
EasyChair Preprint
№ 10069

Exploitation of the Vulnerabilities of Hive
Ransomware for Finding the Private Key

Nunzio Amato, Riccardo Di Pietro and Stefano Zanero

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

May 12, 2023

Exploitation of the vulnerabilities of Hive ransomware for

finding the private key ∗

Amato Nunzio†, Di Pietro Riccardo2‡, and Zanero Stefano2§

Deloitte Risk Advisory S.r.l S.B

Abstract

The spread of ransomware has become one of the major sources of cyber risk in recent
years. Once installed on a machine, this type of malware encrypts victim’s files and
demands a ransom for the decryption key needed to regain access to the locked assets.
The cost required for data recovery is very high and many companies do not have the
funds to pay it. In this paper, we analyze the Hive Ransomware (version v5, v5.1, v5.2)
and study its vulnerabilities during the generation of the private key used for encrypting
the master key. By using these weaknesses, we provide a tool for all companies infected
with this type of malware so that they are able to recover their data without the need to
pay the ransom.

1 Introduction

Ransomware is a type of malicious software that encrypts victim’s files and demands payment
in exchange for the decryption key. It has been a threat for decades, but has become more
prevalent and sophisticated in recent years. One of the most significant developments in the
evolution of ransomware has been the use of cryptocurrencies, which makes it harder for law
enforcement to track payments. In 2019, a criminal organization called TA2102 used the Maze
ransomware to carry out the first high-profile double extortion attack [9], in which they not only
encrypted the victim’s data, but also exfiltrated it and threatened to publish it unless a ransom
was paid. Since then, double extortion attacks have become more common and complex. In
addition, criminals can now buy ransomware as a service (RaaS) [10] on the dark web and
employ sophisticated strategies to maximize their profits. A type of ransomware that is known
for its use of double extortion tactics, as well as its distribution through a RaaS model, is
Hive. It is an affiliate-based ransomware family that first appeared in June 2021 and has
been known to attack a diverse range of industries, with a particular focus on healthcare and
public health organizations, as well as government facilities, communications companies, critical
manufacturing industries, and information technology companies. Hive ransomware actors have
attacked over 1,300 companies worldwide and received around $100 million in ransom payments
[3]. The goal of this work is the same of Kim et al. [4], i.e. to provide all victimized companies
a method to find the private key used during the encryption by the Hive Ransomware. This
process can be applied to versions v5, v5.1, v5.2 of the malware. In summary, we provide the
following contributions:

• We identify a vulnerability during the generation phase of the private key used for en-
crypting the master key

∗

†Designed and implemented the work
‡Did numerous tests and provided a lot of suggestions
§Provided a lot of suggestions

Exploitation of the vulnerabilities of Hive ransomware for finding the private key

• We exploit this weakness to reduce the cardinality of the key space needed to find the
private key

• We define a process for finding the private key that explores the possible combinations in
an intelligent way

2 Hive ransomware analysis

This section presents an analysis of several samples of the Hive Ransomware. The hash values
of these executables are listed in Table 1. They are designed to be used on a Windows operating
system, and we specifically analyzed versions v5, v5.1, and v5.2. The main differences between
these versions and earlier ones include the change in the base programming language (from Go
to Rust) and the improvement of the encryption algorithm. We conducted both a static and
dynamic analysis of these samples using Ghidra and x64dbg, respectively.

SHA-256 version architecture

4b62c93fbf0b964c4de93a0ce456bccdaee2908b3c0135b3f62912068a728d3e 5 32-bit

a464ae4b0a75d8673cc95ea93c56f0ee11120f71726cc891f9c7e8d4bec53625 5.1 32-bit

f4a39820dbff47fa1b68f83f575bc98ed33858b02341c5c0464a49be4e6c76d3 5 64-bit

f5d1acc98d62b3a3bfc640bfafd3144fa66112470512e26197cc9b643e438a0e 5.2 64-bit

Table 1: Hash value of Hive Ransomware sample files

2.1 Encryption process

Since Microsoft [7] has already conducted a comprehensive analysis of the malware, we only
summarize the key steps carried out. Then we explain the vulnerabilities detected.

Master key generation The malware allocates a buffer of size 0xCFFF00 bytes and uses an
algorithm to generate random bytes (we will discover in Section 3 that the bytes are not truly
random) and fill the buffer. The first 0xA00000 bytes of the buffer are filled by the algorithm
and they are then reused for the remaining 0x2FFF00 bytes. This process is repeated twice,
resulting in the creation of two master keys used by the malware to encrypt the files.

Creation of threads The malware creates 1256 threads that are used to speed up the en-
cryption process.

Terminating specific processes and services The Hive ransomware shuts down certain
processes, like excel, sql, wordpad, and services, such as windefend, oracle, backup. This is done
to prevent processes from interfering with the encryption phase.

Encryption of the master key Hive encrypts the two master keys in order to protect them
from being discovered or accessed by unauthorized parties. In particular, it uses two rounds of
encryption for each key. The steps in each round are the following:

1. A 32-byte private key is generated with the same algorithm used for the generation of the
master key.

2

Exploitation of the vulnerabilities of Hive ransomware for finding the private key

2. Using the Curve25519 elliptic curve algorithm for the Diffie-Hellman key exchange
(ECDH) [2], the victim public key is derived from the private key and the Basepoint
(it is 9 followed by 31 zeros).

3. A 24-byte nonce is generated using the same algorithm used for the private key and the
master key.

4. A shared key is generated by using ECDH with Curve25519. The inputs are the private
key generated in the step 1 and the Hive public key (embedded in the sample).

5. The key used for the encryption of the master key is generated by using HChaCha20 [1].
The inputs are the HCHACHA nonce (it is composed of 16 bytes, all of which are equal
to zero) and the shared key.

6. The master key is encrypted using Poly1305-XChaCha20 [8]. The inputs are the master
key and the nonce generated in step 3. In this step a 16-byte Message Authentication
Code (MAC) is created for ensuring the integrity of the encryption process.

The first round involves encrypting the master key. The second round involves encrypting the
result of the first round. Figure 9 describes the structure of the key at the end of the first and
the second rounds, respectively.

Storage of the encrypted master key The outcome of the second round is stored in the
root of the drive that is being encrypted, with a .key extension.

Encryption of the disk Once the malware has written both master keys to the disk, it begins
the multi-threaded file encryption process. For each file, it randomly selects a byte sequence
from one of the master keys and uses it to encrypt the file by XORing the byte sequence with
the file’s content. Specifically, the malware selects two distinct offsets that are used in sequence
to XORs the file’s content.

3 Vulnerability in Hive’s algorithm

The analysis in Section 2 is used to understand the context in which we find ourselves. Within
this context, we discovered a vulnerability. It arises from the algorithm with which the nonce,
the private key, and the master key are generated. Therefore, our purpose is not to question
the cryptographic power of Curve25519 and HChaCha20. Instead, we want to emphasize the
weakness of the algorithm used to generate a sequence of bytes given as input to these robust
cryptographic algorithms.

3.1 PRNG algorithm

The ransomware uses the same pseudo-random number generator (PRNG) algorithm to gen-
erate the nonce, the private key and the master key. The PRNG employs two Windows APIs
to generate a stream of bytes: QueryPerformanceCounter (QPC) [5] and QueryPerformanceFre-
quency (QPF) [6]. The QPC method retrieves the value of the high-resolution performance
counter that measures the time elapsed since the system was started, while the QPF method
returns the frequency of the performance counter, fixed at system boot.

The PRNG uses the time difference between the generation of the seed (QPC0) and the
current system time value (QPCi) to compute the elapsed time, and subsequently, generate

3

Exploitation of the vulnerabilities of Hive ransomware for finding the private key

Algorithm 1 PRNG algorithm

Input: length, QPC0, QPF
Output: key

// Initialization keys
key[length]← 0

for i← 0 to length do

elapsed time← QPCi −QPC0

bytei ← elapsed time mod QPF
key[i]← bytei

end for

return key

each byte. This computation involves dividing the time difference by the frequency of the
performance counter to obtain the elapsed time in seconds. Additionally, the remainder of
this division operation is computed and utilized in the generation of the pseudo-random bytes.
Algorithm 1 provides a representation of the byte generation process. Listing 1 describes the
PRNG algorithm implemented in C++.

3.2 Vulnerability detection

The algorithm’s utilization of a temporal component for byte generation may appear to produce
unpredictable bytes at first glance. However, upon closer examination, it has been found that
if the value of QPF is set to 0x989680 (10 MHz), that is a common value for the performance
counter frequency on many systems, the number of possible generated bytes is limited to 64.
As a result, a brute-force attack on the 32-byte private key would require searching through
2192 combinations instead of 2256, a significant reduction in the search space. Although this
number is still far too large to be practical, it can serve as a starting point for implementing a
method that further narrows down the range of possible keys (Section 4).

Table 2 shows the periodic sequence of bytes that is obtained when the difference between
successive QPC values (∆(QPCi − QPCi−1)) is equal to 1 and the QPF is equal to 10 MHz.
This sequence highlights the algorithm’s predictability, as it generates a fixed sequence of bytes
that repeats every 64 iterations. This predictability is a significant vulnerability that can be
exploited to recover the private key.

3.3 Relationship between QueryPerformanceCounter and the PRNG

According to the Listing 1, a seed s is created using the value of QueryPerformanceCounter,
QPC0. This seed is then used to generate a sequence of n bytes. By analyzing this sequence
and the periodic sequence in Table 2, we discover a relationship between QPCi and QPC0 (see
Figure 1). The difference between QPCi and QPC0 determines the position in the periodic
sequence (Table 2) of the byte that is generated at the i-th iteration. Therefore, if we know

4

Exploitation of the vulnerabilities of Hive ransomware for finding the private key

00 64 C8 2C 90 F4 58 BC
20 84 E8 4C B0 14 78 DC
40 A4 08 6C D0 34 98 FC
60 C4 28 8C F0 54 B8 1C
80 E4 48 AC 10 74 D8 3C
A0 04 68 CC 30 94 F8 5C
C0 24 88 EC 50 B4 18 7C
E0 44 A8 0C 70 D4 38 9C

Table 2: Periodic sequence of bytes

the ∆(QPCi − QPC0) ∀i ∈ n, we could reconstruct the entire sequence of generated bytes.
Moreover, we can generate the bytes even without the knowledge of QPC0. We just need the
knowledge of ∆(QPCi −QPCi−1) ∀i ∈ n and, in at most 64 attempts, we can reconstruct the
private key. 

∀i ∈ n,

if ∆(QPCi −QPC0) ≡ 0 (mod 64),

then bytei = 0x00

if ∆(QPCi −QPC0) ≡ 1 (mod 64),

then bytei = 0x64

if ∆(QPCi −QPC0) ≡ 2 (mod 64),

then bytei = 0xC8

...

if ∆(QPCi −QPC0) ≡ 64 (mod 64),

then bytei = 0x9C

(1)

3.4 Anomalies during the generation of bytes

When the value of the register that manages the QPC is increased by 1 at each iteration of
the algorithm, the private key retrieval would require at most 64 combinations to be tried.
However, since the frequency at which the CPU executes instructions is different with respect
to the frequency of the high-resolution performance counter, it is not so trivial to recover the
key necessary to decrypt the master key. A possible scenario is presented in Figure 1.

Figure 1: Anomalies in the generation of bytes

5

Exploitation of the vulnerabilities of Hive ransomware for finding the private key

Figure 1 shows possible values that can be retrieved by invoking QueryPerformanceCounter
and the bytes generated by using those results. As we expected, if the CPU is able to compute
multiple iterations of the algorithm before the value of the high-resolution performance counter
is updated, we have the same QPC and thus the same byte during consecutive iterations (see
yellow arrow). On the other hand, if the high-resolution counter is updated before the method
QueryPerformanceCounter is invoked, the next QPC will be different to the previous one. In
case ∆(QPCi −QPCi−1) = 1 the bytei will be the one that follows the bytei−1 in the periodic
sequence (see green arrow). Otherwise, if ∆(QPCi−QPCi−1) > 1 we have a hop in the periodic
sequence (see red arrow). In fact, in correspondence to QPC = 1505, the byte generated is not
0x8 but 0x6C. In order to describe these anomalies and to define a method for reducing the key
set needed for retrieving the private key, we modelled a set of features.

3.5 Modelling of features

These anomalies allow us to define some features that describe the behaviour of the CPU during
the generation of the bytes. In particular, these features are used for describing the 24-byte
nonce and the 32-byte private key. Consider the following nonce in Table 3:

2C F4 58 BC 20 84 84 E8 4C 78 DC 40
A4 08 6C D0 98 FC 60 C4 28 8C F0 F0

Table 3: Example of 24-byte nonce

The red cell represents the position in which we have a hop, i.e. where ∆(QPCi−QPCi−1) >
1. In this case the length of hop represents the value of ∆(QPCi − QPCi−1). The green cell
represents the position in which there is a byte equal to the previous one (consecutive bytes), i.e
where ∆(QPCi −QPCi−1) = 0. The features are: number of hops, position of hops, difference
between position of hops, length of hops, number of consecutive bytes, position of consecutive
bytes, difference between position of consecutive bytes. The features of the nonce in Table 3 are:

• number of hops = 3

• position of hops = [1, 9, 16]

• difference between position of hops = [8, 7]

• length of hops = [2, 3, 2]

• number of consecutive bytes = 2

• position of consecutive bytes = [6, 23]

• difference between position of consecutive bytes = [17]

3.6 Preliminary works

These features are used to perform a smart research for finding the private key. To describe this
process, it is important to note that when the master key is encrypted, the only information in
plaintext are the 24-byte nonce and the victim’s public key. Moreover, there are few instructions
(see Figure 10) between the generation of the private key and the nonce. Assuming that the
private key and the nonce are generated with a similar CPU frequency, the knowledge of the

6

Exploitation of the vulnerabilities of Hive ransomware for finding the private key

nonce and of its features can be a means to perform an optimized research of the private key.
To understand the relationship between the nonce and the private key, we patched two of the
analyzed samples (the 32-bit sample v5 and the 64-bit sample v5, see Table 1). We created
precisely two patches for each of them. The first patch gives the possibility to retrieve the
couple nonce-private key and to write it into a file. The second patch (that is used in Section
4.1) allows us to write the master key into a file. We also disabled the harmful aspect of the
executable so that it could be used only for generating keys. The purpose of patching two
samples of Hive is to study the characteristics of the bytes generated by the PRNG by running
a 32-bit and a 64-bit executable respectively. All experiments were performed on two machines,
one equipped with an Intel Core i5-4590 processor that runs at a clock speed of 3.30 GHz, and
the other with an Intel Core i7-8665U processor that runs at a speed of 1.90 GHz (Table 4).
Both machines had Windows 10 installed.

Version Release RAM CPU QPF

Win10PRO 22h2 16GB Intel(R) Core(TM) i7-8665U CPU 10000000
@ 1.90GHz

Win10HOME 22h2 8GB Intel(R) Core(TM) i5-8265U CPU 10000000
@ 1.60GHz

Table 4: Tested Laptops

3.7 Relationship between the 24-bytes nonce and 32-bytes private key

After modifying the malware, we run the first patch many times to retrieve data useful for
establishing the correlation of the features between the nonce and the private key. We perform
parallel benchmark experiments (Atto, Cinebench, Novabench) while executing the patched
malware to examine the impact of system load on the features extracted from private key-
nonce pairs. Specifically, we stressed the RAM, disk, and graphics card, and sought to determine
whether the features differed when the malware was executed with and without the benchmark.
Our results showed that there was no discernible variation in the features, indicating that
the benchmark had no significant effect on the malware’s behaviour. Moreover, we discover
empirically that the features are influenced mainly by the frequency of the CPU. Thus we vary
the values of the CPU frequency during the collection of the data to figure out how the features
evolve with respect to the variation of the frequency. More precisely, for each frequency, we
run the patched malware 5000 times and we gather the features for each nonce-private key pair
(see Figure 11). Then, we analyze what are the major occurrences of number of hops nonce,
number of consecutive bytes nonce, number of hops pk, number of consecutive bytes pk for each
frequency.

Figures 2 and 3 show the trend of the features as the frequency increases. As we expected,
the number of hops and the number of consecutive bytes of the nonce are less than that of
the private key, since the former consists of 24 bytes and the latter of 32 bytes. We can also
notice that the variation of the features retrieved from the patched 32-bit malware is different
from the 64-bit malware. In both cases, as the frequency of the CPU increases, the number
of hops feature decreases. However, for the 32-bit malware, when a frequency of 3.80 GHz is
reached the number of hops feature vanishes whereas the consecutive bytes feature appears.
Instead, on the 64-bit sample, the number of hops feature disappears at around 2.38 GHz and
the consecutive bytes feature appears at around 2.18 GHz. Moreover, for the 32-bit malware,

7

Exploitation of the vulnerabilities of Hive ransomware for finding the private key

Figure 2: features 32-bit Figure 3: features 64-bit

from 0.8 GHz to 1.98 GHz the number of hops are 23 for the nonce and 31 for the private key.
For the 64-bit malware, the previous features are found only at 0.8 GHz and at 1 GHz. The
feature that changes when the number of hops of the nonce is equal to 23 and the number of
hops of the private key is equal to 31 is the length of hops. Tables 5 and 6 show the different
length of hops and the average values. Regarding the 32-bit sample, the length of hops that
characterizes the frequency 0.8 GHz is 5 (in average, 28.38 for the private key and 20.98 for
the nonce). As the frequency increases, the length of hops decreases until it reaches 2 at 1.98
GHz. From that value on, the length of hops mainly takes on the value of 2. Regarding the
64-bit sample, the length of hops starts to assume the value of 2 from 1 GHz (in average 29.28
for the private key and 21.42 for the nonce). The analysis also highlights that the features of
the nonce are only slightly different from those of the private key. Therefore, the nonce can
be useful for detecting the possible features of the private key. Thanks to the collected data,
we defined a range of features that the private key can take based on the features assumed by
the nonce (Figure 12). The knowledge of the nonce thus allows us to narrow down our area of
interest during the search for the private key.

length of hops private key

Freq(GHz) 2 3 4 5

0.8 0.0002 0.0002 1.41 28.38
1 0.0002 1.11 28.72 0.72

1.29 0.018 28.39 2.33 0.23
1.49 10.58 19.93 0.46 0.009
1.69 19.97 10.78 0.20 0.01
1.98 30.41 0.508 0.04 0.01

length of hops of nonce

Freq(GHz) 2 3 4 5

0.8 0.0001 0.0002 1.05 20.98
1 0.0001 0.83 21.29 0.69

1.29 0.019 20.88 1.79 0.22
1.49 7.79 14.88 0.31 0.005
1.68 14.75 8.11 0.11 0.006
1.98 22.74 0.24 0.002 0.002

Table 5: length of hops nonce and private key (32-bit)

length of hops private key

Freq(GHz) 2 3 4 5

0.8 14.15 15.89 0.52 0.36
1 29.28 1.30 0.35 0.0004

length of hops nonce

Freq(GHz) 2 3 4 5

0.8 10.32 11.76 0.62 0.17
1 21.42 1.03 0.30 0.10

Table 6: length of hops nonce and private key (64-bit)

8

Exploitation of the vulnerabilities of Hive ransomware for finding the private key

4 Implementation of the search of the private key

After designing the features, our objective is to compute an intelligent search of the private key,
trying to reduce the number of possible combinations. The idea is to:

• extract the nonce and the public key from the file .key (Figure 4);

• compute the features of the nonce and, in particular, take into account of the number of
hops and the number of consecutive bytes of the nonce;

• use the two features previously retrieved to search inside the table in Figure 12 the possible
range of features of the private key. After that, search inside the collected data all the
entries that have min number of hops pk ≤ number of hops pk ≤ max number of hops pk
and min consecutive bytes pk ≤ consecutive bytes pk ≤ max consecutive bytes pk.

• once the occurrences are retrieved, start the search of the private key (Figure 5).

Figure 4: Extraction of the nonce and the public key

Figure 5: Steps for retrieving the useful private key features

Before generating the possible private keys, we first extract the difference between position of
consecutive bytes, the difference between position of hops and the length of hops of the private key
from the rows obtained by the previous query (Figure 11). Starting from the difference between
position of consecutive bytes pk and the difference between position of hops pk, we compute all
the possible positions in which the hops and consecutive bytes can be found. For example, in
case the difference between position of hops pk = [7, 7, 8, 7] and difference between position of
consecutive bytes pk = [], the position of hops pk are [1, 8, 15, 23, 30] and [2, 9, 16, 24, 31] and
there is no position of consecutive bytes. These positions are used in combination with the

9

Exploitation of the vulnerabilities of Hive ransomware for finding the private key

length of hops for generating possible strings of 32 bytes (remember that each byte can take
only 64 values). Each generated key together with Basepoint 9 is given as input to Curve25519
and a public key is generated (Algorithm 2). The last key is compared with the public key
present in the file .key. In the event that the two keys are equal, the private key for decrypting
the file .key is found (Figure 6).

Figure 6: Private key search

4.1 Alternative way for the search of the private key

The problem with the previous method is that we are not able to explore all the possible
combinations from the collected data since there can be some features needed for finding the
private key that are not covered. In fact, given a number of hops feature and a number of
consecutive bytes feature, we are not able to explore neither all the possible positions in which
there are hops and consecutive bytes nor the possible length of hops. If we do not find the key
from the collected data, we can take advantage of the analysis described in Figures 2 and 3. In
fact, by looking at the features of the nonce, we can determine the frequency used by the CPU
during nonce generation. Once the right frequency is found, we can run the second patch of the
malware for generating a master key. Since the master key is created by the same private key
and nonce algorithm, we can use the master key to search for the private key: scan the master
key, take 32 bytes at a time, compute the features and generate private keys. We compute
precisely the difference of position between consecutive bytes, the difference of position between
hops and the length of hops. After that we generate strings of 32 bytes and we use the same
procedure described in Section 4.

10

Exploitation of the vulnerabilities of Hive ransomware for finding the private key

5 Results and discussion

The aforementioned methods were tested by executing four samples of Hive (Table 1) on differ-
ent Windows 10 machines. In total, 100 malware executions were performed, resulting in the
generation of 200 master keys, given that each sample generates two master keys. Additionally,
as each master key is encrypted twice during two encryption rounds, there were 400 private
keys to be recovered during the testing phase.

In particular, the method described in Section 4 was first employed, and if it produced
negative results, the method in Section 4.1 was used. The value returned by QueryPerfor-
manceFrequency on the tested machines is 10 MHz, as expected. We removed the malicious
component from the executables and made them generate only the two master keys, which
were then encrypted. During the execution of the malware, we intentionally did not set a fixed
CPU frequency, as done during the data collection phase. This decision was made to test the
plausibility of our assumptions made during the data collection phase. Specifically, we wanted
to verify whether the private key and nonce were generated at a similar CPU frequency, and
whether the nonce could be used as useful information for the recovery of the private key. By
using the methods described in the previous sections, we were able to recover various private
keys. Table 9 describes the number of private keys recovered from both the second encryption
round and the first encryption round. From the second encryption round, 172 private keys
were recovered. They were then used to decrypt the second encryption round and retrieve the
content of the first encryption round. From the 172 content of the first encryption round, 161
private keys were recovered. In total, therefore, we were able to decrypt 161 master keys out of
200. Furthermore, we were able to recover 333 private keys out of the 400 available. Tables 7
and 8 report some of the files *.key of which we were able to find the private key.

Tables 10 and 11 show the number of recovered private keys and the number of attempts on
average needed to find the private key according to the features of the nonce. The first table
depicts the scenario where the nonce has a number of hops greater than zero and consecutive
bytes equal to zero. The second table shows the case where the nonce has a number of consec-
utive bytes greater than zero and the number of hops equal to zero. Figures 7a and 8a describe
the percentage of recovered private keys in the second encryption round and the first encryption
round, respectively. From Table 10, we can observe that as the number of hops increases, the
recovery of the private key becomes more challenging and the number of attempts increases
(Figures 7b). For instance, when the nonce had a number of hops between 0 and 10 (second
round of encryption), we managed to recover 95% of the private keys (52892 attempts on aver-
age), whereas when the nonce had a number of hops between 18 and 23, we could only recover
37% of the private keys (10389328 attempts on average). Table 11 shows that the difficulty
of recovering the private key increases along with the number of attempts (Figure 8b), as the
number of consecutive bytes in the nonce grows. Specifically, we were able to recover 84% of
the private keys related to the second round of encryption when the nonce had between 0 and
5 consecutive bytes (167458 attempts on average), while we could recover 68% of the private
keys when the nonce had between 11 and 15 consecutive bytes (2249004 attempts on average).

These results highlight the power of the methods described previously. We not only lowered
the number of potential combinations needed to find the private key from 2256 to 2192, but
by utilizing the nonce features, we were able to decrease the attempts even further. This also
confirms that the nonces and private keys were likely generated using a CPU with a similar
frequency, and that by examining the properties of the nonce, we can limit the set of possible
keys that we need to search through. The reason why we may sometimes fail to recover the
private key is primarily due to a mismatch in the frequency at which the nonce was generated

11

Exploitation of the vulnerabilities of Hive ransomware for finding the private key

and that at which the private key was generated. Thus, in cases where there is a sudden
variation in frequency between the nonce and the private key, it becomes challenging to recover
the private key.

file key hop nonce hop pk tested keys

zIGJJr0E.key 1 3 13694
8zploAPL.key 1 5 48979
66h8PpTM.key 2 2 1214

zIGnJr0E-firstRound.key 2 2 19114
-MQBxMJf.key 2 3 13820

OIoQvSNO-firstRound.key 3 3 31400
OIoQvSNO.key 3 4 30900
dvIWE2Df.key 3 5 123334
avP-W2aO.key 12 13 1086634
P4t9hF-D.key 23 31 10000890

Table 7: Examples of decrypted files *.key (case only hops in the nonce)

file key consecutive bytes nonce consecutive bytes pk tested keys

6cPdfbPJ.key 3 3 128714
OrrJLrwE.key 4 5 136990

OrrJLrwE-firstRound.key 4 5 191814
lamMMMpo.key 5 5 482796
-pQMxNXf.key 5 6 133440
I9oMbRNO.key 6 6 1307654

I9oMbRNO-firstRound.key 7 9 1136400
PkwoA-Wq.key 10 12 1700890
LmaPO1-s.key 11 11 2673334
LmaPO1-s.key 13 14 2097394

Table 8: Examples of decrypted files *.key (case only consecutive bytes in the nonce)

round of encryption found keys total keys

2 172 200
1 161 172

Table 9: Number of recovered private keys

range hops round of encryption found keys total keys attempts

0-10 2 61 64 52892
0-10 1 45 49 68022
11-17 2 36 38 1132827
11-17 1 26 31 1172224
18-23 2 6 16 10389328
18-23 1 6 10 11384356

Table 10: Number of retrieved private keys and attempts given the range of nonce’s features
(case only hops in the nonce)

12

Exploitation of the vulnerabilities of Hive ransomware for finding the private key

range consecutive bytes round of encryption found keys total keys attempts

0-5 2 40 44 167458
0-5 1 33 39 177468
6-10 2 18 22 1123483
6-10 1 26 31 1163443
11-15 2 11 16 2249004
11-15 1 6 10 2329643

Table 11: Number of retrieved private keys and attempts given the range of nonce’s features
(case only consecutive bytes in the nonce)

6 Conclusions

In summary, the aim of this study was to analyze versions v5, v5.1, and v5.2 of the Hive
ransomware and exploit its vulnerabilities within it. Its weakness lies in the fact that the
PRNG algorithm used to generate the master key, nonce, and private key generates a periodic
sequence of 64 bytes. Our objective was to define a model to exploit these vulnerabilities by
creating features to synthesize the bytes present in the nonce, private key, and master key. We
hypothesized that since there are few assembly instructions between the generation of the nonce
and private key, they are generated at a similar frequency to the CPU. This led us to find a
relationship between the features of the nonce and the private key, which we recovered after
patching two Hive samples. We collected the data by executing the patched malwares 5000
times at each frequency we were able to extract from the machines used in the experiment.
After collecting the data, we created features for each private key-nonce pair and compared the
trends of the nonce and private key features. We found that by starting with the information
from the nonce, it is possible to recover useful information for private key recovery. We then
implemented a method to search for private keys based on the nonce features and tested it by
running the malware in different Windows 10 machines. Our results confirm that the nonce can
be used useful for private key recovery. These results have important implications for companies
that have been infected with Hive ransomware. Affected companies can take the nonce in the
*.key file and compute its features. Then, they can leverage the information in Figure 12 to
understand possible private key features and implement a search for it. However, this study
only covers versions v5, v5.1, and v5.2. From version v5.3, the function BCryptGenRandom,
instead of QueryPerformaceCounter, is used to generate random bytes. Further research could
study how BCryptGenRandom is used and determine if a vulnerability is present there, as well.
In conclusion, these results show that even criminal groups make mistakes during the writing
of their malicious code. By reversing and analyzing the malware, weaknesses in the code can
be identified and exploited. Therefore, it is important for companies to invest in skilled reverse
engineering and malware analysis professionals. This can help them avoid having to pay a
ransom in the event of an attack.

7 Acknowledgments

This work has been supported by Deloitte Risk Advisory S.r.l S.B.

13

Exploitation of the vulnerabilities of Hive ransomware for finding the private key

(a) Percentage of recovered private keys (case only hops in the nonce)

(b) Number of attempts for retrieving the private keys (case only hops in the nonce)

Figure 7

14

Exploitation of the vulnerabilities of Hive ransomware for finding the private key

(a) Percentage of recovered private keys (case only consecutive bytes in the nonce)

(b) Number of attempts for retrieving the private keys (case only consecutive bytes in the nonce)

Figure 8

15

Exploitation of the vulnerabilities of Hive ransomware for finding the private key

References

[1] Daniel Bernstein. Chacha, a variant of salsa20. 01 2008.

[2] Daniel J. Bernstein. Curve25519: New diffie-hellman speed records. In Moti Yung, Yevgeniy
Dodis, Aggelos Kiayias, and Tal Malkin, editors, Public Key Cryptography - PKC 2006, pages
207–228, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

[3] CISA. #stopransomware: Hive ransomware. https://www.cisa.gov/news-events/

cybersecurity-advisories/aa22-321a.

[4] Giyoon Kim, Soram Kim, Soojin Kang, and Jongsung Kim. A method for decrypting data infected
with hive ransomware, 2022.

[5] Microsoft. Queryperformancecounter function (profileapi.h). https://learn.microsoft.com/

en-us/windows/win32/api/profileapi/nf-profileapi-queryperformancecounter.

[6] Microsoft. Queryperformancefrequency function (profileapi.h). https://learn.microsoft.com/

en-us/windows/win32/api/profileapi/nf-profileapi-queryperformancefrequency.

[7] Microsoft. Hive ransomware gets upgrades in rust. https://www.microsoft.com/en-us/

security/blog/2022/07/05/hive-ransomware-gets-upgrades-in-rust/, 2006.

[8] Yoav Nir and Adam Langley. ChaCha20 and Poly1305 for IETF Protocols. RFC 7539, May 2015.

[9] Check Point Research. Ransomware evolved: Double extortion. https://research.checkpoint.
com/2020/ransomware-evolved-double-extortion/.

[10] Windows. Ransomware as a service: Understanding the cybercrime gig economy and
how to protect yourself. https://www.microsoft.com/en-us/security/blog/2022/05/09/

ransomware-as-a-service-understanding-the-cybercrime-gig-economy-and-how-to-protect-yourself/.

A Appendix

In this additional section, we show several figures and the algorithm used to search for the
private key that we believe can support the comprehension of the work.

Algorithm of the private key generator Algorithm 2 defines the way the private keys
are generated starting from the length of hops pk, difference between hops pk, difference between
consecutive bytes pk. It precisely describes the scenario in which we have no consecutive bytes
but only hops.

Tested laptops As part of our investigation into the predictability of the PRNG, we also
tested the laptops that were available to us to determine which ones had a QPF value of 10 MHz.
In most of the tested machines, we found a QPF value of 10 MHz. However, we observed that
there can be additional values based on the operating system and architecture of the machine
(Table 12).

Phase of encryption of the master key Figure 9 shows the two rounds of encryption of
the master key. In the first round the master key is encrypted and put inside a structure that
contains the nonce, the public key and the MAC generated during that round. In the second
round this structure is further encrypted and then stored in a file .key.

Generation of the private key and the nonce Figure 10 emphasizes the small code
distance between the generation of the private key and the nonce. This allows us to make the
assumption that they are both generated with a similar CPU frequency.

16

https://www.cisa.gov/news-events/cybersecurity-advisories/aa22-321a
https://www.cisa.gov/news-events/cybersecurity-advisories/aa22-321a
https://learn.microsoft.com/en-us/windows/win32/api/profileapi/nf-profileapi-queryperformancecounter
https://learn.microsoft.com/en-us/windows/win32/api/profileapi/nf-profileapi-queryperformancecounter
https://learn.microsoft.com/en-us/windows/win32/api/profileapi/nf-profileapi-queryperformancefrequency
https://learn.microsoft.com/en-us/windows/win32/api/profileapi/nf-profileapi-queryperformancefrequency
https://www.microsoft.com/en-us/security/blog/2022/07/05/hive-ransomware-gets-upgrades-in-rust/
https://www.microsoft.com/en-us/security/blog/2022/07/05/hive-ransomware-gets-upgrades-in-rust/
https://research.checkpoint.com/2020/ransomware-evolved-double-extortion/
https://research.checkpoint.com/2020/ransomware-evolved-double-extortion/
https://www.microsoft.com/en-us/security/blog/2022/05/09/ransomware-as-a-service-understanding-the-cybercrime-gig-economy-and-how-to-protect-yourself/
https://www.microsoft.com/en-us/security/blog/2022/05/09/ransomware-as-a-service-understanding-the-cybercrime-gig-economy-and-how-to-protect-yourself/

Exploitation of the vulnerabilities of Hive ransomware for finding the private key

Example of the features of the nonce-private key pair Figure 11 shows the features of
the nonce-private key couple retrieved by executing the patched 32-bit malware at a frequency
of 3.5 GHz.

Possible range of features Figure 12 shows what is the possible range of features of the
private key given the knowledge of the nonce features. Starting from the feature nonce, we can
know what are the min number of hops pk, max number of hops pk, min number of consecutive
bytes pk and max number of consecutive byte pk. This knowledge allows us to restrict the key
set in which we search for the private key.

Figure 9: Keystream

Figure 10: Generation of private key and nonce

17

Exploitation of the vulnerabilities of Hive ransomware for finding the private key

Figure 11: Examples of features retrieved by using 3.5 GHz as frequency

18

Exploitation of the vulnerabilities of Hive ransomware for finding the private key

Algorithm 2 Private key generator (case only hops)

Input: dif between hops pk, length hops pk, public key, sequence[64]
Output: private key

Initialization position of hops
position hop← []
shift hop← 0
position hop.append(1)
prev ← position hop[0]

if len(dif between hops pk) ≥ 1 then
for i← 0 to len(dif between hops pk) do
position hop.append(prev + dif between hops pk[i])
prev ← position hop[i+ 1]

end for
end if
shift hop← 32− position hop[−1]

Search private key
for k ← 0 to shift hop do
for w ← 0 to 64 do
private key ← sequence[w]
prec position← w
count length← 0
for y ← 1 to 32 do
if y ∈ position hop then
cur hop← length hops pk[count length]
count length← count length+ 1
cur position← (prec position+ cur hop) mod 64
cur byte← sequence[cur position]
private key ← private key + cur byte
prec position← cur position

else
cur position← (prec position+ 1) mod 64
cur byte← sequence[cur position]
private key ← private key + cur byte
prec position← cur position

end if
end for
generated public key ← curve25519(private key,BASE POINT)
if generated public key == public key then
return private key

end if
end for
position hop← [x+ 1 for x ∈ position hop]

end for
return 0

19

Exploitation of the vulnerabilities of Hive ransomware for finding the private key

Figure 12: Possible range of features

Version Release RAM CPU QPF

Win10PRO 22h2 16GB Intel(R) Core(TM) i7-8665U CPU 10000000
@ 1.90GHz

Win10HOME 22h2 8GB Intel(R) Core(TM) i5-8265U CPU 10000000
@ 1.60GHz

Win10PRO 20h2 8GB Intel(R) Core(TM) i5-4590 CPU 10000000
@ 3.30GHz

Win10PRO 2004 12GB Intel(R) Core(TM) i5-5300U CPU 10000000
@ 2.30GHz

Win10PRO 2004 8GB Intel(R) Core(TM) i7-10700 CPU 10000000
@ 2.90GHz

Win7PRO 2004 12GB Intel(R) Core(TM) i5-5300U CPU 2240976
@ 2.30GHz

Win10PRO 22H2 8GB Intel(R) Core(TM) i7-4700MQ CPU 10000000
@ 2.40GHz

Win10PRO 1607 16GB Intel(R) Core(TM) i7-6500U CPU 2531253
@ 2.50GHz

Win10enterprise 21H2 16GB Intel(R) Core(TM) i7-8665U CPU 10000000
@ 1.90GHz

Win10enterprise 21H2 16GB AMD Ryzen 7 PRO 5850U 10000000
with Radeon Graphics 1901 MHz

Table 12: QPF Values of tested Laptops

20

Exploitation of the vulnerabilities of Hive ransomware for finding the private key

Listing 1: vulnerable PRNG algorithm

// g l o b a l
const int LENGTH = 0xCFFF00 ; // 0xCFFF00 or 0x20 or 0x18

i n t 6 4 t genByte (i n t 6 4 t elapsedTimeSeed , i n t 6 4 t remainderSeed) ;
void computeElapsedTime (i n t 6 4 t ∗ elapsedTime , i n t 6 4 t ∗ remainder) ;

int main () {
u i n t 8 t ∗key ; // master key or p r i v a t e key or nonce
key = (u i n t 8 t ∗) mal loc (LENGTH ∗ s izeof (u i n t 8 t)) ; ;

i n t 6 4 t elapsedTimeSeed , remainderSeed ;
computeElapsedTime(&elapsedTimeSeed , &remainderSeed) ; // seed

for (int i = 0 ; i < LENGTH; i++) {
i n t 6 4 t difRemainder = genByte (elapsedTimeSeed , remainderSeed) ;
u i n t 8 t nextByte = difRemainder & 0xFF ;
key [i] = nextByte ;

}
}

void computeElapsedTime (i n t 6 4 t ∗ elapsedTime , i n t 6 4 t ∗ remainder) {

LARGE INTEGER numberOfTicks ;
LARGE INTEGER frequency ;
QueryPerformanceCounter(&numberOfTicks) ;
QueryPerformanceFrequency(&frequency) ;
∗ elapsedTime = numberOfTicks . QuadPart / f requency . QuadPart ;
∗ remainder = numberOfTicks . QuadPart % frequency . QuadPart ;
∗ remainder = ∗ remainder ∗ (0X3B9ACA00 / frequency . QuadPart) ;

}

i n t 6 4 t genByte (i n t 6 4 t elapsedTimeSeed , i n t 6 4 t remainderSeed) {
i n t 6 4 t elapsedTime , remainder ;
computeElapsedTime(&elapsedTime , &remainder) ;
i n t 6 4 t difRemainder ;
i f (remainder > remainderSeed) {

difRemainder = remainder − remainderSeed ;
}
else {

remainder = remainder + 0x3B9ACA00 ;
difRemainder = remainder − remainderSeed ;

}
return difRemainder ;

}

21

	1 Introduction
	2 Hive ransomware analysis
	2.1 Encryption process

	3 Vulnerability in Hive's algorithm
	3.1 PRNG algorithm
	3.2 Vulnerability detection
	3.3 Relationship between QueryPerformanceCounter and the PRNG
	3.4 Anomalies during the generation of bytes
	3.5 Modelling of features
	3.6 Preliminary works
	3.7 Relationship between the 24-bytes nonce and 32-bytes private key

	4 Implementation of the search of the private key
	4.1 Alternative way for the search of the private key

	5 Results and discussion
	6 Conclusions
	7 Acknowledgments
	References
	A Appendix

