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Abstract

In order to obtain asymptotical synchronization, we combine active-
passive decomposition for several driver signals, negative feedback control
and dislocated negative feedback control with partial replacement on the
nonlinear terms of the response system, a coupling version that was less
explored. All these unidirectional coupling schemes are established between
Lorenz systems with chaotic behavior/with control parameters that lead to
chaotic behavior.
The sufficient conditions of global stable synchronization are obtained

from a different approach of the Lyapynov direct method for the transver-
sal system. In one coupling we apply a result based on classification of the
symmetric matrixAT+A as negative definite, whereA is the matrix charac-
terizing the transversal system. In other couplings the sufficient conditions
are based on derivative increase/accretion (quero dizer majoração da
derivada) of an appropriate Lyapunov function. In fact, the effectiveness
of a coupling between systems with equal dimension follows of the analysis
of the synchronization error and, if the system variables can be bounded by
positive constants, the derivative of an appropriate Lyapunov function can
be increased.(quero dizer majorada) as required by the Lyapynov direct
method.
In what follows we will always consider two chaotic dynamical systems,

since they are sufficient to study the essential in the proposed coupling
schemes. Our motivation for researching chaos synchronization methods
is to explore their practical application in various scientific areas, such as
physics, biology or economics.
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1 Introduction

The ability of nonlinear oscillators to synchronize with each other is a
basis for the explanation of many processes of nature. Therefore, chaos syn-
chronization is thus a robust property expected to hold in mademan devices
and plays a significant role in science. However, the possibility of two (or
more) chaotic systems oscillate in a coherent and synchronized way is not
an obvious phenomenon, since it is not possible to reproduce exactly the ini-
tial conditions andinfinitesimal perturbations to them/the initial conditions
lead to divergence of nearby starting orbits. Contrary to expectation, when
ensembles of chaotic oscillators are coupled, the attractive effect of a suit-
able coupling can counterbalance the trend of the trajectories to diverge. In
many cases there are (coupling) parameters that control the strength of cou-
pling between the systems, and the stability results of synchronous chaotic
state depend on them.
Coupled dynamical systems are constructed from simple, low-dimensional

dynamical systems and form new and more complex organizations. The
chaotic dynamics introduces new degrees of freedom in ensembles of cou-
pled systems. However, when two or more chaotic oscillators are coupled
and synchronization is achieved, in general the number of dynamic degrees
of freedom for the coupled system effectively decreases.

Asymptotical synchronization. Let X be a compact subset of Rm

with m ≥ 3 and consider (two) identical m-dimensional dynamical systems
S1 and S2 defined on X by the nonlinear autonomous ordinary differential
equations (ODE) u̇1 = f(u1;a) and u̇2 = f(u2; a), respectively, where a is a
vector of real control parameters.
Let u1 (0) and u2 (0) be (some) initial conditions for which, at certain

value of a, S1 and S2 evolve to an asymptotically stable chaotic attractor A.
The solutions u1 (t) and u2 (t) of the systems, starting at u1 (0) �= u2 (0) in
the attraction basin B(A), are/represent independent trajectories in A after
a period time of transient motion. This evolution is characterized by a pos-
itive Lyapunov exponent. Dynamical systems S1 and S2 are asymptotically
synchronized if

lim
t→+∞

‖u1 (t)−u2 (t)‖ = 0. (1)

The evolution of the difference e (t) = u2 (t)−u1 (t) between nearby starting
orbits is described by

ė (t) = u̇2 (t)− u̇1 (t) = f(u2 (t) ; a)− f(u1 (t) ; a). (2)
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In case of asymptotical synchronization, this difference is the synchroniza-
tion error and the system (2) is designated as transversal system (or error
system). By (1), S1 and S2 achieve asymptotical synchronization if the
transversal system (2) has an asymptotically stable equilibrium point at
e (t) = 0.
When asymptotical synchronization is achieved, the dynamics of u1 (t)

and u2 (t) in A, on the 2m-dimensional phase space, are restricted to the
m-dimensional smooth invariant manifold

M≡ {(u1,u2) ∈ X ×X | u1 = u2} ⊂ R
2m,

where occurs the synchronized dynamics defined by the symmetric synchro-
nous chaotic state.

Transversal stability of the coupled system. The problem of syn-
chronization can be understood as a problem of asymptotical stability of the
chaotic attractor A (embedded in M) in the 2m-dimensional phase space
of the coupled system (Fujisaka and Yamada [1], Pikovsky [2], Pecora and
Carroll [3]).
It is necessary to distinguish between stability under tangent or transver-

sal perturbations to the synchronization manifoldM. As stated by Pecora
et al. [4], the limit (1) must be satisfied for all the initial conditions in a
neighborhood of the equlibrium point e (t) = 0. Since the system (2) char-
acterizes the dynamics in the transversal direction toM, it is necessary to
analyze if small transversal perturbations toM are reduced or amplified by
the evolution of S1 and S2. If they are reduced thenM is transversely stable
and the synchronous chaotic state u1 = u2 is stable. So, the synchronization
stability is designated as transversal stability.
Usually the following criteria are applied:
(i) Criterion based on the eigenvalues of the Jacobian matrix correspond-

ing to the flow over M, suggested by Fujisaka and Yamada ([1],[5]); it re-
quires that the largest eigenvalue is negative for the early stable synchro-
nization;

(ii) Criterion based on the construction and study of an appropriate
Lyapunov function L (e (t)) (Lyapunov direct method) for the vector field of
transversal perturbations toM, developed by He and Vaidya [6]; it requires
that L must be positive definite in a neighborhood of M (L (e (t)) ≥ 0),
except in M where is null (L (0) = 0), and its derivative is negative semi-
definite (L̇ (e (t)) ≤ 0), and null inM (L̇ (0) = 0);

(iii) Criterion based on the estimation of Lyapunov exponents, developed
by Pecora and Carroll [3], which indicate if small transversal perturbations
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ei (t), for 1 ≤ i ≤ m, decrease or not; it requires that the largest transversal
Lyapunov exponent is negative.
The criterion (ii) allows to prove the following/next proposition about

global asymptotical stability of transversal system defined by (2).

Proposition 1 Let A be the matrix characterizing the transversal system
of a coupling between the identical systems S1 and S2. If there is a constant
δ < 0 such that the symmetric matrix AT + A is negative definite and
AT +A ≤ δI for any u1 and u2 in the phase space X, then the dynamics
of the transversal system is globally stable and the systems S1 and S2 are in
stable synchronization.

Proof. Consider the Lyapunov function defined by L(e (t)) = [e(t)]T · e(t).
Its derivative is given by

dL

dt
(e) =

d
(
eT
)

dt
· e+ eT ·

de

dt
= eT ·AT · e+ eT ·A · e,

and verifies

L̇ (e) = eT
(
AT +A

)
e ≤ δ

(
eT · I · e

)
= δ

(
eT · e

)
< 0

for all e �= 0. The Lyapunov direct method guaranties the global asymptot-
ical stability of transversal system

2 Unidirectional coupling schemes between con-
tinuous chaotic dynamical systems/chaotic dy-
namical systems defined by ODE

By partial replacement. Consider an (arbitrary) decomposition u1 =
(x1,y1) of the variable u1 into two subsystems

ẋ1 = g(x1,y1;a) ∧ ẏ1 = h (x1,y1; a) , (3)

with variables x1 = (u1, . . . , uk) and y1 = (uk+1, . . . , um), respectively, for
1 ≤ k ≤ m. Since f (u1;a) = (f1 (u1;a) , . . . , fm (u1; a)), the vector fields g
and h are defined by the component functions of the vector field f as

g (u1;a) = (f1 (u1;a) , . . . , fk (u1;a))

and
h (u1;a) = (fk+1 (u1; a) , . . . , fm (u1; a)) .
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They are respectively taken independent initial conditions x1 (0) and y1 (0)
in the subsystems in (3). Let ẏ2 = h (x1,y2; a) be a subsystem identical to
ẏ1 = h (x1,y1;a) with the variable x1 replaced by its corresponding x2,

x2 = x1 e ẏ2 = h (x1,y2;a) .

So, the equations

ẋ1 = g(x1,y1;a) ∧ ẏ2 = h (x1,y2; a) , (4)

with y2 (0) �= y1 (0), defined a dynamical system u̇2 = f (u2;a) which shares
some of the variables with the system u̇1 = f (u1;a). Pecora and Carroll
[3] formalized this unidirectional coupling between the systems (3) and (4)
through the variable x1, u̇2 = fx2→x1 (u2;a) = f (x1,y2; a), where the cou-
pled system

ẋ1 = g(x1,y1;a) ∧ ẏ1 = h (x1,y1;a) ∧ ẏ2 = h (x1,y2; a) (5)

is obtained by complete replacement of the signal driver subsystem ẋ1 =
g(x1,y1; a) in the response (or slave) system (4).
Instead of completely replacing one of the variables in the system re-

sponse by its corresponding in drive (master or transport) system, a re-
placement can be partial as suggested by Guemez and Matthias [7]. In this
case, a variable of response system gives rise to its corresponding in drive
system only in some of its equations. In general, the stability results in par-
tial replacement differ from those in complete replacement. In this paper it
is studied the partial replacement in the nonlinear terms of response system.

By active-passive decomposition. Kocarev and Parlitz [8] proposed
an unidirectional coupling more general than the complete replacement, in
which the scalar signal transmitted from the drive subsystem to the re-
sponse subsystem is a function of drive dynamical variables and, sometimes,
a function of an information signal.
It is formally possible to rewrite the dynamical system S1 defined by

u̇1 = f(u1;a) as a non-autonomous system

ẋ1 = g(x1, s(t); a), (6)

for some time vector function of time s(t), which possesses/with certain
synchronization properties. If s is defined by s(t) = h(x1 (t)) then x1 = u1.
If s is given through an ordinary differential equation ṡ(t) = h(x1 (t) , s (t)),
the dimension of x1 may be lower than that of u1.
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The vector functions g and h are a decomposition of the original vector
field f . The main feature of this decomposition is that, for appropriate
choices of the function h, any new system

ẋ2 = g(x2, s(t);a) (7)

synchronize with the initial system (6). The coupling between the systems is
performed by the function s(t), designated by driver signal, which depends
on the state vector x1 and is the same in both systems. The non-autonomous
drive system (6) defined by g is a passive system while the component de-
scribed by h is an active one. As such the decomposition given by g and h
is said active-passive decomposition of drive system u̇1 = f(u1;a).
This coupling mechanism serves a large number of applications because,

in many cases, the function s(t) is quite general. In particular, besides
depending on x1, it may also depend on some information signal i(t),

s (t) = h(x1 (t) , i (t)) or ṡ (t) = h(x1 (t) , s (t) , i (t)).

In this case the active-passive decomposition can be used in communica-
tion schemes where s(t) = h(x1 (t) , i(t)) is the transmitted and received
signal. When synchronization identical occurs, the signal information i (t)
can be retrieved without error from the equation s(t) = h(x1 (t) , i(t)) =
h(x2 (t) , i (t)) whenever it has a unique solution for i(t).
According Parlitz et al. [9], the coupling by active-passive decomposition

is closely related to the Pyragas’s approach [10] in chaos control. Instead
of decomposing a given chaotic system, an appropriate nonlinear function
s = h(x1) can be added to a stable linear system ẋ1 = A · x1 such that
ẋ1 = A ·x1+ s is a chaotic system. In this case the synchronization error is
given by the stable linear system ė = A · e, and occurs synchronization for
all initial conditions and arbitrary signals s.

By dislocated negative feedback control. Consider the coupling
between S1 and S2 through the linear term ρ(u2 − u1),

u̇1 = f(u1;a) ∧ u̇2 = f(u2;a) + ρ(u2 − u1), (8)

where ρ = (ρ1, ρ2, ..., ρm) is the vector coupling parameter, with ρi > 0 for
all i = 1, . . . ,m. The unidirectional coupling in (8) is designated by negative
feedback control through the damping term ρ(u2 − u1).
Let u1 = (u1, u2, . . . , um) ∈ X and u2 = (u′1, u

′

2, . . . , u
′

m) ∈ X be the
variables of S1 and S2, respectively. Suppose that the dynamical variable
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uk(t), 1 ≤ k ≤ m, and its corresponding u′k(t) can be measured. The
addition of ρ (uk − u

′

k), with ρ > 0, to the response system,






u̇′1 = fa,1 (u
′

1, u
′

2, . . . , u
′

m) ,
· · ·
u̇′k = fa,k (u

′

1, u
′

2, . . . , u
′

m) + ρ (uk − u
′

k)
· · ·
u̇′m = fa,m (u

′

1, u
′

2, . . . , u
′

m)

, (9)

leads to a particular case of (8) in which a single variable uk makes the
coupling. The term ρ (uk − u

′

k) is used as a control signal (or perturbation
signal) applied to the response system whereby negative feedback without
changing its solution. The parameter ρ, designated by coupling strength, is
experimentally adjustable and measures the perturbation intensity.
From initial conditions u1 (0) and u2 (0) such that u1 (0) �= u2 (0), the

vector state of each systems S1 and (9) are the same for certain value of
ρ, after a certain time tsync. When synchronization is achieved the control
signal became 0 but the symmetric synchronous chaotic state u1 = u2 is
established. In this paper it is studied the dislocated negative feedback
control. After choosing the driver variable uk, the control signal ρ (u

′

k − uk)
is applied to an equation j-th of response system S2 with j �= k. So, with
1 ≤ j, k ≤ m, the response system is given by






u̇′1 = fa,1 (u
′

1, u
′

2, . . . , u
′

m) ,
· · ·
u̇′j = fa,j (u

′

1, u
′

2, . . . , u
′

m) + ρ (uk − u
′

k)

· · ·
u̇′m = fa,m (u

′

1, u
′

2, . . . , u
′

m)

para j �= k.

3 Case study: unidirectional couplings between
nonlinear Lorenz systems

Consider the Lorenz system

ẋ = σ (y − x) ∧ ẏ = x (α− z)− y ∧ ż = xy − βz

with parametric values σ, α and β that lead to chaotic behavior. In what
follow it is considered unidirectional coupling between identical Lorenz sys-
tems.

By dislocated negative feedback control with partial replace-
ment of x2. (L2 da tese) Consider the driver variable x1 by adding the
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control signal ρ (x1 − x2), with ρ > 0, applied as dislocated negative feed-
back to the second equation of response system. Furthermore it is introduced
the partial replacement of variable x2 by the corresponding x1 only in the
nonlinear terms x2z2 and x2y2 of response system. Starting the coupled
system





ẋ1 = σ (y1 − x1)
ẏ1 = αx1 − x1z1 − y1
ż1 = x1y1 − βz1

∧






ẋ2 = σ (y2 − x2)
ẏ2 = αx2 − x1z2 − y2 + ρ (x1 − x2)
ż2 = x1y2 − βz2

(10)

from (arbitrary) initial conditions such that x1(0) �= x2(0), y1(0) �= y2(0)
and z1(0) �= z2(0), it is reached identical synchronization if the evolution of
coupled system evolution (10) is continually confined to a hyperplaneM in
phase space. The coordinates ex = x2 − x1, ey = y2 − y1 and ez = z2 − z1
of synchronization error e in the transversal subspace to M converge to
0 as t → +∞ if the point (0, 0, 0) in the transversal subspace to M is
an asymptotically stable equilibrium point (in this space). This leads to
require that the dynamical system in e = (ex, ey, ez) defining the transversal
perturbations is asymptotically stable at the equilibrium point (0, 0, 0).
Consider the function

f̆ = (σ (y2 − x2) , αx2 − x1z2 − y2 + ρ (x1 − x2) , x1y2 − βz2)

obtained from the response in (10). For all values of ρ, the linearized equa-
tion which defines transversal perturbations toM is given by




ėx
ėy
ėz



 ≈ D(x2,y2,z2)f̆ ·




ex
ey
ez



 =




−σ σ 0
α− ρ −1 −x1
0 x1 −β



 ·




ex
ey
ez



 .

Studying the eigenvalues of Jacobian matrix D(x2,y2,z2)f̆ , we conclude that
locally stable synchronization is reached if ρsync = α− 1.
Taking control parameters σ = 10, α = 28 and β = 2.(6) and strength

coupling ρ = 27.1, we verify that x2 → x1, y2 → y1 and z2 → z1 when
systems evolve (Fig. 1a). After a certain time, the coordinates x, y and z
of systems verify the equalities x2 = x1, y2 = y1 and z2 = z1 (Fig. 1b). So,
the distances |x2 − x1|, |y2 − y1| and |z2 − z1| converge to 0 over time (Fig.
1c). Equations x2 = x1, y2 = y1 and z2 = z1 define a hyperplaneM in the
6-dimensional phase space.
Applying criterion (ii), it is obtained the threshold ρ̃sync of globally

stable synchronization. It is greater than the threshold ρsync obtained for
local stability, ,

ρ̃sync = α+ σ > α− 1 = ρsync,
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Figure 1: Parameter values σ = 10, α = 28 and β = 2.(6); coupling strength
ρ = 27.1. (a) Coupled system attractor; (b) Synchronization manifold; (c)
Evolution of synchronization error

leading to a range of values ρmore restrictive. In fact, consider the Lyapunov
function L (e) =

(
e2x + e

2
y + e

2
z

)
/2 which verifies L (e) > 0 if e �= 0 and

L (0) = 0 for all ρ > 0. It is necessary to determine the strength coupling
ρ such that the derivative of L satisfies L̇ (e) < 0 if e �= 0 and L̇ (0) = 0.
Substituting the expression of ėx, ėy and ėz in

L̇ (e) = exėx + eyėy + ez ėz

and simplifying, the derivative of L can be written as

L̇ (e) = −σe2x − e
2
y − βe

2
z + (σ + α− ρ) exey

≤ −σe2x − e
2
y − βe

2
z + (σ + α− ρ) |exey| .

Choosing a coupling strength satisfying ρ̃ > α + σ the conditions required
by Lyapunov direct method are guaranteed. So it is achieved globally stable
synchronization in the coupled system with a coupling strength ρ̃ = ρ̃ (σ,α)
which do not depend on the control parameter β. In Figure 2(a,b,c) are
taken the same values for control parameters and the corresponding syn-
chronization threshold ρ̃ = 38.1. (As expected ) The time synchronization
tsync for ρ̃ = 38.1 is lower than the obtained for ρ = 27.1 < 38.1.
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Figure 2: Parameter values σ = 10, α = 28 and β = 2.(6); coupling strength
ρ̃ = 38.1. (a) Coupled system attractor; (b) Synchronization manifold; (c)
Evolution of synchronization error

Table 1 presents the sufficient conditions for globally stable synchroniza-
tion obtained in the study of other similar cases. It is applied the dislocated
control signal ρ (x1 − x2) and, in some cases, also partial replacement of x2
by its corresponding x1 in some nonlinear terms of response. The constants
ξ and K represent the expressions ρ− σ − α and Kx +K

′

x, respectively.

Disloc. Replac. Synchronization sufficient condition

to 2th eq. –— β (ξ +Kz)
2 < 4σβ −K2

y

to 2th eq. on 3th eq. β (ξ +Kz)
2 < 4σβ − σK2

to 3th eq. on 2th eq. ξ2 < 4σ ∧ βξ2 < 4σβ −KKyξ +K2
y + σK

2

Table 1: Unidirectional coupling by dislocated negative feedback control.

Unidirectional coupling by negative feedback control with par-
tial replacement of x2. (L4 da tese) Consider (two) identical chaotic
Lorenz systems coupled by negative feedback control
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




ẋ1 = σ (y1 − x1)
ẏ1 = αx1 − x1z1 − y1
ż1 = x1y1 − βz1

∧






ẋ2 = σ (y2 − x2) + ρ (x1 − x2)
ẏ2 = αx2 − x1z2 − y2 + ρ (y1 − y2)
ż2 = x1y2 − βz2 + ρ (z1 − z2)

where it is also made a partial replacement of variable x2 by x1 only in
the nonlinear terms x2z2 and x2y2 of response system. Let f̆ be the func-
tion obtained from the response, which components are f̆1 = σ (y2 − x2) +
ρ (x1 − x2), f̆2 = αx2−x1z2−y2+ρ (y1 − y2) and f̆3 = x1y2−βz2+ρ (z1 − z2).
Consider the components ex = x2 − x1, ey = y2 − y1 and ez = z2 − z1 of
(synchronization error) e. For all values of ρ, the linearized equation which
defines transversal perturbations to (synchronization manifold)M is given
by



ėx
ėy
ėz



 ≈ D(x2,y2,z2)f̆ ·




ex
ey
ez



 =




−σ − ρ σ 0
α −1− ρ −x1
0 x1 −β − ρ



 ·




ex
ey
ez



 .

It can take the matrix form ė =A (x1) · e with

A =




−σ − ρ σ 0
α −1− ρ −x1
0 x1 −β − ρ



 .

The main determinants of the matrix

AT +A =




−2 (σ + ρ) σ + α 0
σ + α −2 (1 + ρ) 0
0 0 −2 (β + ρ)





are ∆1 = −2 (σ + ρ), ∆2 = 4(σ + ρ) (1 + ρ)− (σ + α)
2 and

∆3 =
[
2 (σ + α)2 − 8 (σ + ρ) (1 + ρ) 2 (σ + α)2

]
(β + ρ) .

We have −∆1 > 0 and the condition −∆3 > 0 is satisfied when/where
∆2 > 0 (since β + ρ > 0). So, we conclude by Proposition 1 that occurs
globally stable synchronization if the control and coupling parameters verify
the inequality

4 (σ + ρ) (1 + ρ) > (σ + α)2 .

Taking (the control parameters) σ = 10, α = 28 and β = 2.(6), we present
the Figure 3(a,b,c) obtained for (the coupling strength) ρ = 14.5, which is
the lowest value of ρ in a tenth step that verifies the previous inequality.
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Figure 3: Parameter values σ = 10, α = 28 and β = 2.(6); coupling strength
ρ = 14.5. (a) Coupled system attractor; (b) Synchronization manifold; (c)
Evolution of the synchronization error

Such an/This approach is inconclusive when it is not done the partial
replacement of the variable x2 by x1 in the nonlinear system response.

Unidirectional coupling by active-passive decomposition. (L3
da tese) Consider the active-passive decomposition between identical chaotic
Lorenz systems






ẋ1 = −σx1 + σy1
ẏ1 = s(t)− y1
ż1 = x1y1 − βz1

∧






ẋ2 = −σx2 + σy2
ẏ2 = s(t)− y2
ż2 = x2y2 − βz2

using the driver signal s = h(x1, y1, z1) = x1 (α− z1).
The linearized equation which defines transversal perturbations (toM)

is given by



ėx
ėy
ėz



 ≈ D(x2,y2,z2)f̆ ·




ex
ey
ez



 =




−σ σ 0
0 −1 0
y2 x2 −β



 ·




ex
ey
ez



 ,

where f̆ = (f1, f2, f3) = (−σx2 + σy2, s(t)− y2, x2y2 − βz2) and the differ-
ences ex, ey and ez are considered sufficiently small. Since all eigenvalues
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Λ1 = −σ, Λ2 = −1 and Λ3 = −βof the Jacobian matrix D(x2,y2,z2)f̆ are
negative, it is guaranteed by the criterion (i) the stable synchronization of
the systems (see Fig. 4 a,b,c obtained with σ = 10, α = 28 and β = 2.(6)).
In applying the criterion (ii), note that ėy = −ey so ey → 0 as t→ +∞.

Therefore, the 2-dimensional subsystem which describes the evolution of
ex = x1 − x2 and ez = z1 − z2 can, when t→ +∞, be written as just

{
ėx = −σex
ėz = y2ex − βez

.

Then consider L (ex, ez) =
(
e2x + e

2
z

)
/2 which verifies L (ex, ez) > 0 when-

ever (ex, ez) �= (0, 0) and L (0, 0) = 0. Substituting the expressions ėx and
ėz in the derivative L̇ (ex, ez) = exėx + ezėz is obtained

L̇ (ex, ez) = −σe
2
x − y2exez − βe

2
z ≤ −e

2
y − βe

2
z − y2 |exez| .

Assuming that the function of real variable y2 is bounded, let Ky be a
positive constant such that |y2| ≤ Ky. As such is valid the inequality

L̇ (ex, ez) ≤ −e
2
y − βe

2
z −Ky |exez| ≤ 0,

therefore, by the Lyapunov direct method, the synchronization error tends
to 0 as t→ +∞ and synchronization is globally stable.

From the foregoing, it is even concluded that occurs globally stable syn-
chronization for all signal s(t) leading to the inequality ėy < 0. Note that,
for the transversal system to be asymptotically stable at origin, the constant
symmetric matrix

P =






1
1

2
Ky

1

2
Ky β






associated with quadratic form −‖e‖T ·P· ‖e‖, with ‖e‖ = (|ey| , |ez|), must
be positive definite. The main determinants ∆i, i = 1, 2, of P are positive if
K2
y < 4β. By the Lypaunov direct method, the synchronization error tends

to 0 as t → +∞ whenever the positive constant Ky limiting the system
variable satisfies this inequality, and the systems achieve globally stable
synchronization.
Table 2 summarizes the study of couplings in the Lorenz attractor by

active-passive decomposition with the signal conductors s(t) = σy1(t), s(t) =
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Figure 4: Parameter values σ = 10, α = 28 and β = 2.(6); coupling strength
ρ̃ = 38.1. (a) Coupled system attractor; (b) Synchronization manifold; (c)
Evolution of synchronization error

αx1(t) and s(t) = −βz1(t).

Driver signal Synchronization sufficient condition

s(t) = σy1(t) 4σ > (Kz − α)
2 ∧ β

[
4σ − (Kz − α)

2
]
> K2

y .

s(t) = αx1(t) (σ +Kz)
2 < 4σ ∧ β

[
4σ − (σ +Kz)

2
]
> K2

y

s(t) = −βz1(t) inconclusive

Table 2: Active-passive decomposition couplings.

Note that the active-passive decomposition using signal s(t) = σy1(t) is
equivalent to the substitution of y2 by y1, but only in the first equation of the
response system. Similarly for the driver signals s(t) = αx1(t) and s(t) =
−βz1(t) corresponding, respectively, to the replacement of the variable x2 by
x1 only in the second equation of the response system and the replacement
of the variable z2 by z1 in the third equation. This shows that the Pecora-
Carroll’s criterion is included in the more general approach by active-passive
decomposition.
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4 Conclusions

Either using an usual negative feedback control or applying a control
signal as dislocated negative feedback, the combination of each of these uni-
directional couplings with replacement only shows advantages. Even if the
replacement is partial, on the nonlinear terms of the response system, were
obtained very simple sufficient conditions for globally stable synchronization
between identical chaotic Lorenz systems. These conditions result from the
classification of the symmetric matrix AT +A as negative definite (Propo-
sition 1), where A is the matrix characterizing the transversal system of
coupling, or are based on derivative increase/accretion of an appropriate
Lyapunov function. Proposition 1 is not valid if the partial replacement is
not applicable. The approach based on derivative increase/accretion of an
appropriate Lyapunov function also leads to a sufficient condition for glob-
ally stable synchronization in a coupling by active-passive decomposition for
several driver signals.
(referir algo muito breve sobre as mesmas ligações e abordagens

com sistemas de Rössler?)

References

[1] T. Yamada and H. Fujisaka (1983), Stability theory of synchronized
motion in coupled-oscillator systems, Prog. Theoret. Phys. 69 (1), 32-
47.

[2] A.S. Pikovsky (1984), On the interaction of strange attractors, Z.
Physik B 55 (2), 149-154.

[3] L.M. Pecora and T.L. Carroll (1990), Synchronization in chaotic sys-
tems, Phys. Rev. Lett. 64 (8), 821-824.

[4] L.M. Pecora, T.L. Carroll, G.A.. Johnson, D.J. Mar and J.F. Heagy
(1997), Fundamentals of synchronization in chaotic systems, concepts,
and applications, Chaos 7 (4), 520-543.

[5] T. Yamada and H. Fujisaka (1983), Stability theory of synchronized
motion in coupled-oscillator systems. II, Prog. Theoret. Phys. 70 (5),
1240-1248.

[6] R. He and P.G. Vaidya (1992), Analysis and synthesis of synchronous
periodic and chaotic systems, Phys. Rev. A 46 (12), 7387-7392.

15



[7] J. Guemez and M.A. Matias (1995), Modified method for synchronizing
and cascading chaotic systems, Phys. Rev. E 52, R2145-R2148.

[8] L. Kocarev and U. Parlitz (1995), General approach for chaotic syn-
chronization with applications to communication, Phys. Rev. Lett. 74
(25), 5028-5031.

[9] U. Parlitz, L. Kocarev, T. Stojanovki and H. Preckel (1996), Encoding
messages using chaotic synchronization, Phys. Rev. E 53, 4351-4361.

[10] K. Pyragas (1993), Predictable chaos in slightly perturbed unpre-
dictable chaotic systems, Phys. Lett. A 181, 203-210.

16


