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Abstract—We normally think of implicit Mechanical Computer
Aided Engineering (MCAE) as being a resource intensive process,
dominated by multifrontal linear solvers that scale super linearly
in complexity as the problem size grows. However, as the
processor count increases, the reordering that reduces the storage
and operation count for the sparse linear solver is emerging as
the biggest computational bottleneck. Reordering is NP-complete,
and the nested dissection heuristic is generally preferred for
MCAE problems. Nested dissection in turn rests on graph
partitioning, another NP-complete problem. There are quantum
computing algorithms for which provide new heuristics for NP-
complete problems, and the rapid growth of today’s noisy quan-
tum computers and associated error mitigation techniques leads
us to consider them as possible accelerators for reordering. This
paper reports on the evaluation of the relative merits of several
short depth quantum algorithms used for graph partitioning,
integration with the LS-DYNA MCAE application, and using the
initial results generated on IBM quantum computers to bring to
attention critical focus areas based on the methods used within.

Index Terms—quantum computing, simulation, linear equa-
tions, graph partitioning

I. INTRODUCTION

In the past few years, quantum computing has had a signif-
icant upturn - in both its development, and industrial interest.
When looking at the development of quantum systems, it is
easy to appreciate how quickly the field has developed in the
past decade. For example, the current industry superconducting
qubit of choice, the Transmon, was first demonstrated less
that two decades ago [1]. In the time since the transmon’s
inception, it’s gate fidelities and coherence times have grown
orders of magnitude. Roughly one decade after the realization
of the qubit itself, or three years after the transmon coherence
grew to 60usec [2], quantum systems were made available via
cloud access in 2016 - being the first point in history when
non-specialists could practically test the potential benefits from
the systems. Since then, a variety of physical realizations are
now available via cloud access, with many of them surpassing
a scale in which we can classically simulate these systems.
With this rapid growth of quantum hardware, the broader
industry has taken an interest in understanding how it may
help their clients’ needs. The potential for quantum comput-
ers to improve computing capabilities in the unknown, and
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potentially near-term future leads to two important questions:
when is the appropriate time to begin to actively invest in a
quantum initiative and in what ways?

The answer to this question is different depending on the
nature of a given software product. In addition to the type of
software a company produces, there is the question of which
problems quantum algorithms are currently well equipped to
solve. Although quantum computing can in theory provide
solutions more efficiently to NP-Complete problems than the
classical heuristic algorithms used today [3], the present reality
of both quantum hardware and software limits stake-holders
to a few specific use cases, which are often much smaller than
the scales needed by industry.

We begin the paper by providing context on Ansys as a com-
pany, quantifying their relative need for quantum computing
according to the size of their bottlenecks and the expected
growth in data volume and the performance of quantum
systems. In section II we describe the Ansys technological
offering and client relevant workflows, seeking where there
are computational bottlenecks. We identify graph-partitioning
(re-ordering) as the strongest candidate for quantum migration,
over presently existing algorithms for solving this problem. In
section III we layout some of the different methods available
to be used for graph partitioning and give a quick introduction
to practical aspects of these algorithms. In section IV we high-
light how the quantum algorithms in question are expected to
scale with problem size (judging by circuit width and depth),
and assess the expected quality in both classical simulations
of quantum algorithms and direct quantum experiment on
IBM Quantum hardware. We leverage the parameters from
noise free simulations to get a rapid assessment of quantum
hardware capabilities. Using this information, we finish the
paper with a discussion and potential next steps in sections
V and VI. Given the rapid development of the underlying
hardware, we try to inform our future recommendations based
on estimated trends of quantum systems since the invention
of the transmon. We highlight the recent growth of quantum
systems, in particular those available in the cloud via IBM
Quantum [4]. Based on the hardware demo results we highlight
some of key milestones which would need to be achieved for
full integration, and discuss the best course of action for Ansys
in light of these findings.
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Fig. 1. A breakdown of the main industries Ansys works with, and the services
they provide. Across this wide range of industries and simulation types, linear
solvers are required. Within the linear solver pipeline, re-ordering (one sub-
step) is a ubiquitous bottleneck, limiting the efficiency of the services at the
top of the stack. The process is to Reorder, Redistribute, Factor, and then
Solve.

II. POSSIBLE QUANTUM INTEGRATION PATHWAYS

Ansys is a software company that provides engineering
simulation solutions that enable organizations to design and
test virtual prototypes of products, systems, and materials.
Ansys software is used by engineers and designers in a
range of industries, including aerospace, automotive, construc-
tion, consumer goods, electronics, semiconductors, energy,
healthcare, and more. Ansys’ software suite includes a range
of products that allow engineers to simulate and analyze
different physical phenomena, such as structural mechanics,
fluid dynamics, electromagnetics, signal/power integrity, and
thermal management. These tools enable engineers to optimize
the design of their products and systems, reduce physical
prototyping costs, and accelerate time-to-market. Figure 1
shows the general breakdown of the Ansys client environment
— from the fundamental need for physics-based simulation up
to many of the relevant client industries. Furthermore, the
figure outlines many of the the relevant computational steps
which must be taken for these industrial applications. For
the purpose of this study, we remained focused on pathways
which impact the entirety of Ansys’ clients to maximizes
the potential revenue impact. We have highlighted two key
challenges which become classical computational bottlenecks
across a broad range of Ansys’ client workflows, and are
thereby strong candidates to explore for quantum integration.
Some of these simulations already take days to complete, and
are expected to take longer in the coming years as the users’
models grow in complexity. A future impact analysis may
benefit from considering the needs of specific simulation use
cases (e.g. Material Science) to determine other, more tailored,
pathways and assess their potential.

A. Linear Solvers

Linear solvers are not only pervasive, but present a super-
linear computational bottleneck in Ansys programs. This is
unsurprising, as on classical computers the process of linear
equation solving (finding the vector Z, for the matrix A
such that A7 = b), for a sparse A matrix is O(n'®) for
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Fig. 2. a) LS_DYNA linear solver computing time breakdown for one load
step in an implicit finite-element simulation. One first recursively partitions the
graph (i.e., reordering), then redistributes the matrix, followed by factoring,
and finally triangular solves. b) An impeller, when its graph is coarsened from
10,000 to 1,000 nodes, as an example of how this impacts its representation.
In the subsequent analysis, we consider the graph of each object coarsened
from 10,000 to as few as 25 nodes.
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planar systems of equations, O(n?) for three-dimensional
ones, and O(n3) for dense non-Sparse A matrix, where n is the
dimension of the matrix [5]. While researchers have devised
highly efficient algorithms and parallelization strategies for
reducing the work involved, solving linear equations still
scales polynomial with the dimension of the matrix. When
the matrix A remains relatively small or has some special
properties, the linear solver will finish in a reasonable amount
of time. Ansys, however, is already dealing with massive
matrices (A =1M-50B rows and columns), which may be
sparse or dense. Today these operations can take days, but as
Ansys’ use cases become larger and more complex (as they are
expected to in the near future), finding a solution could take
weeks, and in some cases, may be effectively uncomputable
via classical methods. As such, these solvers were identified
early on as the high-level target for quantum migration.

Although there are potential scaling benefits to integrat-
ing quantum linear solvers with Ansys’ quantum software
needs, the quantum algorithms for doing so present major
challenges in the both today’s noisy quantum computers era
and beyond. The two main quantum algorithms for solving
linear equations are either fault tolerant [6] or variational
[7]. In practice unfortunately, both approaches have problems.
When considering fault tolerant approaches (e.g., HHL [6]),
we are faced with two main concerns. First, this approach is
unlikely to be implemented in the near term due to the lack
of existence of a suitable fault tolerant quantum computer.
Second, there are issues with experimental implementation of
some associated technology (e.g., qRAM and I/O bottlenecks)
which bring into question whether these algorithms can be
implemented today or in the near future.. Given these points
and the inability to implement these algorithms at scale on
today’s quantum hardware, we exclude this from our main
discussion. Potentially nearer-term approaches like Variational
Quantum Linear Solver (VQLS) [7] suffer from circuits which
still do not transpile well to native quantum architectures, I/O
bottlenecks, and even so, do not provide an exact solution (see
appendix A for brief discussion around circuit depths of these
algorithms). However, this is an on-going field of research [8],
where people are seeking to overcome such issues for near
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Fig. 3. A comparison of different reordering algorithms. The 14 test matrices
are from the SuiteSparse Matrix Collection [11]. The initial data is from P.
Ghysels et al. [12]. Ansys’ LS-GPart reordering software was added to the
comparison [13].

term devices and should be watched closely.

B. Graph Partitioning / Re-ordering

Since solving linear equations in its own right does not have
an obvious practical implementation in the near future, we
took a closer look at the speed of each step within the solver
pipeline, which revealed that the re-ordering of sparse matrices
is what dominates highly parallel workloads, as seen in figure
2a. Ansys must perform this reordering in order to efficiently
perform sparse Gaussian elimination, a key component of
reaching a final solution. Reordering matrices to minimize
computational complexity has been an active field of research
for over 60 years [9]. Nested dissection of the adjacency graph
associated with the matrix has emerged as the best practical
algorithm for reordering matrices derived from mechanical
MCAE models [10]. Nested dissection involves recursive
graph-partitioning, which is itself an NP-complete problem
classically solved using heuristic approximations. Notably this
is an issue for Ansys customers foday, not tomorrow.

Since the sparse matrices Ansys factors can range to billions
equations, and because linear solvers are ubiquitous bottle-
necks across many MCAE codes, an improvement in this ma-
jor sub-step in their solvers would have a massive effect on the
overall performance of their simulations. We therefore choose
to investigate the efficacy of near-term quantum approaches
to graph-partitioning, a key component in linear solvers, as
opposed to the process as a whole.

This presents an exciting opportunity for quantum com-
puting. Progress has stalled on classical heuristics for nested
dissection as depicted in figure 3 [13]. The figure compares 7
ordering heuristics for 14 matrices from different applications;
the baseline is the Metis nested dissection package from the
late 1990’s [14]; the figure shows that no significant progress
(in terms of quality of the reordering, i.e., number of opera-
tions and memory footprint of the linear solver) has been made
in recent years. Quantum heuristics are comparatively young,
and relevant hardware tests are only beginning. Considering
the specific needs of Ansys’ client workflows and connecting
this to the IBM Quantum Development road-map [15], we next
consider some critical focus points which could greatly reduce
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Fig. 4. Method diagram showing the general process one must go through
in order to run graph partitioning problems on a gate-based quantum system
Both methods take in a graph, in this case, a representation of one of the
physical objects simulated by Ansys (described further in section IV-A),
and produce solutions of the same form. Note that both methods follow
identical steps initially, converting the graph to a matrix, the matrix to a
quadratic program, and then finally the quadratic program to a QUBO.The
distinction between these methods presents itself in the circuit generated, or
the correspond measurements needed.

the time until real user problems can be tested for potential
benefits.

III. QUANTUM GRAPH-PARTITIONING METHODS

Quantum graph-partitioning works by first formulating the
problem as a Quadratic Unconstrained Binary Optimization
(QUBO) problem, and then solving this QUBO with a quan-
tum algorithm. In the following sections we explore the
options for partitioning Ansys graphs according to the method
diagram in figure 4.

A. Encoding for Quantum Optimization

Generally speaking, there exist a variety of methods for
encoding optimization problems into a quantum primitive,
usually in the form of sampling a circuit distribution [16]-
[18]. In figure 4 two encoding options which we applied to
an Ansys graph partitioning problem are shown: an Ising
Encoding [19] and a Quantum Random Access Encoding
(QRAC) [16]. The Ising model is equivalent to Quadratic
Unconstrained Binary Optimization (QUBO) [17], and is the
traditional method of mapping optimization problems to gate-
based quantum hardware [20]. Alternatively one translates a
QUBO into a QRAC and get a more efficient measurement
basis - the underpinning aspect of the Quantum Random
Approximate Optimization (QRAO) algorithm [18]. QRAO in
particular allows larger problems to be encoded with fewer
qubits, making this solution more useful in the near-term.
However, as we will detail in the next section, for the specific
realize used in our experiment [18] these encoding benefits
are lost for the balanced graph partitioning cost function
provided by the Ansys use case. Since the start of our review,
researchers have updated the QRAO method to guarantee an
encoding benefit of 2x, even when using a balanced cost
function [21].

Once an encoding method is chosen, an end-user must
ultimately select which quantum circuit they will run. For the



purpose of our demo, we highlight two possible candidates: A
hardware efficient ansatz (HEA) approach with the Variational
Quantum Eigensolver (VQE) [22], or a QAOA [20] ansatz
which is directly made based on the provided graph.

B. Quantum Circuits

After generating the QUBO or a QRAC, you have chosen
the qubit mapping and measurement basis. From here there
is the need to choose the initial state of parameters and the
corresponding circuit ansatz. The initial circuit generated for
a QAOA circuit is given by repetition of an evolution between
your ‘problem’ and a ‘mixer’ Hamiltonian in the form:

17:8) = Up,p, Uy, - - Up g, Uy 3y [¥00)

where (3 represents your mixing Hamiltonian and ~ your
problem Hamiltonian. The depth of the QAOA ansatz can then
be increased in the number of repetitions of layers p, where in
the asymptotic limit of infinite p, it is shown that this converges
to the optimal solution of the desired cost function [20]. For
initial circuit analysis, we will consider the impact of the
repeating layers p on the circuit depth.

Alternately one can use different HEAs which are heuristic
in their nature and one can design any sort of ansatz which is
best mapped to the quantum hardware. These ansatzes have the
benefit of being able to be extremely shallow in their circuit
depth, but when using these methods, there is another level of
optimization which goes beyond the parameter optimization
of the ansatz, but choosing the ansatz itself. There are some
early studies which try to characterize these approaches, using
various forms of entropy [23]. Furthermore, these methods are
prone to getting stuck in local minima and even having the
parameter gradient vanish exponentially — either from circuit-
induced [24] noise-induced [25].

C. Warm-Starting Quantum Circuits

Quantum variational algorithms such as QAOA and VQE
are utilized to solve the combinatorial optimization problems
by finding the minimum energy to the corresponding formu-
lated Hamiltonian. These algorithms combined with classical
optimizers are always dependent of the initial values for the
optimizer and the initial states for the quantum circuit on
the Hilbert space which effect the algorithm’s performance to
find the minimum energy to the problem. Applying a warm-
start technique that can initiate the initial value/sate to the
quantum circuit would be able to improve the convergence of
these algorithms to solve the problem accurately. A warm-start
QAOA technique was presented in [26] in which it replaces
the binary variables with the continuous variables to relax the
optimization problem and solve it classically that improves
the performance ratios in polynomial time. Then it uses the
solution to the relaxed problem to find the initial state to
the QAOA algorithm. By applying the warm-start technique
combined with the QAOA algorithm, a better result with
higher fidelity can be achieved. Similar approaches can be
used for the VQE algorithm to either initiate the parameters
of the variational circuit or modify the variational circuit to

help the optimizer to converge to the correct value to find the
minimum energy of the problem. A new ansatz modification
technique is introduced in [27] where the variational circuit
is build in a discrete approach based on the property of the
problem Hamiltonian and the corresponding Pauli string. In
principle this could be applied to improve our ‘unfair VQE
Warm-start’ (see appendix B), but this is beyond the scope of
this paper.

IV. EXPERIMENTAL SETUP AND RESULTS

A. Experimental Setup

To test this method of graph partitioning, we use real
Ansys graphs of physical objects from both mechanical and
electromagnetic simulations. Images of the two objects used
in the analysis are shown in figure 2b. Note that the number
of vertices in these graphs ranges from 0.6M - 34.9M, making
their raw size too large for both QAOA or QRAO to run on
current quantum hardware. In order to conduct preliminary ex-
periments, we instead use coarsened versions of these graphs,
for 25, 50, 100, 1K, and 10K nodes, respectively. The effects of
graph coarsening are demonstrated in figure 2b, which shows
the difference in resolution when an Impeller is coarsened
from 10K nodes to 1K. While coarsening does reduce the
level of detail in the object graph, it still maintains the general
topology and properties of the original object. This allows us
to test smaller versions of real graphs on quantum hardware
today, while retaining as much of the object’s original integrity
as possible.

With these graphs, we then conduct two series of experi-
ments. The first is designed to test the efficacy of the selected
algorithm (QRAO) on real Ansys graphs. As mentioned in
Section III-A, QRAO uses quantum random access codes
(QRACSs) to encode a maximum of 3 qubits per node, for
a slight trade off in accuracy. In order for this position to
be recovered with high probability, however, two nodes that
share an edge cannot be encoded on the same qubit. This
means that the encoding ratio, which can range from 1-3, is
variable depending on graph topology. As such, we study the
compression ratio achieved for these graphs, which allows us
to measure the number of necessary qubits according to graph
size (number of nodes) and observe the impact of adding the
balancing constraint. We also measure the required processing
time for each step in the graph partitioning, as this is a relevant
additive factor in tracking the overall algorithmic run-time.

The second series of experiments involves real-hardware
demonstrations, and allows us to evaluate the quality of
quantum hardware partitions as we increase the size of the
graph being studied. Specifically, we measure how well these
algorithms conform to simulated expectations and compare
the accuracy of the hardware solutions against the exact
solution. However, as hardware sizes continue to increase,
these benchmarking approaches will no longer work. To this
end, we suggest alternate long term benchmarks to assess the
trustworthy-ness of a quantum run, and how to measure the
corresponding accuracy against alternative, classical methods
such as those found in METIS [14].
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Fig. 5. a) Required number of qubits for a given graph size, for different encoding parameters. Of particular note: Ansys’ desired graph partitioning with
constraints does not benefit from the present QRAO encoding. b) Circuit Depth as a function of different graph node sizes, with varying levels of compilation
and increased circuit depth. As an example of the importance of the problem — this figure took approximately 1 day to complete with a recent Apple MacBook
Pro. c¢) The repeated structure of a HAE and QAOA ansatz used for our VQE and QAOA demonstrations. (This sort of repeated structure particular benefits
from dynamic circuit transpilation capabilities). Due to its heuristic nature, the HEA can nicely conform to hardware topology constraints but also has issues
when scaling to larger sizes (e.g. barren plateaus). d) Example structure in a VQE circuit. ) Example structure in a QAOA circuit.

B. Results

1) Encoding and Scaling Results: To begin, we startup by
first determining theoretical scaling for the given approaches,
as seen in figure 5. Firstly, we measure the relative encoding
efficiency of QRAO against QAOA, both with and without our
constraints in figure S5a. Since QAOA requires a 1:1 mapping
between nodes and qubits, it requires the same number of
qubits to compute a solution for a graph as the number of
nodes in the graph. In contrast, QRAO requires only 334 qubits
to solve the same problem for Ansys graphs, when a balancing
constraints is not included. However, as the reordering process
requires a graph to be bisected by considering the balancing
constraint, the corresponding encoding benefits are lost. In the
outlook, we highlight what this means for an Ansys integration
but choose to focus on the Ising encoding for initial hardware
testing and validation.

With the encoding method selected, we now wish to eval-
uate which quantum circuit will be ideal to run for the given
problem on a given hardware architecture. To do this, we
evaluate how a quantum circuit depths depend on both the
graph size and the transpilation method used for HEA [28]
or the graph-informed ansatz of QAOA [20]. Specifically, we
use a HEA circuit with TwoLocal entanglement, or a p=1
realization of a QAOA circuit. As seen in figure Sb, the

circuit depth grows much more rapidly for a QAOA circuit
compared to the HEA ansatz, making it more unlikely to have
a successful evaluation on quantum hardware.

2) Hardware Results: Results from hardware demos, figure
6, will measure accuracy, and max size computable on current
quantum hardware. For the purpose of our hardware compar-
ison, we want to note that we choose to focus on a ’quality’
metric for comparative result. Though the required time for
computation is quite important for ultimate comparison, the
practical nuances of getting an accurate required compute time
(utilizing the state-of-the-art techniques vs what is available
via cloud providers) makes this comparison difficult to prop-
erly judge. To this end we refrain from elaborate in this work
have keep this for future investigation.

V. OUTLOOK

From our exploration, we have found that for beneficial
quantum graph partitioning (reordering) at larger scales, cur-
rent circuit fidelities require more extensive error mitigation
protocols than used here. Though we limited our use of error
mitigation to readout error mitigation [29], this is more a
matter of the availability of certain software features, more-
so than fundamental limitation and could be address in sub-
sequent work. Furthermore, we showed that using an warm
start was essence for our QAOA circuits to converge to the
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the Metis and Quantum Hardware cost functions.

proper solution. However, as we increase the size of the graph
the QAOA circuit scale sufficiently fast to make our initial
attemps at 25 node paritioning non-trivial. Furthermore, we
show that in principle one can get substantially shorter circuit
depths but still achieve good results with our 25 node ‘unfair
warmstart’. Though this cannot be practically used at larger
scales, there may be means, such as the VQE Hot Start
[27], which can enable larger graph partitioning. Furthermore,
though the Quantum Random Access Code implementation
used in our testing did not have encoding benefits when
including the balancing constraints — a recent update to the
algorithm makes it possible to get at least a factor of two of
savings. Each of these factors will be considerably important
when trying to understand how to achieve useful quantum
advantage for linear solvers. For immediate next steps, we
will seek to achieve an integration to enable a more complete
characterization of quantum workflows and to fully evaluate
expected runtimes as quantum systems increase in size and
quality.
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VII. APPENDIX
A. BRISQ Cycles
In reflection of our process of mutual learning, we wanted
to try to put down an repeatable process, in the hopes to try
and help other interested quantum application practitioners.
With a very new technology like quantum, there is an ever

increasing amount of discovery happening every day. To this
end, we want to shape a process, which we call ‘Building
Reliable Industry-Scale Quantum’ (BRISQ), that accounts for
a changing environment of capabilities but helps focus towards
an end goal of future deployment for practical value. Each
BRISQ cycle is as follows:

o Assess

o Build

o Evaluate

o Discover
Assess the present set of options for integration and pick
best candidate. Build a means of testing the feasibility of
this candidate on today quantum systems. Evaluate the given
algorithm quality and capability to scale to problems of client
relevance. (Can do so quickly with rule of thumbs, e.g. circuit
depth and fidelity, to rule out candidates with more obvious
issues. Use Quantum hardware longer term). In discovery, one
summarizes results into few key discoveries (e.g. performance
against existing methods in use today and optimal means to
improve). Repeat this process with a goal of marching different
long term problem scales, starting small and increasing with
new capabilities as they develop.

1) BRISQ Cycle 1 - VQLS: Our first BRISQ cycle focused
on the Variational Quantum Linear Solver [30]. At the point in
time, the possible existing Qiskit packages were not properly
updated, and thereby required a more involved build cycle
if we wished for a proper hardware evaluation. We opted to
first consider the quantum circuits of interests and investigate
how they might scale. To this end, we present the figure 7
from [31]. This is the underlying quantum circuit which
needs to be run for the VQLS algorithm. Notably the circuit
include multiple gates which are multi-controlled and multi-
targeted. In the case of presently existing superconducting
quantum hardware, such gates are not native, and must be
instead compiled into the equivalent circuit with only single
and two qubit gates. (Though it is possible in smaller scale
cases to try and engineer multi-target or multi-control gates
more pulse efficiently, this does not scale well and those
demonstrated gates do not have ideal gate fidelities with
current demonstrations.) As such, when trying to transpile
the circuit in figure 7 to the ibm — sherbrooke backend,
we get a circuit depth that is on the order of 2,800! This
would approximately require a gate fidelity on the order of
0.9999 to achieve reasonable results — and just for a 5 qubit
circuit! Scaling prospects with existing methodology used
seem unlikely.

2) BRISQ Cycle 2 - Ansys encoding ratio without con-
straints: With the existing methods for linear solutions with
quantum systems (e.g. VQLS), we note rather deep quantum
circuits and thereby seem unlikely to be a viable path forward.
For our next cycle, we revisited the Ansys workflow and note
that the graph partitioning component was a dominate source
of present compute time. We chose this for our second brisq
cycle to evaluate its feasibility. Initially we want to reduce
the potential time to run client relevant workflow on IBM
quantum systems via a reduced qubit requirement from the
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Fig. 7. VQLS circuit. Left Top - not-transpile. Left Bottom —part of the tran-
spiled circuit for backend with all-to-all connectivity. Right — corresponding
circuit depth as a function of circuit size
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Fig. 8. This graph shows the encoding ratio (number of nodes over number
of qubits) vs the size of the provided Ansys graph, when not including the
balancing constraint. Of interest at the time, we noticed an improve ratio for
larger graphs (likely because of the graph become more sparse at larger sizes).

Quantum Random Access Optimization (QRAQO) algorithm.
figure 8 shows the how compression ratio for Ansys graphs
behaves for each increases graph sizes. Specifically the figure
shows that as the coarsened graph approaches 1,000 nodes
the compression ratio also climbs closer to 3 (the maximum
ratio for the QRAO algorithm). From this it appears QRAO
may serve as a method to increase the quantum capabilities
of a quantum graph partitioning tool. However, when doing
statvector simulations we note that the balancing constraint
for this encoding resulted in a densely connected graph and
no longer benefitted from the QRAO encoding. This led us
to select a more common ising encoding, and pursue further
benchmarking to evaluate limitations arising from hardware
and/or barren plateaus.

B. Unfair VQE Warm-start

The Variational Quantum Eigensolver (VQE) is one the
foremost promising algorithms for tackling combinatorial op-
timization problems that can be implemented on the near
term quantum devices. However, the feasibility of the solution
depend on the initial value for the classical optimizer and se-
lecting an appropriate ansatz, which can be arbitrary selected.
[27]

In this work we mainly focused on initializing the VQE
algorithm so that the algorithm converges to the correct param-
eters. The warm-Start method applied in this work utilizes the
manually selected parameters for the VQE variational circuit
to help the optimizer to converge to the correct value and
minimize the Hamiltonian’s expectation value. The idea was
to select the parameters so that the expectation value of the
circuit is close to the expected value for the problem. The
goal was to analyze the performance of the hardware for graph
partitioning of a larger graph (25 nodes). The results show that
by applying the initial parameters to the VQE algorithm, the
algorithm is able to converge to the correct parameters that
can be used to run the circuit on the actual quantum hardware
and evaluate the performance of the hardware for partitioning
a larger graph. The step for warm-start VQE would be as
follows:

1. Manually selection of the parameters for an arbitrary
chosen variational circuit (Ansatz) to get the approximation
of the correct expectation value for the derived Hamiltonian
from the graph partitioning problem.

2. Initiate the VQE algorithm with the selected parameters
as an initial value to the classical optimizer.

3. Utilize the converged parameters from the VQE algorithm
and bind those parameters to the varaitional circuit.

4. Run the circuit on a hardware through the Sampler prim-
itives with enabling the readout error mitigation technique.

5. The returned quasi binary string with the highest proba-
bility would be the solution to the graph partitioning problem.



