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Abstract—Visual analytics for time series data has received
considerable attention in previous literature, and different ap-
proaches have been developed to understand the characteristics
of the data and to obtain meaningful information. Visualizing,
analyzing and presenting large temporal datasets are important
tasks to understand, navigate and explore such data. One-
dimensional time-series charts are usually used to visualize time
series data but if the dataset contains multiple time series with
a large number of observations a high degree of overlap will
occur which may obscure important information. This problem
has become a vital challenge in many domains such as finance,
biological systems, and meteorology. The need for analyzing
and exploring large time-series data led researchers to develop
various interactive visualization tools and analytical algorithms
which aim to give insight into the data, and most of them
either focus on a small number of tasks or a specific domain.
We propose a visual analytics system and approach which
aims to visualize, analyze, present and explore large temporal
datasets. Our approach consists of three main stages which are
preprocessing, dimensionality reduction, and visual exploration.
It assists with finding the interesting features in the data which
are often obscured in the line chart or the visual compression
that is required to render the large datasets on a small screen.
Also, it helps to obtain an overview of the entire dataset and
track changes over time. Moreover, it enables the user to detect
clusters and outliers and observe the transitions between data.
The juxtaposed views are used to visualize and interact both
with raw time series data and projection data. Different time
series datasets are deployed on our system, and we demonstrate
the utility and evaluate the results using a case study with two
different datasets which show the effectiveness of our system.

Index Terms—Time series data, Visual analytics, Time series
graphs, Principal Component Analysis (PCA), 2D Projection,
Clusters, Exploration

I. INTRODUCTION

Due to an ever-increasing amount of time series data and the
complexities involved with analyzing and understanding them
in practice, revealing meaningful insights and knowledge from
the shape of data has long been an active area of research.
The processing and analyzing of such data require particular
tasks and methods to support effective analysis. Besides that,
visualization and interaction techniques are essential. Visual
analytics is at the core of dealing with huge amounts of
information by combining the enormous processing power and
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Fig. 1. 1D Line Chart with 173,256 data elements

storage capacity of computers with the flexibility, creativity,
and domain expertise of humans through interactive visual
interfaces.

The most common form of representing time-series are line
plots which link the data points with a line that illustrates
their temporal relation. However, one of the biggest chal-
lenges in time series visualization is getting an overview of
a compressed or uncompressed line graph with the goal of
gaining a better understanding of how relationships change
over time, how information spreads, where clusters occur,
where the common patterns occur, etc (Figure 1). It is difficult
for the user to relate sequences of data that have long periods,
particularly when they are a long temporal distance apart in the
time-series data. Time series graphs are effective when dealing
with a small data space, but performing common tasks on large
data becomes more challenging. Many interaction techniques
have been introduced to tackle that issue for large data, which
will be reviewed in the related work, but most of those works
focus on the interaction techniques while analysis techniques
have been given less attention.

We propose a method of reducing every sliding window in
a time series graph to a point based on a dimension reduction
method and accelerating the dimension reduction using the
property that we are using a sliding window on the time-
series. This can ultimately present an overview of the whole-
time series graph in one image. Consequently, selecting any
points could give the user reasons why they are similar or
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Fig. 2. The overview of the system. Exploration of five clusters and transactions between them after applying our approach on the time series data collected
by a sensor from a Cormorant bird where different colors express different clusters, e.g. cluster A is one behavior (diving) which is concentrated in the same
area. (a) time series graph for raw time series data, (b) connected scatter plot for the data after projection showing five clusters (Descent Phase of Dive (cluster
A), Bottom Phase of Dive (cluster B), Ascent Phase of Dive (cluster C), Surface Swimming (cluster D), and Flight (cluster E)), (c) zooming cluster A, (d)
drawing line chart for the selected data point, (e) time vs. first principal component (f) showing the transitions between cluster D to cluster A.

dissimilar, where clusters occur, and how the relationships
between points develop, which are the interaction challenges
that we tackle. The goal of this work is to provide a visual
analytics system that assists users to understand and visualize
time series graph simultaneously with the connected scatter
plot that represents the whole dataset after the projection
process (Figure 2). Furthermore, one of the important goals
in our approach is to clearly show how the shape of data
evolves over time, thus, researchers will be able to observe
and understand the phenomena or behavior that occurs when
comparing it over time.

This paper also addresses how visual analytics systems sup-
port automated clustering for a real-world problem assisting
the user to understand the data, and, gaining insight in terms
of clustering for instance, this could include how much the
data changes within each cluster, which clusters are close to
or distinct from each other, and where the most representative
or relevant transitions have occurred between clusters in the
phenomenon under consideration.

Our system does not require any templates for the matching
process to take place. We utilize visualization and interaction
techniques to search for matching patterns, which involve a
user in the loop for checking, analyzing, and understanding.
The main contributions of our work are:

1- Introducing a visual analytics system and approach that
effectively depicts large time series data, facilitating the
user to see, explore, trace, and understand large amounts of
information from time series graph through a 2D connected

scatter plot which summarizes the whole data on one image.
2- Showing the visual analysis capability of our system,
which leads to a better understanding of large and complex
temporal data and identifying underlying patterns, clusters,
outliers, and transitions between them after projection.

3- Improving the PCA computation utilizing the stationary
mean which executes on large datasets in real time to provide
an interactive application.

4- Providing real-world use cases using two different time
series datasets.

The approach consists of three essential steps:

1) Preprocessing; 2) Feature extraction and projection; 3)
Visual Exploration.

The rest of this paper is organized as follows. In section 2,
the related works are presented. Methodology is discussed in
section 3. In section 4, two case studies are given. Finally, we
conclude our findings in section 5.

II. RELATED WORK

In recent decades, many visual analytics systems that embed
multiple visualization and interaction techniques have been
proposed to deal with time series data. Supporting users in
the discovery of potentially interesting patterns is one of the
essential concepts in this domain by taking the advantage of
the human ability to visually reveal and assess such patterns.
A comprehensive overview is provided by Aigner et al. [1]
which discusses and reviews an in-depth visualization of time-
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Fig. 3. Our system approach which consists of three major steps. (a) preprocessing, (b) dimensionality reductions, and (c) visual exploration.

oriented data illustrating with numerous examples and present
a structured survey of existing techniques for visualizing and
interacting with time-oriented data. In this section, we discuss
only methods and systems that are pertinent to this paper.

To visualize motifs, Lin et al. [20] present VizTree, a visu-
alization based on augmenting suffix trees which transforms
a large time series into a symbolic representation. It allows
mining and anomaly detection over large time series data.
Time series data is converted to a symbolic representation
(SAX), which is utilized to build a suffix tree that encapsulates
the local and global structure of underlying time-series. Both
tree and line charts are used to link different pieces of
information. Ordonez et al. [24] append radial representations
to their line chart for simplifying the motif analysis process.
They demand user domain knowledge and interactions on the
tree to understand a motif.

TimeSearcher 2 [6] is introduced which is the extension of
TimeSearcher [10] for pattern discovery through query-by-
example in the time-series data to find similar occurrences.
Filtering is used to reduce the size of the search and enable
users to explore multidimensional data using coordinated
tables and graphs. Rubber band selection is used to allow
the user to perform specific pattern search on the data using
Euclidean distance. It is focused on multiple time series query
based on examples, so preselecting an interesting pattern
should be provided. That is similar to TimeClassifier [29]
which requires one instance of behavior in order bootstrap the
matching process. Hence, both systems require users having a
general idea of what constitutes interesting patterns to specify
interesting regions.

Van den Elzen et al. [27] propose a visual analytics approach
for the exploration and analysis of dynamic networks by
reducing graphs in time steps to points which is a similar
approach to the one we take here. Burch et al. [7] stated that
reducing snapshots to points was good for scalability, but the
actual graph structures were not visible anymore. Lin et al.
[21] mention that the method could display an overview of

the evolution, but could not give reasons why they are similar
or different.

Interaction techniques have been focused to enhance the
time-series graph for large data. Kincaid et al. [16] apply a
pixel-based display to multiple time-series graphs. It provides
a compact overview by encoding the y-dimension of individual
line graphs with color instead of space and displays picked
graphs in detail using standard techniques. It depends on focus
and context techniques. Hao et al. [9] also present a space-
filling, multi-resolution matrix representation of time series,
where the display is extended to two-dimensional space using
the x and y-axes.

In addition, lensing techniques [15], [33] are utilized al-
lowing to visualize the data based on the underlying user-
defined regions. To allow focusing on points of interest while
maintaining the context with the remaining series, time-axis
is distorted to enhance segments of interest. Javed et al.
[13] present stack zoom based on layout techniques. Walker
et al. [28], based on Stackzoom and ChronoLens, present
TimeNotes which supports interactively selection, exploration,
hierarchical navigation, and comparison of time-series data.
Then, they are labeled as instances of specific behaviors.

PCA, as a feature extraction method, is effectively applied
to time series data [18], [26], [31], [32]. It is often utilized to
reduce the dimensions of a d-dimensional dataset by projecting
it onto a w-dimensional subspace where w is less than d.

In this paper, we incorporate visualization, matching, and
human interaction into one system to explore, analyze and
understand a large time-series data by reducing them to points,
so that the user can discover similar patterns by changing
window width and overlaps between windows. Through in-
teraction, the user creates a labeling of similar patterns in the
large time-series. Each pattern has its own identifying color.
It does not require labelled or pre-classified data in order to
start the matching process. It takes the advantages of both
visualization and interaction techniques to provide a better
understanding of large time series data, allowing the user to



visualize and explore the big picture of the phenomenon under
consideration.

I[II. METHODOLOGY

Our visual analytics pipeline consists of three essential
stages which are preprocessing, feature extraction and
projection, and visual exploration see Figure 3. Every step
will be illustrated in detail in the following subsections. To
enable analysis and exploration of time series data, we apply
the sliding window approach on raw time series data. Then,
the feature extraction technique is applied to project the
dataset to two dimensions. The interface is designed to support
analyzing, exploring and matching large time series data with
linked juxtaposed views and many options that can be adjusted
to assist a user to reach the desired target.

A. Preprocessing

The time series data is prepared for analysis. The sliding
window approach and the constructed matrix that are resulting
from it are simultaneously crucial in our process. Each row
in the constructed matrix is considered as a point in high-
dimensional space, and each such point in that space represents
the phenomenon under consideration at a different time-
interval.

1) Sliding window approach: Given a continuous time
series data Q, the sliding window technique running along
the time axis depends on two significant parameters which
are window size W and stride (offset) S. Sliding Window
is also called brute force or one-pass algorithm [23] and has
been used in many time series works for instance [11], [12],
[14], [27]. It is an appropriate way to deal with temporal
data because it sequentially processes the raw data keeping
into account its temporal behavior. This specific discretization
process is largely determined by the choice of the window
length and the stride between the existing window and the
following window. Both parameters have their default values
in our interface, and can be modified by the user. Using this
approach divides the data stream into blocks, and is considered
to be a fast segmentation method, where no false dismissal can
happen because of the overlapping between windows.

The result of sliding window segmentation is to construct a
new matrix which will be used in the next step. The process
is begun by determining the left boundary of the first window
(usually the first data point of a time series), which is the
starting point for the window. It slides (to the right) along
the time series depending on the window size (the stopping
point will be the end of this window). The first row in the
newly constructed matrix will be this first window. Based on
the stride, the second window starting point begins, which
represents the second row in the matrix. In this manner, the
process is repeated until the end of series see Figure 3 (a).

Q is a time series of size n with Q = (¢1, g2, - - -, G, - .
., ¢n). W denotes the window size. S denotes stride (offset).
We define a matrix X of the sliding windows:
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Appropriate values for the window-length and stride param-
eters are set interactively. The overlapping between windows is
beneficial to avoid missing any data and facilitate the smooth
transition between time-steps after projecting the data to the
new space.

B. Features extraction and projection

The segments of time series data are treated as points
in high-dimensional space (WD space). The feature-based
technique is used, to reduce the feature space to lower dimen-
sional subspaces for visualization, understanding, and analysis.
Data in the lower dimensional subspace are approximated
to the geometric attributes of the data in the original high-
dimensional space.

Several feature based techniques have been proposed to
represent features with low dimensionality for time series
data. Principal Component Analysis (PCA), as an eigenvalue
method, is a technique which transforms the original time
series data into low dimensionality features. PCA has been
utilized in visual analytics finding relationships between vari-
ables in the data, visualizing and interpreting data, and data
dimensionality reduction [2], [3], [19], [22], [27].

PCA transforms data to a new set of variables whose ele-
ments are mutually uncorrelated, so it learns a representation
of data that has lower dimensionality than the original input.
PCA has been used as an effective dimensionality reduction
method that eliminates the least significant information in
the data. Hence, a complex dataset can be reduced to a
lower dimension which helps to reveal the sometimes hidden,
simplified dynamics that often underlie it.

Our goal can be achieved by reducing the feature space to
two dimensions and back projecting the original data to the
newly determined space. As a result, they will be represented
as 2D points for visualization and interaction. In this situation,
standardization is carried out on matrix X,,y, to create
data with zero mean and unit variance. This standardization
is important, particularly, if data was measured on different
scales. Many machine learning algorithms require it to obtain
the optimal performance.

The second step is calculating the covariance matrix which
is a square and symmetric matrix. The covariance of the
matrix X, xn 18 Cov,xn, Where every element illustrates the



covariance between two features columns (z;, and x;, where
1 <7 < n). It can be obtained using equations 1 and 2:

R ()
n =1
1 n
CO’ny = ﬁ Z(fl;zx - fm)(xly - m7.1/) (2)
1

In our case, because we apply the sliding window approach,
and our data is collected from sensors which generally measure
data on convergent scales, we obtain a stationary mean over
all of the features. Based on that, there is no need for
standardization and, as such, the computation time for PCA is
improved. Also, the covariance matrix is modified, equation
3, based on the stationary mean of the whole time-series data,
Z. This accelerates PCA for large datasets (when changing
window width), and allows interactive real-time analysis.

n

Covgy = % ;(xm —Z)(Tiy — T) 3)
The eigenvectors (e,e9,...,64) and corresponding eigenval-
ues (A1,M\a,...,A¢g) are computed using equation 4 where Cov
denotes the covariance matrix, e denotes the eigenvector ma-
trix, and A denotes an eigenvalue. The eigenvectors are ordered
descending by their eigenvalues. The goal is to preserve as
much of the variance in the original data as possible in the
new coordinate system. The first two eigenvectors are selected

which always have the highest eigenvalues.

Cove=M\e “4)
Yy =wTXx (5)

Once we have determined the components (eigenvectors) that
we will keep in our data, we take the transpose of the vector
and multiply it using the original dataset equation 5 (where
Y denotes the transformed dimensional samples in the new
subspace, X denotes the original data, and W denotes the
eigenvector matrix ).

C. Visual Exploration

Visual data exploration usually follows three main steps:
overview first, zoom and filter, and then details-on-demand
which is called the Information Seeking Mantra [25]. This
mantra insight fully summarizes the fundamental elements of
interacting with presented information. First of all, the user
needs to obtain an overview of the data to identify interesting
patterns. Our approach facilitates the overview task using the
connected scatter plot which presents the entire temporal data
on one image (see Figure 2). Clusters, outliers, and patterns
can be determined which are useful criteria to look for.

The two linked juxtaposed views are utilized to enable the
exploration of the time series data (see Figure 2). The first
view shows the time series graph, while the second shows the
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Fig. 4. Selection using similarity. The user selects part of the data from the
time-series view (top). All other data that matches below a threshold based
on Euclidean distance are labelled the same. In this case it corresponds to the
”Surface swimming” cluster.

projection points after applying our approach. Each point in
the connected scatter plot represents one sliding window in
time series graph. Each point is connected by two lines; one
links it to the previous point (inner) and the second one links it
to the posterior point (outer), preserving the temporal ordering
of the data.

Along with an overview, the navigation tools are supported
to pan or scroll through the data. If the user wants to drill-
down and access details of the data, selecting and zooming
can be used to facilitate quick and interactive exploration of
large datasets. Smooth zooming is used in order to explore
a region of interest in both line and scatter graphs that helps
user preserve their sense of position and context (see Figure 2
(c) and 2 (d)). Zooming and panning techniques are also used
to support exploration, especially in scatter plot, to assist the
close-up visual search of clusters.

For details-on-demand, the idea of linking and brushing
is used to facilitate combining two different visualization
techniques (time series graph and connected scatter graph). For
example, the desired points can be selected and highlighted in
either views which are concurrently reflected on both line and
scatter graphs, hence, it allows the user to visualize, inspect,
and differentiate between patterns, clusters, and outliers.

Brushed points that are highlighted in one visualization are
automatically reflected in the other visualization with the same
color that is selected by the user. That makes it easy to detect
patterns and relationships in the large dataset. The user can
apply the sequence of brush in or anywhere and in any order
for example, in Figure 6, the user has brushed four areas on
the connected scatter plot view. These areas are related back
in the line chart demonstrating a successful ”labeling” of the
data. One outlier has also been brushed (blue).

There are other options that are available such as, path
extractions see Figure 2 (f) which is facilitated to track the
transition intra- and inter- cluster. Sliding window size and



stride can be modified.

We have also enable similarity matching using Euclidean
distance (other similarity measures can be introduced). A data
selection is made by the user Figure 4 (top time-series), then
the Euclidean distance between the selection is made to the
rest of the data. All windows below a distance threshold set
by the user are considered to be matched and are given the
same label Figure 4 (main display).

IV. CASE STUDY

For the duration of the project, we collaborated with experts
who provided us with large time series datasets, and provided
a number of suggestions for improving and adding features.
Accordingly, we implemented some options to give the user
more control over exploration and analysis.

In our case study, we present the results of two time series
datasets which assist to evaluate our system and demonstrate
the usefulness of our technique. The first dataset is from
movement ecologists to study animals behavior in their natural
environment. The second dataset is the chronic obstructive
pulmonary disease (COPD) data for 48 patients.

A. Case Study 1 - Imperial Cormorant Birds

Background Animal behavior is a rapidly growing and
advancing area of study. It includes all the ways that the
animals interact with other organisms and their natural en-
vironment. One of the potential ways of identifying animal
behavior is through movement. Sensors, such as accelerom-
eters, are widely used in the area of biological research to
measure behavior in wild animals. The obtained data, from
the attachment of tri-axial accelerometers, is analyzed to allow
researchers to investigate the movement and therefore behavior
of the animals.

Inspection of multiple sensors at high frequencies is time-
consuming and requires a great deal of expert knowledge [4],
[17], [28]-[30]. Previous work by the biologists has shown
that Overall Dynamic Body Acceleration (ODBA) [8] and
Vectorial Dynamic Body Acceleration (VeDBA) [5], calculated
from the raw acceleration values, are good proxies for energy
use. We derive the sliding window matrix for VeDBA. We
also derive the sliding window matrix for the raw tri-axial
accelerometer data by vectorizing them into one vector by X,
y, and z order. After that, each vector is placed as a row in
the constructed matrix.

Initial view We begin the analysis session by loading
the raw accelerometry data which contains 173,256 data
points into the visual analytics tool. The data for an Imperial
cormorant exhibits five main behaviors which are Descent
Phase of Dive (cluster A), Bottom Phase of Dive (cluster B),
Ascent Phase of Dive (cluster C), Surface Swimming (cluster
D), and Flight (cluster E). The raw accelerometer data is
presented in Figure 2.a and the connected scatter plot of our
approach in Figure 2.b (prior to the coloured selections). Five
clusters are clearly seen and the transitions between them.
Each point in the plot represents the animal movement for a
particular duration. Other methods, such as k-means clustering

require the number of clusters to be known in advance which
is difficult to determine in large datasets. By applying our
approach, this data presents clusters which exactly correspond
to the five main behaviors in the dataset.

Interaction Users can select in either view to determine
areas of interest, and can freely zoom into detail, see Figure 2.c
and 2.d. Using the brushing tool, the biologist selects the
leftmost cluster (Figure 2.c) and assigns the yellow colour.
The time-series chart view updates to highlight in yellow
all data associated with the cluster. Each of the remaining
clusters are selected in turn, are assigned a color, and create
the highlights in the time-series chart view. Through this
interaction, the expert is able to confirm each of the clusters
from our visualization correspond to one of the behaviors in
the raw accelerometry data. This has great potential to speed
up the manual labelling of time-series data.

In the time-series chart view, the rubberband selection is
used to highlight a time sequence of any duration. The corre-
sponding points that represent the sequence are highlighted in
the scatter plot, which can help to identify the position within
the clusters of known features in the raw data.

Edges between clusters The user can also select bundles
of edges (Figure 2.f). In addition to brushing points, we allow
the user to direct a region growing selection out from selected
source points. Given a source point not part of one of the
already highlighted clusters, a selection region is grown from
the point in both temporal directions until we reach a point
which is part of an existing cluster. The source selection can
contain multiple points. Using this approach, the user is able
to select a whole bundle of edges that are the transitional paths
between two clusters.

For instance, the transitions (Figure 2.f) are selected which
illustrate the dominant transition between Surface Swimming
(cluster D) to Descent Phase of Dive (A). We also see
dominant transitions of Descent (A) to Bottom Feeding (B),
Bottom Feeding (B) to Ascent (C), and Ascent (C) to Surafce
(D). Cluster E (flight) dominates the start and end of the data,
but also occurs as at several shorter intervals throughout the
data, therefore we see some activity between those clusters.
We can interpret the well-defined edges between clusters as
repetitive behavior that moves through those states with high
frequency. Weaker edges indicate less frequent behavior. Both
types of transitions can be labelled quickly using our interface
for further analysis.

B. Case Study 2 - Breathing Patterns

Pulmonary fibrosis (PF) is a restrictive lung disease that
can alter breathing patterns due to pathological changes in
lung mechanics. Inspiratory and expiratory (flow time-series
data) is taken from 48 participants, (n= 18 healthy lungs
and n= 30 with PF). Each participant has around 12,000
flow readings. Looking for patterns in the time-series data is
exceedingly important and complex process to reveal abnormal
any tidal breathing patterns in the PF. Two problems arise in
the understanding of the data. First, since each person has
a long time-series, it is difficult to compare all the individual
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Fig. 5. Top: A portion of the time series graph for breathing which contains 11000 flow data points (inhalation and exhalation for one person). About
two-thirds along the time-series view there is an interrupted breath (e.g. an expiratory pause). Bottom: (a) time series data after applying our approach, where
each colored loop represents one inhalation and exhalation (the interrupted breath stands out in magenta), (b) one selected inhalation and exhalation loop.
Also note, the slightly shallower orange path corresponds to another small interruption in a breath (not in the subset of data shown).

breaths against each other to look for abnormalities. Secondly,
for so many participants, it is difficult to compare one person
with another, or several others.

Additional to being able to compare across the time-series,
another functional requirement is to be able to remove anoma-
lous patterns easily. For example, a patient may swallow, or
cough on expiration or sigh on inspiration interrupting their
normal breathing pattern and rhythm. It would be useful to
remove away such data so that it does not participate in any
of the further statistical analysis that takes place on the data.

By applying our method to this dataset, every inspiratory
and expiratory breath are represented as one loop see Fig-
ure 5.b. Finding irregular patterns is much easier using our
method because all tidal breathing waveforms are presented
in one view (Figure 5.a). This fulfills a requirement to see
all breaths in one view. Outliers within this view corresponds
to problematical breaths. By brushing series of points, it can
be confirmed that the purple outlier (Figure 5.a) corresponds
to an interrupted breath (visible about two-thirds along the
time-series view). Also, the slightly shallower orange line
corresponds to another interruption on the expiration phase
of another breath. Such breaths can be removed from further
analysis.

V. CONCLUSION

In this paper, we present a visual analytics system and
approach that provides a more effective working environment
for the exploration, analysis, and presentation of large time-
series data. Our approach offers two primary uses.

Identifying Clusters: Dimension reduction on the sliding
window approach produces scatter plots where close points
have similar characteristics and naturally form clusters. The
approach does not need pre-knowledge of the number of

clustsers in the data like k-means approaches. The users can
brush points within clusters to quickly label the data. This
greatly accelerates the process of labelling behaviours within
the data for domain experts. It is also easy to select bundles
of transition edges between clusters, again leading to efficient
labelling of similar characteristics in the raw data.

Identifying Outliers: It is difficult to detect outliers in
long time-series data, as it is requires being able to relate
different parts of the data together. In particular, when there
are many repetitive patterns, it is difficult to separate them on
any detailed feature of the data. Using this approach facilitates
outlier detection. The outlier paths are visually detectable. In
Figure 7, there is a clear outlier in the breathing pattern for
this subject. The user brushes the scatterplot view (yellow),
which highlights the source in the time-series view. It is clear
this breath has some artifact compared to the others. In this
case, the affected data can be labelled to be excluded from
further statistical processing since it was certainly due to a
sigh.

Our results using the tool with expert users indicate that
it is a promising way to handle large temporal datasets. We
have shown the effectiveness of our work by applying it to two
different large time series datasets demonstrating the ability to
relate features separated by large time-dimension.

For future work, we plan to enhance our system in several
ways. Currently, we use PCA as a technique for dimensionality
reduction, therefore, we plan to use different dimensionality
reduction techniques such as t-SNE. Also, we wish to apply
clustering algorithms e.g., hierarchical algorithms on the data
after applying our approach.
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Fig. 6. The main user interface of our system on data from a deployment on pulmonary fibrosis data. Top: zoomed time-series graph with overlaid colored
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buttons and parameters which can be modified based on the user desires. Each cluster, outlier, and transition can be colored with a different color to be
identified and compared.

Fig. 7. Yellow highlight in the time series graph and yellow points in the
scatter plot indicate that the breathing at that moment was totally different
than the rest of the tidal breathing which is obviously clear in time series
graph.
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