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Abstract—Electric actuators not only add weight along an
articulated robot arm, but they also have torque and speed
limits that impose additional dynamic constraints. Further, the
useful life of a robot depends on the extent to which each
actuator operates at or near its torque ratings. Cumulative
damage theory offers some means of quantifying how much
wear a robot arm will sustain in real time as it executes a given
trajectory. The dynamic performance as well as fatigue wear of
a hypothetical dual-link robot arm are examined in the context
of actuator torque density - the actuator’s torque-to-mass ratio.
The results show that the expected wear to the most stressed
joint are approximately inversely proportional to the actuator’s
torque density. The model also suggests how expected robot life
under one or more pre-defined trajectories could be used as an
additional constraint in robot arm design and actuator choice.

Index Terms—manipulators, manipulator dynamics, robot mo-
tion, robot kinematics, mechatronics, intelligent actuators, elec-
tromechanical systems, reliability, reliability engineering, relia-
bility theory, motion control, motion planning, path planning

I. INTRODUCTION

Articulated robot joints employ actuators that come with
torque ratings that are given in the context of actuator life-
time (e.g. 50 Nm for 1 billion input cycles). Thus, there is
an unavoidable intersection of robot design with reliability
engineering: the value of torque available from a robotic joint
is only meaningful in the context of how many times it can
be applied.

In this paper we attempt to examine actuator weight and
available torque as not only dynamic constraints (Section III)
but also as key drivers for the useable lifetime of the robot
(Section IV). We offer a reliability component that could
augment the standard robot dynamics model and offer some
observations about how such a model could, among other
things, aid in optimizing the design of robot arms intended
for a limited set of tasks.

II. ACTUATOR TORQUE CONSTRAINTS

A. Torque Ratings

The torque available from revolute robotic joints is often
specified in terms of rated, maximum repeated peak, and
maximum peak torques. These ratings are given in the context
of the maximum number of motor cycles a certain fraction
of actuators under test are expected to survive before fatigue
failure. Generally the fraction considered is 10% and the
fatigue lifetime is denoted by L10.

The vast majority of articulated robot arms employ electric
actuators with a transmission of some sort integrated with the
joint’s motor. These transmissions are referred to variously
as gear drives, speed reducers, gear boxes, or gearheads.
Depending on the arm design, they provide reduction ratios
(gear ratios) ranging from 50 to 160:1. For example, an
actuator able to provide 100 Nm of repeated peak torque might
employ a transmission with a 100:1 gear ratio and a motor with
a repeated peak torque rating of 1 Nm.

B. Torque Density

As one might expect, the more torque that an actuator is
called on to produce, the larger and heavier it becomes. As is
shown in Figure 1 for a leading brand of commercial actuators,
the relationship between actuator mass, ma, and maximum
available torque, Ta, tends to be linear:

Ta = Ta0 + Ta0
′ma (1)

The actuators depicted are full-featured, including motor,
transmission, encoder, brake, bearings, and all necessary phys-
ical interfaces. Figure 2 shows the relationship between torque
density - mass per unit torque - and maximum repeated torque:

τd(ma) =
Ta
ma

=
Ta0
ma

+ Ta0
′ (2)

where ma is the actuator mass and Ta is the maximum
repeated torque rating of the actuator.

III. DYNAMIC LIMITATIONS DUE TO ACTUATOR TORQUE
DENSITY

A. Basic Dynamic Model

Figure 3 shows a simple dual-link robotic arm. A first cut
of a dynamic performance model for this arm would be:

T = M(q)q̈+C(q, q̇)q̇+G(q) (3)

where:

T = [T1 T2 ]
T (4)

q = [ q1 q2 ]
T (5)

with T1 and T2 representing the torque applied at joint J1
and J2, respectively. The elements of inertia matrix M(q),
Coriolis matrix C(q, q̇), and gravity vector G(q) in terms of



Fig. 1. Mass-torque relation for one commercial actuator line (100:1 gear
ratio).

Fig. 2. Torque density characteristics.

link masses m1 and m2, link lengths l1 and l2, and J2 actuator
parameters ma, Ia, and ρa, are given in an appendix, where
ma is the actuator mass, Ia is the actuator rotational moment
of inertia, and ρa is the actuator transmission gear ratio. In the
discussion that follows, link mass is assumed to be uniformly
distributed.

Fig. 3. Dual link robot arm model.

The actuator torques and J2 actuator mass, ma, are related

(see appendix):

∂

∂ma
T =

[
l1

2q̈1 − l1g cos q1
0

]
(6)

B. Accounting for Wrist Actuator Mass

The arm model shown in Figure 3 shows a static payload,
m0, but most articulated robots include one or two wrist
actuators. To account for this, we can model the payload mass:

m0 = m0
′ +mw (7)

where m0
′ represents a true static payload and mw represents

the mass of any wrist actuators. The relationship between the
mass of the wrist actuators and T is:

∂

∂mw
T =

∂

∂m0
T = Mm0(q)q̈+Cm0(q, q̇)q̇+Gm0(q) (8)

where (see appendix):

Mm0 =
∂M

∂m0
(9)

=

[
l1

2 + l2
2 + 2l1l2 cos q2 l2

2 + l1l2 cos q2
l2

2 + l1l2 cos q2 0

]
Cm0 =

∂C

∂m0
(10)

−l1l2 sin q2
[
0 2q̇1 + q̇2
q̇1 0

]
Gm0

=
∂G

∂m0
= −(l1 + l2)g cos(q1 + q2)

[
1
1

]
(11)

C. Accounting for Actuator Torque Density

We say that the above model is a first cut because it does
not consider the maximum torques and speeds available from
each joint actuator. Thus, the following constraints must be
imposed:

T1 ≤ T1,max (12)
T2 ≤ T2,max (13)
q̇1 ≤ ω1,max/ρ1 (14)
q̇2 ≤ ω2,max/ρ2 (15)

(16)

where ω1,max and ω2,max are the maximum motor speeds
available from the actuators at J1 and J2, and ρ1 and ρ2 are
the respective transmission gear ratios.

In the case of J2, following (2):

T2,max = τd(ma) ·ma (17)

There is a similar relation for T1,max, but since the mass of
actuator at J1 does not impact the overall arm dynamic model,
we will consider T1,max without regard to torque density.



IV. FATIGUE LIFE MODEL

A. L10 lifetime

The fatigue life of transmissions can generally be modeled
[1]:

L =

(
TC
|T |

)p
(18)

where L is expressed in terms of either input or output cycles
(revolutions), TC is the torque capacity of the unit, and T is the
load torque under test. As discussed above, most commercially
available actuators and actuator components are specified in
terms of L10 lifetime - the time by which 10% of a population
is expected to have failed. L10 lifetimes are usually specified
at at least two load torques, generally a rated torque (TR) and
a maximum repeated torque (TMR). Exponent p and torque
capacity TC can be estimated from any two of these - for
example:

p = ln
L10,R

L10,MR

/
ln
TMR

TR
(19)

TC = L10,R
1/p TR = L10,MR

1/p TMR (20)

B. Cumulative Damage

Cumulative damage relates to the concept of a damage
fraction, which describes the fraction of the fatigue life of
a unit consumed prior to failure (see, e.g., [2]). For a unit
with fatigue life of L, the damage fraction that results when
N of L cycles have passed is:

D =
N

L
(21)

As explained above, however, fatigue life L varies with
load, so that each load (torque in our case), Ti, imposes a
different damage fraction, Di for a given number of cycles.
The Palmgren-Miner rule [3] [4] presumes that failure occurs
when:

n∑
i=1

Di =
n∑
i=1

Ni
Li

= 1 (22)

In essence, the device fails when all of its lives are used up.
The number of incremental cycles which occur in some

small time interval dt is given by:

dN =
|q̇|
2π

dt (23)

Following (18):

dD =

(
|T |
TC

)p |q̇|
2π

dt (24)

so that the cumulative damage sustained between times t1 and
t2 is:

D =
1

2πTC
p

∫ t2

t1

|T pq̇| dt (25)

V. ROBOT ARM SIMULATION

A. Robot Arm Parameters

In order to consider the practical implications of what has
been discussed above, we will consider a hypothetical robot
arm executing a repeated vertical trajectory, such as might be
required in a painting and welding task (see Figure 4). The
robot arm operates in the vertical (xz) plane and comprises
two links and four actuators (base, elbow and two wrist), with
parameters:

m1 = 20 kg
m2 = 10 kg
l1 = 100 cm
l2 = 50 cm

T1,max = 230 Nm
T2,max = 230 Nm
ω1,max = 5 rad/s
ω2,max = 5 rad/s
ma = 5 kg
Ia = 4 kg cm2

ρa = 100

mw = 7 kg

The above parameters follow closely those supported by 100:1
gear ratio size 17 and size 25 actuators available from one
leading commercial supplier. The trajectory of the tip of the
arm is given by:

r(t) = x̂ x0 + ẑ (z0 + ż0t) (26)

where x̂ and ẑ are Cartesian unit vectors.

Fig. 4. Robot arm executing a repeated vertical trajectory.

B. Actuator Lifetime Model

Based on typical gear drive life specifications, an exponent
of p = 2.7 is assumed for the L10 life relation of the elbow
actuator, and a lifetime of 108 input cycles is assumed at the
maximum repeatable peak torque. In actuality, these values
may vary somewhat from what we are assuming, but this



will not affect the basic implications of the simulation result.
Following (20):

TC = L10,MR
1/p · TMR

=
(
108
)1/2.7 · 230 Nm

≈ 210 kNm

C. Simulation Results
1) Nominal Torque Density: Figures 5 through 7 show the

dynamic behavior of the arm during the operation with:

x0 = 1 m
z0 = −1 m
ż0 = 1 m/s

Figure 8 shows the calculated instantaneous L10 lifetime -
i.e. how many cycles a new unit could sustain if operated at
the corresponding instantanous torque indefinitely. What is of
more practical importance, however is how much fatigue wear
(or damage) the arm sustains as a result of the operation, as
expressed by (25). As is seen in Figure 9, the actuator at J2
experiences roughly four times the wear of the actuator at J1
for this particular trajectory.

(a) J1

(b) J2

Fig. 5. Joint angles for reference trajectory.

(a) J1

(b) J2

Fig. 6. Joint velocities for reference trajectory.

2) Improved Torque Density: Figures 10 through 12 illus-
trate impact to arm dynamics and fatigue wear when the torque
density of the elbow and wrist actuators are doubled:

ma = 5 kg −→ 2.5 kg
mw = 7 kg −→ 3.5 kg

Since the predicted wear for J2 is much higher than that for
J1, only J2 values are shown. The decrease in weight reduces
the peak torques required J2 by about 30%. As a direct result
of this, the fatigue wear at J2 drops by almost 50%.



(a) J1

(b) J2

Fig. 7. Joint torques required for reference trajectory (nominal actuator torque
density).

(a) J1

(b) J2

Fig. 8. Instantaneous L10 fatigue life of joint actuators (nominal actuator
torque density).



(a) J1

(b) J2

Fig. 9. Cumulative damage to each joint sustained during one operation
(nominal actuator torque density).

Fig. 10. J2 torque required for reference trajectory (2X nominal actuator
torque density).

Fig. 11. Instantaneous L10 fatigue life of J2 actuator (2X nominal actuator
torque density).

Fig. 12. Cumulative damage sustained by J2 during one operation (2X
nominal actuator torque density).



VI. DISCUSSION AND CONCLUSIONS

A few observations might be made with regard to the results
in the previous section:

• The fatigue wear to individual joints was calculated, but
these results were not interpreted to provide an estimate
of the fatigue life of the robot. This can be accomplished
by recasting p and TC in the lifetime relation (18) of
each actuator into Weibull shape and scale parameters for
individual actuator probability distribution functions [5],
and then using the individual pdf’s to estimate L10 for the
robot. In our case the fatigue wear to J2 was dominant,
but when wear is closer to parity the individual pdf’s
must be considered.

• The results of the previous section were for one specific
trajectory. Depending on what other trajectories might be
employed, some other torque pattern, and hence wear
trend, should be expected. This can be seen explicitly
in the dependencies of T expressed in (6) and (8).

• By the same token, (3) implies that a different choice
of link lengths, l1 and l2, could still allow the arm to
execute the trajectory in (26), but with a completely
different torque profile and hence, in general, a different
expected arm lifetime. By extension, if one is to go
about configuring a robot arm to complete a single task
repeatedly, a lifetime-optimized design might yield a
different choice of link lengths than those one might
otherwise choose.

• The simulations above looked at the impact of doubling
the actuator torque density. Other simulations were car-
ried out using the same arm configuration and trajectory,
but with torque densities ranging from 1X nominal to 2X
nominal. The empirical trend observed was:

Dr ≈ τ−γr (27)

where in this case γ = 0.9873 (see Figure 13).
• The trend shows that reducing the weight of even a part of

the actuator can have a dramatic positive impact on the
lifetime of the most stressed joint. If, for example, the
gearbox comprises 30-40% of the actuator weight, then
doubling the torque density of just the gearbox would
increase the torque density of the actuator by 15-20%,
which could lengthen its lifetime by 10-20%.

APPENDIX A
DUAL LINK ROBOT ARM TORQUE EQUATIONS

A. Robot Equation

T = M(q)q̈+C(q, q̇)q̇+G(q) (A.1)

Fig. 13. Cumulative damage reduction as a function of actuator torque density
improvement for preceding scenario.

T = [T1 T2 ]
T (A.2)

q = [ q1 q2 ]
T (A.3)

|T1| ≤ T1,max (A.4)
|T2| ≤ T2,max (A.5)
|q̇1| ≤ ω1,max/ρ1 (A.6)
|q̇2| ≤ ω2,max/ρ2 (A.7)

B. Inertia Matrix

M(q) =

[
M11(q) M12(q)
M12(q) M21(q)

]
(A.8)

M11(q) =
1

3
m1l1

2 (A.9)

+ m2

(
l1

2 +
1

3
l2

2 + l1l2 cos q2

)
+ m0

(
l1

2 + l2
2 + 2l1l2 cos q2

)
+ mal

2
1

M12(q) =
1

2
m2

(
2

3
l2

2 + l1l2 cos q2

)
(A.10)

+ m0(l2
2 + l1l2 cos q2)

M21(q) =M12(q) (A.11)

M22(q) =
1

3
m2l2

2 + Iaρ
2
a (A.12)



C. Coriolis Matrix

C(q, q̇) = −
(
1

2
m2 +m0

)
l1l2 sin q2 (A.13)

·
[
0 2q̇1 + q̇2
q̇1 0

]
D. Gravity Vector

G(q) = [T1g T2g ]
T (A.14)

T1g = −
(
1

2
m1 +ma

)
l1g cos q1 (A.15)

−
[
(m0 +m2)l1 +

(
m0 +

1

2
m2

)
l2

]
· g cos(q1 + q2)

T2g = −
[
(m0 +m2)l1 +

(
m0 +

1

2
m2

)
l2

]
(A.16)

· g cos(q1 + q2)

Derivations of the above can be found in [6] though [9].
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