht and ht are the simulated envelope and the average
value of it, respectively, E(k) is the golden standard and M is
the number of samples.

B..4 Geometric distortion

The quantifier called full width at half maximum (FWHM)
measures the geometric distortion. In this work, the FWHM
reports the width between two points belonging to the cen-
tral scanline curve, whose line intercepts half of its maximum
value, or better said, at -6 dB from the maximum of the main
lobe [8]. Fig. 4 shows the concept of FWHM. Two segment
points are located at half amplitude A/2, in dB, x1 and x2,
whose length is FWHM.

Fig. 4: Standard deviation σ and full width at half maximum FWHM

III. RESULTS AND DISCUSSION

The proposed method (modeled system) was implemented
to generate the image through all the steps illustrated in Fig.
1.

This work integrates image quality metrics found in dif-
ferent articles, each of them assessing some property of US
image. Because of that, observations about this set of met-
rics were parted by subjects. CR and CNR are employed ac-

cording to [9] and [10], respectively, and their application are
according to [11] and [7]. SNR is widely applied, and the cur-
rent approach is like [13] and [14]. The goodness of fit, NRSS
and NRMSE was applied like [7]. Frequently, geometric dis-
tortion is considered. So FWHM was applied following [8]
approach.

Considering the qualitative analysis, the envelope and the
amplitude plot of the central scanline (of number 32) at the
50 mm target (Fig. 5a) was evaluated. Signals and their en-
velopes from the computational and modeled system show
an excellent fit adjustment, as seen in Fig.5b, at the location
pointed by an arrow in Fig. 5a.

(a) The 20-targets scanline signal and its envelope

(b) Zoomed view of the signals indicated by the arrow

Fig. 5: a Scanline and envelope b Zoomed signal and envelope details of
computational and modeled system showing similarity

Another approach is comparing both generated US im-
ages. Here, the similarity of both images is remarkable, as



shown in the resulting image of Fig. 6, where the accuracy of
the model is quite evident even if considering the 20-targets.
The squares with yellow (left) and blue (right) borders high-
light the target and background areas, respectively. The target
area and neighborhood were zoomed in for careful qualitative
analysis. In Fig. 7, there is an arrow to indicate the slight dif-
ference related to the golden standard.

Fig. 6: Image qualitative evaluation. The model is similar to the
computational one inside the corresponding rectangles

The proposed method results were compared to the com-
putational Field II solution. After applying filtering in the raw
signal, delays, apodization, and coherent summation, the en-
velope curve of the signal was generated.

Fig. 7: Qualitative analysis of accuracy. Detail (arrow) of the model target
showing slight difference

For the qualitative analysis, the goodness of fit was exhib-

ited by Fig. 5a and 5b. This accuracy characteristic can be
seen in Fig. 6, whose quality is detailed in a zoomed Fig.
7. For the quantitative analysis, relative to Table 2, it is no-
ticeable that CR, CNR, SNR, and FWHM have very similar
values between computational data and the model. The CR
and CNR contrast metrics are better in the model as they are
the greatest. The NRMSE shows a low value (less than 8%),
which is considered an excellent approximation, and in par-
ticular, the near-zero NRSS refers to a good fit. Both compu-
tational and modeled systems show an excellent agreement.

Table 2 summarizes the results to be analyzed. The first
column shows the image quality metrics. The second and
third columns show values relative to the computational sim-
ulation and the modeled system from Matlab/Simulink. The
last column shows the error percentage between the assess-
ment percentual values of the systems. The two last lines
show the goodness of fit metrics, calculated for both systems.
Note that Table 2 groups apart NRMSE and NRSS because
these metrics include both computational and modeled sys-
tem parameters in their formulation.

Table 2: Image quality evaluation metrics

Metrics
Methods

Computational Modeled Error (%)

CR 10.01 dB 10.16 dB 1.49 %

CNR 0.77 dB 0.78 dB 1.29 %

SNR -6.20 -6.19 0.22 %

FWHM 0.55 mm 0.56 mm 2.45 %

Goodness of fit metrics Values

NRMSE (Computational versus Modeled) 7.38%

NRSS (Computational versus Modeled) 3.36×10−4

IV. CONCLUSION

This work compared two simulations: a computational im-
plemented with Field II add-on for Matlab and a modeled one
made in Matlab/Simulink. A DAS beamforming model gen-
erates US scanlines and images in both systems. Some image
quality metrics were adopted to evaluate the signals and im-
ages. For qualitative and quantitative assessment, the results
of the modeled system were compared to the computational
simulation (reference). Both computational and modeled sys-
tems show an excellent agreement.

This fact indicates that the modeling method in Mat-
lab/Simulink could shorten the image quality assessment.
Moreover, it was possible to model an entire DAS beamform-
ing image with a minimum quality degradation of US images.
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