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ABSTRACT   

Present-day agricultural practices such as blanket spraying not only leads to excessive usage of pesticides, but also harms 

the overall crop yield. This paper introduces an algorithm to optimize the traversal of an Unmanned Aerial Vehicle (UAV) 

in constrained environments. The proposed system focuses on the agricultural application of targeted spraying for locust 

elimination.  Given a satellite image of a farm, target zones that are prone to locust swarm formation are detected through 

calculation of the Normalized Difference Vegetation Index (NDVI). This is followed by determining the optimal path for 

traversal of a UAV through these target zones using the proposed algorithm in order to perform pesticide spraying in the 

most efficient manner possible. Unlike the classic travelling salesman problem involving point-to-point optimization, the 

proposed algorithm determines an optimal path for multiple regions, independent of its geometry. The savings obtained 

by employing the proposed method is directly proportional to the total non-infested area in an agricultural land compared 

to the conventional method. Finally, the paper explores the idea of implementing reinforcement learning to model complex 

environmental behaviour and make the path planning mechanism for UAVs agnostic to external environment changes. 

This system not only presents a solution to the enormous losses incurred due to locust attacks, but also an efficient way to 

automate agricultural practices across the globe in order to improve farmer ergonomics.  

Keywords: Multispectral image, Normalized Difference Vegetation Index, optimization, path planning, reinforcement 

learning, targeted spraying, Unmanned Aerial Vehicle 

 

1. INTRODUCTION  

Over the last few years, the world has witnessed substantial change in the way robotics and automation has revolutionized 

various industrial sectors. Notwithstanding this technological revolution, farming practices in several regions of the world 

are extremely labour intensive, uneconomical and inefficient which result in enormous losses to farmers. 

 

In the recent past, there has been an adoption of technologies in the agricultural domain which have laid major emphasis 

on automation of tasks to reduce the skilled labour requirement. Digital technologies have additionally paved the way to 

help farmers to improve crop yield through smarter implements and solutions. However, real-time use of intelligent 

systems has been a major challenge due to the diverse applications and conditions that exist in this domain. One of the 

prevalent precision agriculture techniques, is the operation of blanket spraying performed by agricultural drones. This 

operation not only utilizes a significant amount of time, but also results in excessive wastage of fuel and pesticides. It also 

damages the good crops which is detrimental to the overall crop yield. Addressing these issues through the introduction of 

resource optimization, involving solutions such as intelligent navigation algorithms, can prove to be extremely beneficial 

in transforming present day agricultural practices. 

 

This paper aims to devise an efficient and resource optimized solution to alleviate the problems caused by locust swarms 

in agriculture. The detrimental effects that locust swarms pose to agricultural practices is a major area that has been 

addressed in recent years. Locust swarms can destroy fields within a matter of weeks and based on the trends presented by 

the FAO1, losses to agriculture from locusts could cross $5 billion on 25% infestation solely in Southwest Asia2. One of 

the methods to eliminate locusts is through aerial spraying of pesticides. Devising a path optimization algorithm to perform 

targeted spraying can prove to be extremely essential to mitigate the aforementioned shortcomings in the most efficient 

manner possible. Furthermore, this technology for targeted spraying can be extended to a multitude of use-cases within 

and outside the agricultural domain. Targeted spraying of herbicides and pesticides falls under the scope of agricultural 

applications. Other areas that can benefit from this technology include door-to-door delivery systems, delivery of medicinal 

packages or rescue missions in calamity-affected areas. 

 

 



 

 
 

 

 

 

Section 2 provides insight into the related work that inspires the research theme of this paper. Section 3 provides details 

pertaining to the proposed implementation methodology and the simulation observations through ArduPilot Mission 

Planner. The work presented in the paper is summarized in section 4 along with the future scope for this technology. 

 

2. RELATED WORK 

Desert locusts have the ability to rapidly increase their population when ecological conditions such as vegetation blooms 

or rainfall corroborate locusts' reproductive cycle3. The life cycle of the desert locust involves several stages4. It begins 

with the egg laying and hatching phase. The new born might remain in this phase, mounting up to five or six times as they 

grow in size5. During the adult phase, their wings enable them to colonize new areas6. 

 
Traditionally, locust control strategies assumed that only when swarms migrate from outbreak areas and breed in 

neighbouring regions, an outbreak occurs. Locust control can be achieved by focusing on smaller, more accessible areas 

and providing the necessary preventive, monitoring and treatment equipment7. Extrapolating this idea, locusts’ control can 

be achieved by spraying pesticides on the locusts in their egg laying/post egg laying phase, which are generally 

concentrated in small, accessible regions. This allows for effective locust control, mitigating the risk of outbreaks. NDVI 

is highly useful in detecting features of the visible area which are extremely beneficial for decision making8. NDVI may 

be used in disaster management solutions as well as devising new methods in prevention of plague outbreaks and disasters9. 

In this paper, NDVI is used as a parameter to replicate the presence of potential locust hotspots. 

 

The latest technology makes use of blanket spraying or humans manually spraying pesticides over farmlands. The WHO 

(World Health Organization) estimated over 1 million pesticide cases from which 100,000 deaths each year were due to 

the pesticides sprayed by human beings10. Making the use of Unmanned Aerial Vehicles (UAV) has multifold benefits. 

Pesticides can be accurately dispensed in only the affected areas that can be detected using vegetation index parameters 

like NDVI. UAVs are also used in non-destructive data collection rapidly and efficiently. UAVs are intelligent robots, 

capable of analyzing air quality and soil components11. UAVs have the ability to collect and transmit data to servers in real 

time. Although as the number of subsystems increase, the endurance or mission flight time of UAVs reduces. Short battery 

life is a problem that can be resolved by path planning algorithms that minimize the total trip-length cost12. 

 

3. IMPLEMENTATION METHODOLOGY AND RESULTS 

This section gives detailed information on the proposed approach for identification of locust hotspots and determination 

of the optimal trajectory to be traversed by a UAV for performing targeted spraying. Fig. 1 shows a high-level 

representation of the system architecture. 

 

 
 

Fig. 1 System Architecture 



 

 
 

 

 

 

3.1 Acquiring Multispectral Images 

Using Google Earth Engine, the Landsat Image Collection is selected to acquire multispectral images. For superior 

accuracy, the image with the least cloud cover was selected. Geospatial information such as latitude and longitude, and 

NDVI (crop health parameter) of the selected region were extracted. For this paper, a region in central Maharashtra, India 

was selected as the region of interest.  

 

3.2 Generating NDVI Map 

Normalized Difference Vegetation Index (NDVI) is an indicator used in the agricultural domain to monitor crop health 

using spectral characteristics. In this work, NDVI is used as a parameter to detect potential locust hotspots. The regions of 

the image where the NDVI value lies within a threshold is considered to be a locust hotspot. Using the Near Infrared (NIR) 

and red bands of a multispectral image, the NDVI associated with every coordinate in the obtained image is calculated as 

depicted in (1): 

 

 
𝑁𝐷𝑉𝐼 =

𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑
 (1) 

 

The problem of detecting locusts is extensively under research and there is no standardized method presently. 

 

3.3 Identifying Regions of Interest 

As per the FAO1, locust hotspots are most likely to be found at the coordinates where the NDVI value is below 0.14. 

Following the thresholding standards, a binary image is created to represent the potential locus hotspots. Additionally, 

morphological operations are performed on the image to remove noise. Using Otsu’s thresholding, the centroid of each 

region is identified and the regions are numbered and stored. Fig. 2 shows the detected locust hotspots. 

 

 

Fig. 2 Locust Hotspots 

 

3.4 Region Sampling 

This sub-section details the operations performed to sample the detected hotspots, create potential waypoints for traversal 

and store their positional information. 

 

 



 

 
 

 

 

 

3.4.1 Region Splitting 

The UAV can only spray pesticides over a certain region while being stationary at any given point of time due to its 

physical constraints, i.e., the swath of the drone. Each region is split into the largest possible grids keeping in mind this 

constraint. Larger the grid size, fewer waypoints for the UAV to follow. Each region is split into grids based on the 

geometry of the hotspot. Centers of all the grid boxes are used as waypoints for the UAV. 

 

This implies, if the UAV was to visit and spray pesticides over all the centers thus created, the entire region would be 

covered, not leaving out any locust-infected hotspot. Irregular region shapes are discretized making the system 

computationally efficient. This operation is similar to signal sampling. An example is shown in Fig. 3. 

 

 
 

Fig. 3 Sampled Regions 

 

3.4.2 Storing Region Center Information 

Each center within a particular region has the following attributes associated with it: 

a) Region Number 

b) X index – the X coordinate of the center w.r.t the region 

c) Y index – the Y coordinate of the center w.r.t the region 

d) X global – the X coordinate of the center w.r.t the entire image 

e) Y global – the X coordinate of the center w.r.t the entire image 

f) Locust Check Index – an integer (0, 1 or 2) to store information of locusts in that region 

g) Region Type – a string that stores if the center is in a vertically or horizontally oriented region 

h) Corner Type – a string that stores if the center is a corner point or not. 

 
These 8 features are extracted from all centers and stored in a list in the following format. Each center point represents all 

the characteristics of the grid it covers. The path planning algorithm uses information from this list to decide the order of 

every waypoint. 

 

Locust Check: this is done by checking if there is any pixel with intensity 1 in the swath*swath area associated with the 

center. If there is no pixel with intensity 1, it implies that the sub-region does not contain any locust infestation. The 

following values indicate the type of center and presence of locusts in the associated sub-region: 

 



 

 
 

 

 

 

a) 0 – center with locust 

b) 1 – corner without locust 

c) 2 – center without locust (need to skip this waypoint) 

Next, the order of regions and the respective sub-paths within a region are decided. 

 

3.5 Generating Optimal Path 

This sub-section provides details about the steps followed to generate the optimal path for traversal of a UAV. 

 

3.5.1 Deciding Region Order 

 

Keeping a fixed start point, the first step towards optimizing the path is deciding the order in which the drone has to visit 

all the regions. This is akin to the Travelling Salesman Problem13. Using the MATLAB Optimisation Toolbox14, an 

algorithm was devised to return the order of regions that would cover minimum distance.  

 

The most optimized tour covering all the regions in the right order is found. The program goes through several iterations 

before forming the shortest path. Fig. 4 shows all the points and the path connecting the centroids of every detected region. 

 

 

 

Fig. 4 Determining Order of Regions 

 

3.5.2 Deciding Path Within a Region 

 

Once the regions have been sampled and the order of the regions to be visited has been decided, all the hotspot centres 

within a particular region need to be covered optimally. A few examples of the regions are shown in Fig. 5. 

 

  
 

Fig. 5 Examples of Sampled Hotspot Regions 



 

 
 

 

 

 

3.5.2.1 Deciding Entry Point  

 

Each region has a maximum of 4 corner points that act as entry points for the UAV in that particular region. Consider 2 

regions Ni and Ni+1. Assume the drone has covered all the points in region Ni and is now moving towards Ni+1. The 

algorithm computes the distance of all the 4 corner points of region Ni+1 from the current point and chooses the minimum 

distance corner as the next waypoint. Once the entry point has been fixed, the sub-path within the region has to be decided. 

 

3.5.2.2 Types of Sub-paths 

 

Within a region, the drone has 2 options. Either start moving vertically or horizontally. Depending on the entry point (top 

left, top right, bottom left, bottom right) each sub-path has 4 options. Since there are 2 configurations of the regions 

(horizontal and vertical) in all there are 8 possible sub-paths. Fig. 6 shows some examples of the sub-paths for a vertically 

oriented region. The sub-path within regions is decided by the location of the next region and the minimum distance from 

its corners. 

 

 
 

Fig. 6 Examples of sub-paths in vertical orientation 

 

3.5.2.3 Next Region Entry 

 

Since the entry point of the drone is fixed in a particular region Ni, the sub-path within that region has to be such that the 

distance from the next region is to be minimized. This is computed as follows: 

 

i. Take the vertical sub-path 

a. Get the exit point 

b. Compute next region’s (Ni+1) entry point according to the minimum distance 

c. Store total distance travelled as verticalDist 

ii. Take horizontal sub-path 

a. Get the exit point 

b. Compute next region’s (Ni+1) entry point according to the minimum distance 

c. Store total distance travelled as horizontalDist 

iii. Compare verticalDist and horizontalDist. 

iv. Choose the path with the least distance. 

 

Once the path has been chosen with the minimum distance, the points that have been traversed are stored in a list. This 

covers all the centers in a particular region. 

  

3.5.2.4 Eliminating Unwanted Points 

 

It is possible that a particular center does not have any locust infestation in a small section of a particular hotspot. Fig. 7 

demonstrates an example. Clearly, if the UAV visited every single point in the region, it would waste time and fuel by 

visiting regions that don’t have locust infestation (points marked in red). Therefore, while writing the waypoints into the 

trajectory, the points that are marked in red are skipped and the UAV does not visit these points. Every point in the sub-



 

 
 

 

 

 

path is checked and if the Locust Check parameter is 2, that point is discarded from the sub-path. The final path for this 

region looks as shown in Fig. 8.  

 

 

               
 

                                    Fig. 7 Identifying unwanted points                       Fig. 8 Final sub-path within a region 

 

This process is followed for all the hotspot regions and their respective sub-paths until the last region is covered and the 

drone returns to the start point. These waypoints of the trajectory of the UAV are stored. 

 

The resultant path obtained by the algorithm after iterating through all the regions is shown in Fig. 9. 

 

 
 

Fig. 9 Resultant Path 

 

3.6 Generating Final Waypoints 

Once the trajectory of the drone has been determined, it is stored as a waypoints file. This work uses ArduPilot Mission 

Planner as the simulation software to visualize the path devised by the proposed algorithm with precise real-world 

coordinates. The geospatial coordinates corresponding to each waypoint are retrieved from the obtained multispectral 

image and integrated with the proposed algorithm. 

The file consists of information such as the type of waypoint (take-off, hover and land), latitude, longitude and altitude 

information corresponding to each waypoint. Fig. 10 represents a path devised by the proposed algorithm on ArduPilot 



 

 
 

 

 

 

Mission Planner. It can be vividly noted that the algorithm is not restricted by the geometry of the target areas or the overall 

span of the entire operation, and can cover large areas at a single stretch with equal efficiency. 

 

 
 

Fig. 10 Simulation on ArduPilot Mission Planner 

 

3.7 Exploring Reinforcement Learning 

To delve deeper into the future scope of further improving the path determination process, the paper explored the possibility 

of developing a reinforcement learning agent that can learn to take actions optimally in a particular environment. In this 

case, the agent will parallel the tasks to be performed by the drone in a real-world scenario. A custom simulation space 

was created to train the agent to learn to reach a target while also avoiding an obstacle. Here, the agent, the obstacle and 

the target are 1x1 blocks in an n x n grid as the environment. 

 

To train the agent, certain penalties are set to craft the reward function effectively. During an iteration there are penalties 

for every step the agent takes without reaching the target and for hitting the obstacle. There is a reward when the agent 

reaches the target. The goal of the agent in this process is to maximize the reward obtained. The agent’s movement is 

confined to 1 unit diagonally in a single step in a training episode. Fig. 11 depicts training of an agent (blue) to reach the 

target (green) while avoiding an obstacle (red). 

 

The motivation is to expand this idea and train an agent to traverse multiple hotspots optimally in the presence of more 

obstacles, which is a desirable way forward in the mission to create next-gen path planning systems. 

 

 
 

Fig. 11 Training a Reinforcement Learning Agent in a Custom Environment (left);  

Agent reached the target (middle); Agent hits the obstacle (right) 



 

 
 

 

 

 

4. CONCLUSION AND FUTURE SCOPE 

This paper proposes a technique for resource optimization through targeted spraying in precision farming. The paper also 

showcases the potential of using state-of-the-art artificial intelligence techniques such as reinforcement learning in 

conjunction with the existing technologies to revolutionize agricultural practices globally. The proposed system can devise 

optimal paths for a UAV to efficiently traverse along locust formation hotspots and perform targeted spraying. 

Development of intelligent agents using reinforcement learning that incorporate obstacle avoidance can be a key extension 

to the proposed solution in addressing real-world scenarios with complex environmental conditions. Other research 

prospects include the scope to account for system parameters such as fuel and payload, external factors such as wind and 

a real-time adaptable drone swath based on the target area geometry. 

 

A long-term goal of this work is to create an Internet of Things (IoT) ecosystem connecting the farmer to a coterie of robots 

meant to perform precision farming activities on farmland. This includes crop harvesting, de-weeding and targeted 

spraying. An IoT solution that makes the use of a mobile app as an interface between the server, drone and the user is 

visualized in Fig. 12. This can allow farmers to monitor their fields remotely. This work advocates the use of ideas on 

these lines to form an infrangible part of future precision farming technologies. 

 

 

Fig. 12 Envisaged IoT Ecosystem 
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