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Abstract

Several sensors are installed in the majority of chemical
reactors and storage tanks to monitor temperature profiles
for safety and decision-making processes such as heat de-
mand or flow rate calculations. These sensors fail occa-
sionally and generate erroneous measurement data that
need to be detected and excluded from the calculations.
However, due to the high number of process variables dis-
played in the chemical plants, this task is not trivial. In
this work, a Bayesian network approach to detect faulty
temperature sensors is proposed. By comparing the sen-
sor measurements with each other, the faulty sensor is de-
tected. A modular approach is preferred, and networks
are created for 10 K temperature intervals to increase flex-
ibility and sensitivity. Created networks can be adjusted
for the operating temperature ranges; hence, they can be
used for any catalyst and entire life cycle. The devel-
oped method is demonstrated on an industrial scale hy-
drocracker unit with 92 sensor couples installed in a se-
ries of reactors. From the investigated sensors, 16 of them
showed a greater difference than the 2 K threshold chosen
for the fault. In addition to that, 13 sensors showed an in-
creasing temperature difference that may lead to a fault.
Two scenarios were created to calculate the energy loss
due to a faulty measurement, and a 5.5 K offset error was
found to cause a 5.79 TJ energy loss every year for a small
scale hydrocracker.

Keywords: Bayesian network, sensor fault, fault detection,
diagnostics

Nomenclature
P(a) Probability of an event a

P(a | b) Probability of an event a given event b
BN  Bayesian Network

CPT Conditional Probability Table

DAG Directed Acyclic Graph

1 Introduction

Temperature is one of the most often measured process
parameters for several industries. Reaction kinetics are
highly dependent on the temperature of the process, mak-
ing temperature measurements important for the chemi-

cal industry. These measurements are necessary to have
knowledge of the reaction progress for both safety and
control. Safety systems rely on the sensors, and wrong
measurements can cause a false alarm or dangerous sit-
uations. According to the French Ministry of Ecology,
Sustainable Development and Energy, sensor failures are
responsible for 52% of the accidents in four most au-
tomated sectors (refining, metallurgy, food processing,
and chemical processing) between 1993 and 2011 (Min-
istry of ecology, sustainable development and energy,
2012). Similarly, an optimal operation decision can only
be guaranteed by measuring the relevant variables cor-
rectly. Faulty measurements do not necessarily cause ac-
cidents but waste energy and resources; therefore, sensor
failure detection mechanisms are highly important for in-
dustrial plants.

Model-based and data-based methodologies are em-
ployed to detect sensor faults. While the first one com-
pares the expected values calculated by using physical
models with the measurements, the latter uses previous
measurements to diagnose a failure. In literature, exam-
ples for both methods can be found for different applica-
tions. A mathematical model consisting of mass and en-
ergy balances was used for a central chilling plant’s flow
and temperature sensor fault detection (Wang and Wang,
2002). A nonlinear state observer with a mathematical
model was tested to detect temperature sensor faults of a
heat exchanger (Escobar et al., 2011). The model itself
sets the limitation to the model-based approach because
its accuracy defines the detection capability. It is sug-
gested for the detection of total failures but not for small
errors (Du et al., 2009). A data-based approach, an artifi-
cial neural network, was used to detect air flowrate sensor
faults of a building (Wang and Chen, 2002). Later, a prin-
cipal component analysis based fault detection system was
developed for temperature sensors of a centrifuge chiller
(Wang and Cui, 2005).

Bayesian networks (BN) have gained attention for fault
detection as they can show causality. They are found sim-
ilar to white-box models due to their qualitative graph as-
pect (Hommersom and Lucas, 2010). Although BNs need
more information in terms of prior probabilities, they are
used for industrial applications. For maintenance plan-
ning (Jones et al., 2010), root cause diagnosis of varia-
tions (Dey and Stori, 2005), prognosis (Hu et al., 2011)
and risk analysis (Duval et al., 2012), these networks were
found useful. Their use for fault detection was success-



fully shown on a chiller (Wang et al., 2017), a heat pump
(Cai et al., 2014) and a fuel cell (Riascos et al., 2007). A
sensor fault detection work was published for a medical
body sensor network (Zhang et al., 2016).

The present paper shows a modular BN approach for
fault detection of an industrial hydrocracker’s temperature
sensors. A modular approach is chosen for this case to
cope with the increasing temperature of the system. The
operational temperature range is divided into intervals,
and a single network is trained for each interval. Further
information on the developed strategy is given in the meth-
ods section. The results are presented and discussed in the
section that follows, and a faulty sensor scenario is created
to demonstrate the additional energy consumption due to
the fault. Finally, in conclusion section outcomes of this
work are summarized next to possible points for future in-
vestigations.

2 Methods

Bayesian networks are graphically represented probabilis-
tic models, in which every node is assigned to a variable
and has its conditional probability table (CPT) depending
on its parents (Pearl, 1988). The graphical part of a BN
is a directed acyclic graph (DAG). DAG is the qualitative
element of a BN, which shows the causality relations be-
tween the variables. CPT is the quantitative element that
carries the joint probability distribution knowledge, and
the posterior probability is calculated according to Bayes’s
theorem (Eq. 1).
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In this work, Bayesian networks are trained for a fault
detection system of temperature sensors in a hydrocracker
unit. The sensors are distributed in concentric circles as
given in Figure 1 in order to observe the temperature pro-
file of the catalyst bed. There are four catalyst beds in the
reactors, which have identical sensor positioning and all
the sensors are thermocouples.

There is a pair of sensors at every point to acquire a
reliable measurement, and the average value is used for
process calculations. The continuous hydrocracking pro-
cess suffers from catalyst degradation; due to this phe-
nomenon, the temperature of the system has to increase
over time to achieve the same level of cracking. The oper-
ation continues ideally without interruption until the end
of the catalyst life. Measurements of five representative
sensors over two years are given in Figure 2. Each sensor
has an average 35 K increase in the measured tempera-
ture, and different catalyst beds have different operating
temperatures. The measurements from all the sensors are
in a 50 K range. Reference temperature (7,.r) is taken as
the start of the run temperature.

A neighboring sensor pair with similar temperature
measurements is selected for each location, and their aver-
age is used as a reference point to detect a faulty sensor of

Figure 1. Approximate sensor locations on the horizontal cross-
section.
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Figure 2. Daily data from five sensors for two years.

a pair. The average temperature of each sensor is plotted
against the average neighbor temperature in Figure 3 to
inspect the distribution of the data points in the operation
domain.

As Figure 3 clearly demonstrates, there is a trend be-
tween the average values that shows well-chosen neigh-
bors for each sensor; however, this trend is not entirely
linear because of the flow regime, possible hot spots, and
channels. If a single network were used to represent this
space, the CPT would cover the entire area, most of which
have zero probability. The operating temperature range
of 50 K that is observed for an entire catalyst cycle is di-
vided into 10 K fragments that are 5 K - 15 K, 15 K -
25K,25K-35K,35K-45K, 45 K - 55 K based on
the average temperature of the pair to reduce the size of
the CPT. These values are calculated with the subtraction
of the T,y from the real values. A discrete network is
trained for each range separately by using the data within
the range collected from every sensor. Figure 4 shows the
range of five networks in different colors and the shaded
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zero probability area, which proves the reduction of the
CPT size.
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Figure 4. CPT reduction by modular network approach.

Five networks have identical DAG, which is given in
Figure 5. The nodes a and b represent each sensor of a
pair, and the neighbor node is the average value of the sen-
sors selected for each pair differently. Structural learning
of these three nodes is performed by using the necessary
path condition algorithm (Steck and Tresp, 1999). Con-
sidering the sensitivity of the sensor type, a discretization
interval of 1 K is chosen for a and b nodes, and 2 K for the
neighbor node. Unlike the interval nodes of the sensors,
the fault node and its CPT considering three states (No
fault, Fault A, and Fault B) are added with expert knowl-
edge, an exemplar CPT is given in the Table 1. For every
neighbor, A and B interval, probability of fault states are
defined. The fault node’s CPT is a 3D array due to three
parent nodes it has, and a high temperature difference of
A and B indicates a fault. For example, the temperatures
of Neighbor =T, A=T + 0.5, and B =T + 3.5 would
result in a 95% probability of *Fault B’ because the differ-
ence is higher than the threshold, and the measurement of
sensor A is closer to the neighbor measurement. Hugin, a
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Figure 5. DAG of the Bayesian network used for sensor fault
detection.

commercial software, is used to build BNs of this work.

Different hydrocracking catalysts operate in different
temperature ranges. The suggested modular approach
brings flexibility to sensor fault detection. A different
range can easily be covered by building a new module with
the same DAG and a similar CPT; therefore, the networks
are easily adjustable and reusable for different catalysts
and units. Although a single network for the entire op-
eration domain might be useful for higher errors due to
its CPT range, it cannot be reused in a different tempera-
ture range. Furthermore, a greater CPT range also causes
problems. It is hard to fill with expert knowledge if it has
the same discretization intervals, or it iS not as sensitive
if it has the same size as the smaller range CPT. If a sin-
gle network were designed for the same system with equal
intervals, the fault node’s CPT size would be 187500. In
the current design, each fault node has a CPT with 2700
values, and due to the similar trend, they are identical.

A single measurement per day is taken from 92 sensors
for two years (684 from each sensor), and they are clas-
sified into five intervals of 10 K as described above. The
outliers that are values outside the operational range due
to some process interruptions are visually excluded from
data sets. The five networks are built by using 767, 2494,
10909, 17437, and 17889 points according to increasing
average temperature intervals. These networks are tested
by using five test data sets of 709, 2436, 10791, 17642,
and 17658 values, respectively, 684 measurements from
each sensor, excluding the outliers. The test data points
are chosen 12 hours after each training data; therefore, the
testing is as independent as possible. Both the training and
the test data covers the entire catalyst life span.

3 Results and Discussion

The five networks for different temperature intervals are
built and tested with real data. According to interval cal-



Table 1. Construction rules of fault node CPT.

Neighbor (T-1) - (T+1)
A (T) — (T+1)
B (T) = (T+1) | (T+1) = (T+2) | (T+2) —(T+3) | (T+3) - (T+4) | (T+4) — (T+5) | (T+5) — (T+6)
No Fault 1 1 0.7 0 0 0
Fault A 0 0 0.05 0.05 0.05 0.05
Fault B 0 0 0.25 0.95 0.95 0.95

culus, the built CPT detects an error if there is a difference
of at least 2 K. A deviation over 2 K between the pair is
detected at 16 of 92 sensors. Each detected fault is inves-
tigated separately and found that the difference between
the sensor measurements does not change over time. In
Figure 6, error with respect to time is given for a pair of
Sensors.
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Figure 6. Temperature difference of a sensor pair, indicating a
possible calibration error.

The constant temperature difference over time shows
a possible calibration error starting from the installation.
The smallest difference detected as calibration error is 2.1
K, and the greatest one is 5.5 K. This type of error may
seem harmless since it does not increase over time; how-
ever, it can interfere easily with the calculation and appli-
cation of optimal operating conditions. Optimality cannot
be guaranteed with measurement errors existing in a sys-
tem. If a calibration error is detected, it can be eliminated
easily.

A calibration error is not the only error type found; an
increasing deviation is also observed in faulty sensors. In
Figure 7, an example of increasing deviation is given.
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Figure 7. Increasing temperature difference of a sensor pair,
indicating an error.

Besides the faulty sensors, 13 sensors are detected with

decreasing reliability, falling into 30% fault probability re-
gions of the CPTs. These sensors have no calibration er-
ror and have an increasing temperature difference trend.
Figure 8 shows the temperature difference increasing over
time, which does not pass the error threshold of 2 K. If
the same equipment is to be used for the next run of two
years, these sensors should be carefully monitored.
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Figure 8. Increasing temperature difference of a healthy sensor
pair with decreasing reliability.

Considering the lifetime of sensors are generally longer
than two years, this information can be useful when there
is an opportunity for maintenance. When there is a need
for a catalyst change, the continuous operation stops for
a certain amount of time, and all the reactor content is
discharged. The internal equipment maintenance is often
scheduled for this period. With the knowledge of calibra-
tion error and increasing deviation, relevant sensors can
be fixed. The collected data belongs to a new set of sen-
sors; therefore, it is expected to have a low rate of faults
since sensor faults have a bathtub curve distribution over
time (Mishra et al., 2002). A bathtub curve is given in
Figure 9, which suggests increasing the importance of a
fault detection mechanism with the aging equipment. A
fault detection system can simplify maintenance planning
because it allows an analysis of the given curve. Consider-
ing the age of the sensors, the expected lifetime of the next
catalyst, and the number of faulty or less reliable sensors,
a decision on whether to keep or change the equipment
can be taken. A decision to reuse the same sensor system
for the next two years’ run can save the equipment cost;
however, an erroneous measurement can increase operat-
ing costs.

Tolerance value of a thermocouple is around £1 K and
this value is important to test the robustness of the net-
works. Random noise is generated within this range and
added to each test measurement. From 49236 measure-
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Figure 9. Bathtub curve of sensor failure rate with respect to
time.

ments, 3.1% are detected false positive and 3.8% are de-
tected false negative with the added noise.

Energy loss due to faulty sensors

Two scenarios are developed to calculate the energy loss
due to measurement errors, the first one for a faulty sensor,
and the second one for a 30% fault probability sensor with
an increasing temperature difference trend.

Scenario 1

A small scale hydrocracker unit with 85000 kg/h feed
capacity is fed with heavy oil of approximately 30 degrees
API (at 60°F) and 2.95 KlJ/kg.K specific heat (United
States Department of Commerce, Bureau of Standards,
1929). The start of the run temperature of the unit is 650
K, which is an average value for this operation (Ancheyta
et al., 2005). A calibration error of 5.5 K decreases the
average temperature of the pair by 2.75 K. If this sensor
is a feed temperature measurement sensor, which is of-
ten a manipulated variable of the control system (Cutler
and Hawkins, 1987), this error costs an additional 5.79 TJ
energy consumption in a year for a constant temperature
operation. As explained earlier, in reality, the system tem-
perature increases as the severity of catalyst degradation
increases; therefore, the specific heat increases over time,
and the energy loss is higher than the calculated value.

Scenario 2

The same hydrocracker unit sensor has an increasing
temperature deviation, which does not exceed the fault
threshold yet, but it is in the 30% fault region. Its tem-
perature difference increases by 0.2 K every four months,
starting from 1 K to 2 K at the end of two years. It de-
creases the average temperature by 0.5 K in the first four
months, causes an additional 0.361 TJ consumption. In
the next five periods of four months, this value increases
to 0.433 TJ, 0.505 TJ, 0.578 TJ, 0.65 TJ, and 0.722 TJ. In
total, it might cause an additional consumption of 3.25 TJ
in two years.

These two scenarios show why sensor faults need to be
detected as early as possible. They both consider the fault
in a negative direction. A fault that increases the average

temperature can cause other problems, for example, inef-
ficient cracking. In the case of the lower temperature of
the reactor feed, the cracking reactions cannot be carried
out at the desired rate, and the product specifications can-
not be reached. Therefore, the outputs of the process need
further processing, and so additional energy need arises
that increases the production cost.

An important point to consider is the limitations of the
designed network system. As mentioned earlier, this type
of limited range network cannot identify the significant er-
rors, which throws the average out of the operational do-
main. It can be overcome by using high range buffer inter-
vals as the first and the last elements of the CPT. This ad-
dition allows the BN to function in a higher range without
expanding it significantly. As the targeted errors are high
in value, the buffer zones do not need high sensitivity, so it
is easy to detect them if the network can be evaluated with
the given measurements. Another issue to be considered
is the reliability of the neighbor sensors’ measurements. If
there is a faulty neighbor, it will still be possible to detect
a fault, but it will not be possible to detect which sensor is
faulty. A weighted average of multiple measurements can
be used as the reference point to reduce this problem.

4 Conclusion and Future Work

Five Bayesian networks, each addressing a different tem-
perature interval, are designed to detect a hydrocracker
reactor’s sensor faults. A set of data collected from 92
sensor pairs and their closest neighbors is used for train-
ing the networks, and a fault node is added with expert
knowledge. Developed networks are tested with data, and
16 sensors are detected with an error greater than 2 K.
Detected faulty sensors are investigated, and two types of
faults are found in the system, offset errors and increas-
ing errors. In addition to the faulty sensors, 13 sensors are
detected with decreasing reliability, although their differ-
ences are lower than the fault threshold of 2 K. Two energy
loss scenarios are used to demonstrate the importance of
detecting both the erroneous measurements and the small
deviations. BN is a fast tool that can be built both from
data and by expert knowledge that gives it flexibility, and
in this work, it is demonstrated that BNs can be used to de-
tect sensor failure. With the increasing interest in it, BNs
might help different industries operate safely without en-
ergy losses. Future work on the same system with special
attention on the sensors that have an increasing tempera-
ture deviation can justify the reliability of this prognosis.
The limitations discussed, significant errors’ detection and
neighbor faults, should be solved to build a reliable sensor
fault diagnostics system. In addition to that, a dynamic
Bayesian network, which considers the previous error, can
be used to distinguish the increasing errors from the offset
errors.
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