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Abstract 

Anomaly detection plays a critical role in various fields, including cybersecurity, finance, and 
healthcare. Despite advancements in machine learning, the development of robust algorithms that 
balance computational efficiency and detection accuracy remains a challenge. This paper introduces 
a novel hybrid algorithm combining Particle Swarm Optimization (PSO) with a Neural Network (NN) 
to enhance anomaly detection. The proposed method leverages PSO for feature selection and 
hyperparameter optimization, while the NN ensures robust classification. Experimental results on 
benchmark datasets demonstrate significant improvements in accuracy and computational 
performance compared to existing approaches. 
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1. Introduction 

Anomaly detection refers to identifying patterns in data that do not conform to expected behavior. 
It has significant applications in domains such as fraud detection, network security, and predictive 
maintenance. Traditional machine learning algorithms often struggle to balance scalability, accuracy, 
and real-time detection capabilities. 

Recent research highlights the potential of hybrid approaches that combine machine learning with 
optimization techniques. For instance, Particle Swarm Optimization (PSO) has proven effective for 
feature selection, while Neural Networks (NNs) excel in capturing complex patterns. However, 
existing methods often lack adaptability to dynamic datasets or require extensive computational 
resources. 

This paper proposes a hybrid algorithm, PSO-NN, that addresses these challenges by integrating the 
optimization power of PSO with the predictive capabilities of NNs. The algorithm is tested on 
benchmark datasets, and its performance is compared against state-of-the-art techniques. 

2. Related Work 

Several machine learning algorithms have been developed for anomaly detection. Common 
approaches include: 

• Support Vector Machines (SVM): Effective for high-dimensional data but computationally 
intensive for large datasets. 

• Autoencoders: Capture nonlinear patterns but require extensive hyperparameter tuning. 



• Optimization Techniques (e.g., PSO, GA): Useful for feature selection but often not 
integrated with advanced classifiers like NNs. 

The proposed method builds on these foundations by addressing the limitations of standalone 
algorithms through a hybrid approach. 

3. Proposed Methodology 

3.1 Algorithm Overview 

The PSO-NN algorithm operates in two main stages: 

1. Feature Selection using PSO: 
o PSO iteratively searches for the optimal subset of features to reduce dimensionality 

and enhance classification performance. 
2. Classification using NN: 
3.  

o The selected features are used to train a Neural Network for anomaly detection. 

3.2 Mathematical Formulation 

 

 

 



 

3. PSO Update Rules: 
Particles update their positions and velocities based on: 

 

 

 

 



4. Experiments 

4.1 Datasets 

The experiments are conducted on the following datasets: 

1. KDD Cup 1999 (Network Intrusion Detection) 
2. Credit Card Fraud Dataset (Financial Transactions) 
3. CIFAR-10 Subset (Synthetic Anomaly Detection) 
4. UNSW-NB15 (Advanced Network Anomalies) 
5. IoT-23 Dataset (IoT Device Anomalies) 

4.2 Metrics 

Performance is evaluated using: 

1. Accuracy: Proportion of correctly classified samples. 
2. Precision and Recall: Measure of true positive detection. 
3. F1-Score: Harmonic mean of precision and recall. 
4. Runtime: Computational efficiency. 

4.3 Results 

 

This table compares the accuracy of the proposed PSO-NN algorithm with other machine learning 
models, including Support Vector Machines (SVM), Random Forest (RF), and Autoencoders. 
Accuracy measures the proportion of correctly identified samples (both anomalies and normal data) 
out of the total samples. 

• KDD Cup 1999 and Credit Card Fraud Dataset were used as benchmarks. 
• The PSO-NN algorithm consistently outperforms the other methods, achieving the highest 

accuracy. 



 

This table presents the precision scores, which measure the proportion of correctly identified 
anomalies (true positives) out of all samples predicted as anomalies (true positives + false positives). 

• High precision means fewer false alarms. 
• The proposed PSO-NN method achieves the best precision values, indicating its ability to 

minimize false positives effectively. 

 

This table evaluates the recall, which is the proportion of correctly identified anomalies (true 
positives) out of all actual anomalies (true positives + false negatives). 

• High recall ensures that most anomalies are detected. 
• The PSO-NN algorithm demonstrates superior recall values compared to other methods, 

making it reliable for detecting anomalies. 

 

The F1-score is the harmonic mean of precision and recall, providing a balanced measure of the 
algorithm’s ability to detect anomalies. 



• This metric is particularly useful when there is an imbalance in the dataset (e.g., more 
normal samples than anomalies). 

• The PSO-NN algorithm achieves the highest F1-scores, demonstrating its robustness in both 
precision and recall. 

 

This table compares the computational efficiency (runtime in seconds) of the proposed PSO-NN 
algorithm with other methods. 

• Runtime refers to the total time required to train and test the model. 
• The PSO-NN algorithm is the fastest among the methods, showing that its hybrid approach 

not only improves accuracy but also reduces computational overhead. 

5. Conclusion 

This study proposed a hybrid algorithm, PSO-NN, combining the feature optimization power of 
Particle Swarm Optimization (PSO) with the classification accuracy of a Neural Network (NN). The 
results demonstrate that this approach significantly enhances performance across multiple anomaly 
detection datasets. 

 

Key Findings: 

1. Improved Accuracy: 
The PSO-NN algorithm achieved the highest accuracy on all tested datasets, surpassing 
traditional models like SVM, Random Forest, and Autoencoders. This indicates that PSO 
effectively selects the most relevant features, leading to better generalization in anomaly 
classification tasks. 

2. Robustness (Precision and Recall): 
The high precision scores highlight the algorithm's ability to minimize false positives, 
reducing unnecessary alarms in real-world scenarios. Simultaneously, the high recall scores 
ensure that most anomalies are detected, addressing critical challenges in anomaly 
detection where missing anomalies can lead to severe consequences. 

3. Balanced Performance (F1-Score): 
The superior F1-scores demonstrate the algorithm's capability to balance precision and 
recall, making it particularly effective for datasets with imbalanced classes (e.g., fewer 
anomalies compared to normal samples). 

4. Computational Efficiency: 
The PSO-NN algorithm achieved faster runtimes compared to other methods. This efficiency 
is crucial for real-time anomaly detection applications, where speed and accuracy are 
equally important. 



Advantages of the Approach: 

• PSO for Feature Selection: By selecting only the most relevant features, the algorithm 
reduces computational complexity while improving accuracy. 

• NN for Classification: Neural networks provide the flexibility and power to model complex 
relationships in data, making them suitable for challenging anomaly detection tasks. 

• Hybrid Model Synergy: The integration of PSO with NN leverages the strengths of both, 
resulting in a model that is both efficient and highly accurate. 

Future Work: 

While the PSO-NN algorithm shows significant promise, there are areas for improvement and 
exploration: 

• Dynamic Parameter Tuning: Investigate methods to adapt PSO parameters dynamically 
during training for even better performance. 

• Real-Time Applications: Extend the algorithm to real-time anomaly detection systems, 
where continuous learning and adaptive behavior are critical. 

• Exploration of Other Optimization Techniques: Combine PSO with other metaheuristic 
optimization techniques (e.g., Genetic Algorithms or Ant Colony Optimization) to enhance 
feature selection further. 

Practical Implications: 

The proposed approach has broad applications in fields such as: 

• Cybersecurity: Detecting network intrusions or fraudulent activities in financial systems. 
• IoT Devices: Identifying abnormal behavior in connected devices. 
• Healthcare: Detecting anomalies in patient data or imaging for early diagnosis. 

In conclusion, the PSO-NN algorithm represents a significant step forward in developing efficient, 
accurate, and robust anomaly detection systems. Its superior performance across diverse datasets 
and metrics highlights its potential for adoption in real-world applications, bridging the gap between 
theoretical advancements and practical utility. 
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