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Abstract. In the present work is described an ordinary differential system of equations for 
simulating the swarming behavior of preys in the presence of a predator. Preys and predator 
are represented by a set of ODEs taking in account the Newtonian attraction-repulsion forces. 
The predator interact with the preys through a Newtonian force, which is a nonconservative 
force (includes friction) that acts in the same direction for both agents. A perturbing force is 
introduced for the predator dynamics in order to simulate its behavior among preys. The 
resulting system of ordinary differential equations is solved numerically by Runge-Kutta of 
fourth order and the dynamics are discussed in the present work as the swarm's ability to 
realistically avoid the predator. The main goal is to reproduce swarm behavior that has been 
observed in nature with the minimal and simple possible model of ODE system. 
 
Keywords: Prey-Predator swarm interaction, Runge-Kutta 4 order, Numerical simulation, 
Dynamical system. 
 
 
1. INTRODUCTION  
 
 In nature it is observed for a long time that animal aggregation is part of the set of 
individuals behavior (Perrish & Edelstein-Keshet, 1999),(Moussad et al, 2009),(Vicsk et al., 
1995),(Roner & Tu, 1998). In general is observed fish schooling (shoaling), bird flocking, 
mammal herding, insect/bacterial swarming, and human crowding dynamics. It is also 
observed that even predators have been known to hunt in group in the form of packs. It is well 
known that all these aggregations shares similarities, such as the fact that the group of 
organisms act in unison and reacting rapidly to obstacles or threats. The generality of such 
features leads to realize models for its simulation. In the present work, swarming will refer to 
any such behavior in which individuals come together and act in a reasonably coordinated 
manner to produce an aggregate set in dynamical motion. Swarming has been studied in an 
extensive manner by computer simulation (Reynolds, 1987),(Olfati-Saber, 2006). In several 
sources, the models are taken as individual-based, where swarm individuals are represented as 
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a set of individuals that interact with other as a function of their positions (Topaz & Bertozzi, 
2005),(Lett & Mirabet, 2008). The use of Newtonian force law and variations of it has been a 
general approach for this dynamical system.  
 
In these models, the designed forces consist of a long-range attractive force that makes the 
individuals to approach and form the swarm typical geometry, coupled with a short-range 
repulsive force so that they try do not collide with each other (Liu et al, 2008),(Duan et al, 
2005),(Gazi & Passino, 2004). A self-propulsive force that pushes each individual forward 
toward some preferred velocity is also often added (D’Orsogna et al, 2006),(Nishmura & 
Ikegani, 1997),(Levine et al, 2000). A model designed to align the individuals with each other 
is present in flocking simulation (Lee, 2006),(Inada & Kawachi, 2001). All these models 
successfully reproduced main behavior aspects of swarming. The well known predator 
behavior called confusion (Krause & Ruxton, 2002), which occurs when the predator is 
confused related to which individual to pursue is simulated in the present work. Predator 
confusion acts mainly decreasing its ability to hunt their prey.  
 
 
 
2. MODEL 
 
 A simple but yet robust model is developed in order to approach swarm dynamics. It is 
designed to represent each prey by a particle that moves based on its interactions with other 
prey and its interaction with the predator. There is a large material available out there about 
particle models in biology science, mainly they have been designed to model biological 
individuals aggregation in general (Mogilner & Edelstein-Keshet, 1999) also locusts (Bernoff 
& Topaz, 2011) or fish schooling populations (Zheng et al, 2005). The model is established as 
following (Chen et al, 2014). It is assumed that there are N preys whose positions are given 

by  
2R),( jj yxP
, Nj ,...,2,1 , N is the size of the individual population whereas ),( yx  are 

function of time )(t . Taking Newton’s law so that    

predatorpreyjpreypreyj
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   where predatorpreyjpreypreyj FF   ,,  is the total 

force acting on the j-th particle,   is the strength of friction force and m is its mass. 
Simplification as the mass m is negligible compared with the friction force   is applied. 

After rescaling to set 1  the model is then simplified as: predatorpreyjpreypreyj
j FFdt

dP
  ,, . 

This reduces the second-order ordinary differential system model to a first-order model 
system, so that the prey moves in the direction of the total force. The prey–prey interaction of 
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: The term 
2||/)( kjkj PPPP 
 

represents Newtonian-type of short-range repulsion that acts in the direction from jP
 to kP , 

whereas 
)( kj PPa 
 is a linear long-range attraction in the same direction. The model for 

prey–predator interactions can be established by a similar manner. In order to deal with more 
realistic model assume that there is a single predator; however it is possible to have more. The 

predator position is given as ),,( tyxPz . It is considered that the predator acts on the 
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individual’s preys as a repulsive particle, it is taken as 
2

, ||/)( PzPPzPbF jjpredatorpreyj   
with b being the strength of the repulsion. Following, the model for the predator–prey 

interactions as an attractive force given in a similar way such as, predatorpreyjFdtdPz  ,/
. In 

this case is considered a very simple scenario which predatorpreyjF ,  is the average over all 
predator–prey interactions and each individual interaction is a power law, which decays at 
large distances, as consequence the prey moves in the direction of the average force. Once 
these assumptions are put together the following system can be written: 
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As stated before, a is the linear long-range attraction parameter, b is the predator repulsive 
parameter and c is the predator-prey attraction control parameter. The system of ordinary 
differential equations given by eq(1) is solved numerically by means of Runge-Kutta of fourth 
order, and it is need to know the tini for initial time, the end simulation time tend and the 
number of steps m. This model is also modified making use of a perturbation function added 
to the predator in order to simulate its decision as the dynamical system evolve in time. It is 
chosen two perturbation functions which are given by: 
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In eq(2a) and eq(2b) 26.0),2.0;3.0(   . 
  
 
3. NUMRICAL SIMULATION 
 
 
The numerical simulation are performed taking the following parameters as constant: p=2.4, a=1, b=0.5, 
tini=0.0, tend=12.0, N=400(particles), m=480(time steps). The first simulation is without perturbation function. 

 
 
                  Figure 1: c=2.8, t=0.0s                              Figure 2: c=2.8, t=2.0s 
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                   Figure 3: c=0.8, time=8.0s                         Figure 4: c=0.8, time=12.0s 
 
In the figure 1 is depicted the initial distribution of the 400 individuals. Figure 2 shows an enlapsed time of 2.0s 
showing the natual repulsive presence of (the red dot) as the predator and the protective action of the preys as the 
predator moves towards the population. In figure 3 the predator is surrounded by the prey and its movement slow 
down leading to a confused situation as depicted in figure 4 after 12.0s. In this stage the system becomes stable 
and the predator is kept in confused position (Chen et al, 2014).   
 
The following numerical simulation is performed using the perturbation function given by eq(2a). Its is 
considered the model parameters as constant: p=2.4, a=1, b=0.5, tini=0.0, tend=6.0, N=400(particles), 
m=480(time steps).  
 

 
 
                  Figure 5: c=2.8, time=0.0s                    Figure 6: c=2.8, time=2.0s 
 

 
               Figure 7: c=2.8, time=3.0s                          Figure 8: c=2.8, time=6.0s 
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In the figure 5 is depicted the initial distribution of the 400 individuals. Figure 6 shows an enlapsed time of 2.0s 
showing the invasive movement of the predator towards the preys its natual repulsive presence of (the red dot) as 
the predator and the protective action of the preys forming a circle leading the predator to a completed 
surrounded situation. In figure 7 the predator is already surrounded by the preys and its attack movement is kept 
leading to a final chasing  as depicted in figure 8 after 6.0s ending up to cath up. In this stage the system as 
propagated in time tends to regroup the prey population.  
 
The numerical simulation using the perturbation function given by eq(2b) is performed taking the parameters as 
used for eq(2a). 

 
               Figure 9: c=2.8, time=0.0s                               Figure 10: c=2.8, time=2.0s 
 

 
               Figure 11: c=2.8, time=3.0s                          Figure 12: c=2.8, time=6.0s 
 
In the figure 9 is depicted the initial distribution of the 400 individuals. Figure 10 shows an enlapsed time of 2.0s 
showing the invasive movement of the predator towards the preys population. In this case the perturbation 
function simulates a more aggressive behaviour of the predator leading it to an oscilationg movement 
approaching the preys faster than for the perturbation function given by eq(2a).  Daynamiclly in real time 
processing is visible the preys evasive actions as time evolves. In figure 11 the predator is already surrounded by 
the preys and its attack movement is continuos as depicted in figure 12 after 6.0s where the preys system 
becomes more unstable due a more aggressive predator behaviour. Qualitatively the results shown here is in 
aggrement with those of presented by  (Chen et al, 2014).   
 
4. CONCLUSION 
 
The numerical simulation is well done even for this large system of ordinary differential 
equations, the RK-4 is robust enough to deal with it, since the time step used is small enough 
to follow the predator-prey engagement dynamics. One must care for this fact because the 
predator dynamics is more sensitive to the time step used than preys dynamics. The present 
model is completely able to predict the swarm dynamics and through these simulations 
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became clear that the b and c parameter has a deep influence in this dynamics system. Lower 
c values (< 2.8) also acts in lower down the predator movement towards the prey population.  
The adoption of the perturbation function for the predator also revealed that the function 
given by eq(2b) makes the predator to move towards the preys in a irregular path causing then 
to regroup in protective shape. This causes the prey population take a fast evasive movement 
always keeping the safe population shape of protection which tray to involve the predator in a 
confused position. But this perturbation function leads the preys to change rapidly in evasive 
movements. However, the perturbation function given by eq(2a) implies a smooth path 
movement for the predator leading to a stable prey response. So, the eq(2b) seems to be more 
realistic. 
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