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ABSTRACT

The COVID-19 pandemic has resulted in more than 28.05 million infections and 9, 08, 475 deaths in 212
countries over the last few months. Different drug interventions acting at multiple stages of the pathogenesis
of COVID-19 can substantially reduce infection-induced mortality. The current within-host mathematical
modeling studies deals with the optimal combined drug intervention strategy and its efficacy in reducing
the burden of COVID-19. The drug interventions considered here include Hydroxychloroquine (HCQ), the
first BCG vaccine dose, and a booster dose of BCG administered at a later stage. In this work, we consider
two scenarios involving the administration of these interventions. In the first scenario, we study the efficacy
of drug interventions such as HCQ and BCG first dose administered at present. Initially, we study their
efficacy when administered individually and, later we study the efficacy of the combined therapy involving
the administration of these two interventions HCQ, BCG first dose simultaneously at present. In the second
scenario, we assume that the BCG primary dose has been administered at birth to the individual and we
study the efficacy of the drug interventions HCQ and BCG booster dose administered either individually
or in combination at present. In both these scenarios, the optimal intervention strategy is proposed based
on two methods. In the first method, these medical interventions are modeled as control interventions and
a corresponding objective function and optimal control problem is formulated and discussed. Later, using
the comparative effectiveness method the optimal drug intervention strategy is proposed based on basic
reproduction number and viral count. The findings of these studies include the following: The average
infected cell count and viral load decreased the most when both the HCQ and BCG interventions were
applied together in both scenarios. On the other hand, the average susceptible cell count decreased the best
when HCQ alone was administered in both these scenarios. The basic reproduction number and viral count
decreased the best when HCQ and BCG booster interventions were applied together, reinstating the fact
obtained earlier in the optimal control setting. These findings may help physicians with decision making in
the treatment of life-threatening COVID-19 pneumonia.
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1 INTRODUCTION

The humanity at this point of time is facing one the worst crisis in the last century in the form of pandemic
COVID-19 caused by the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), which engulfed
the lives of 28.05 million in 212 countries as of September 10, 2020, and continues to worsen [6]. Doctors,
scientists, leaders of the states and many other professionals are working round the clock to root out the
virus from our society. At this juncture mathematical modeling can play a crucial role in this journey as
they are helpful in multi-fold. Firstly, they help in understanding the dynamics of infection and its spread in
the society. They help in studying the success of various control measures that can be implemented in order
to avoid the further damage. Secondly, the within-host mathematical modeling helps to study the dynamics
of virus in the human body and can help us in understanding efficacy of different drug intervention acting
at multiple stages of pathogenesis which in turn can help in identification of potential vaccine candidates.
Some works dealing with population level studies and within-host studies for diseases such as Dengue, HIV,
Influenza include [11, 19] and references within. Recent works dealing with population level studies and
within-host studies for COVID-19 can be found in [14, 16, 18, 21, 25].

The Bacillus Calmette-Guerin (BCG) vaccine was first mass produced in 1924 for tuberculosis disease.
The BCG tuberculosis vaccine boosts the production of immune cells. A study proves that Century-old BCG
vaccine used to eradicate tuberculosis does reduce the chance of death from COVID-19 [2, 4]. It is found out
that the countries with a 10 per cent greater prevalence of the BCG vaccine also had a 10.4 per cent reduction
in COVID-19 mortality [12, 9]. Recent work [8] showed that mandated BCG vaccination can be effective
in fight against COVID-19. In fact mandated BCG predicted flattened curves for the spread of COVID-19.
Also, the anti-malarial drug Hydroxychloroquine (HCQ) has demonstrated in-vitro activity against SARS-
CoV2 [3]. HCQ along with other drugs like Azithromycin was administered initially to COVID-19 patients
[7]. Later medical guidelines were modified to administer HCQ alone to treat COVID-19 patients at the
early course of the disease [3].

Recently the author’s team worked on a within-host model involving crucial inflammatory mediators and
the host immune response [1]. This work dealt with the natural history and course of infection of COVID-19.
The authors also briefly discussed about combined drug therapy in [1].

Motivated by the above in the present work we work on optimal drug intervention strategy and the
efficacy of combined therapy in reducing the burden of COVID-19. The drug interventions considered
include HCQ, BCG first dose and BCG booster dose. We consider two scenarios involving administration of
these interventions. In the first scenario we study the efficacy of drug interventions such as HCQ and BCG
first dose administered at the present time. Initially we study their efficacy when administered individually
and later we study the efficacy of the combined therapy involving administration of these two interventions
HCQ, BCG first dose simultaneously at present. In the second scenario we assume that the BCG primary
dose has been administered at birth to the individual and we study the efficacy of the drug interventions
HCQ and BCG booster dose administered either individually or in combination at the present time. In both
these scenarios the optimal intervention strategy is proposed based on two methods. In the first method
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1 INTRODUCTION

these medical interventions are modeled as control interventions and a corresponding objective function and
optimal control problem is formulated and discussed. Later using the comparative effectiveness method the
optimal drug intervention strategy is proposed based on basic reproduction number and viral count. The
findings of these studies include the following. The average infected cell count and viral load decreased the
most when both the HCQ and BCG interventions were applied together in both the scenarios. On the other
hand the average susceptible cell count decreased the best when HCQ alone was administered in both these
scenarios. The basic reproduction number and viral count decreased the best when HCQ and BCG booster
interventions were applied together reinstating the fact obtained earlier in the optimal control setting. These
findings may help physicians with decision making in treatment of life-threatening COVID-19 pneumonia.

RESEARCH IN CONTEXT

Evidence before the study: The efficacy of drugs in the treatment of COVID-19 infection was assessed
and reported in a few clinical trials and observational studies. The role of combination of anti-microbial
agents in achieving the favorable outcome is very well established in several viral diseases including HIV,
dengue hemorrhagic fever etc. To determine the utility of combined anti-microbials through the clinical
studies will take a long way and considering the current mortalities due to COVID-19 cannot be awaited
for.

Added value of this study: The current research study is the first hand evidence for the efficacy of
combined anti-microbial agents for the treatment of COVID-19. The study assessed the combined efficacy
of three therapeutic interventions namely HCQ, BCG first dose and BCG booster dose. Optimal reduction
in the viral load and the number of infected cells can be significantly achieved when the above four
interventions used in combination as compared with the efficacy of individual therapeutic agent.

Implications of all the available evidence: The mathematical evidence generated out of this study
will pave a way for developing a standardized clinical treatment regimen both on therapeutic and research
avenues.

OBJECTIVES OF THE PROPOSED STUDY

1. To investigate the role of medical interventions such as HCQ and BCG vaccine by incorporating them
as controls at specific sites in the pathogenesis.

2. To study and compare the dynamics of susceptible, infected cells and viral load with and without these
control interventions.

3. To propose the optimal drug strategy in scenarios involving administration of single drug intervention,
two drug interventions based on the average susceptible, infected cell count and average viral load.

4. To propose the optimal drug strategy using the comparative effectiveness studies.
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2 MODEL WITH HCQ AND BCG FIRST DOSE

METHODS

A within-host mathematical model incorporating drug interventions was studied as an optimal control
problem. The Fillipov Existence Theorem was used to obtain an optimal solution [20]. Characterization of
optimal controls is done using Maximum Principle [20]. Numerical simulations involving with and without
control interventions were performed for obtaining optimal drug regimen. Comparative effectiveness method
[13] was used to study the change in basic reproduction number and virus count for single and multiple
interventions.

2 MODEL WITH HCQ AND BCG FIRST DOSE

In similar lines to [1], in this section, we consider a control problem with the drug interventions HCQ and
BCG first dose as controls given by

dS

dt
= ω − βSV − µ1hcq(t)S − µS (2.1)

dI

dt
= βSV −

(
d1 + d2 + d3 + d4 + d5 + d6

)
I −

(
µ2hcq(t) + µ2bcgfd(t)

)
I − µI (2.2)

dV

dt
= αI −

(
b1 + b2 + b3 + b4 + b5 + b6

)
V − µ1V −

(
µ3hcq(t) + µ3bcgfd(t)

)
V (2.3)

Parameters Biological Meaning

S Healthy Type II Pneumocytes

I Infected Type II Pneumocytes

ω Natural birth rate of Type II Pneumocytes

V Viral load

β Rate at which healthy Pneumocytes are infected

α Burst rate of virus particles

µ Natural death rate of Type II Pneumocytes

µ1 Natural death rate of virus

d1, d2, d3, d4, d5, d6 Rates at which Infected Pneumocytes are removed because
of the release of cytokines and chemokines IL-6
TNF-α, INF, CCL5, CXCL8 , CXCL10 respectively

b1, b2, b3, b4, b5, b6 Rates at which Virus is removed because of
the release of cytokines and chemokines IL-6
TNF-α, INF, CCL5, CXCL8 , CXCL10 respectively

u1hcq, u2hcq, u3hcq Rates at which susceptible cells,
infected cells and viral load are reduced
due to HCQ drug.

u2bcgfd, u3bcgfd Rates at which infected cells and the
viral load are reduced due to BCG first dose

4



2.1 Existence of Optimal Controls 2 MODEL WITH HCQ AND BCG FIRST DOSE

Definition of the objective function

Let U1 = (µ1hcq, µ2hcq, µ3hcq), U2 = (µ2bcgfd, µ3bcgfd)

J(U1, U2) =

∫ T

0

(
A1U

2
1 +A2U

2
2 − I(t)− V (t)

)
dt (2.4)

To reduce the complexity of the problem here we choose to model the control efforts via a linear combination
of the quadratic terms. Also when the objective function is quadratic with respect to the control, differential
equations arising from optimization have a known solution. Other functional forms sometimes lead to systems
of differential equations that are difficult to solve [10], [17].

The integrand of the cost function (2.4), denoted by

L(S, I, V, U1, U2) =

(
A1U

2
1 +A2U

2
2 − I(t)− V (t)

)
is called the Lagrangian of the running cost.

Here the cost function (2.4) represents the benefits of each of the interventions and the number of infected
cells and viral load throughout the observation period. Our goal is to maximize the benefits of each of the
interventions and minimize the infected and viral load.

The coefficients Ai, for i = 1, 2 are the constants related to the benefits of each of the interventions.

The admissible solution set for the optimal control problem (2.1) - (2.4) is given by,

Ω = {(S, I, V, U1, U2) | S, I and V that satisfy (2.1)− (2.3) ∀ Ui ∈ U}

where U is the set of all admissible controls given by

U = {U1 = (µ1hcq(t), µ2hcq(t), µ3hcq(t)), U2 = (µ2bcgfd(t), µ3bcgfd(t))}:

µ1hcq(t)) ∈ [0, µ1hcqmax], µ2hcq(t) ∈ [0, µ2hcqmax], µ3hcq(t) ∈ [0, µ3hcqmax], µ2bcgfd(t) ∈ [0, µ2bcgfdmax], t ∈
[0, T ]}.

2.1 Existence of Optimal Controls

Theorem 2.1. There exists a 5-tuple of optimal controls (µ∗1hcq(t), µ
∗
2hcq(t), µ

∗
3hcq(t), µ

∗
2bcgfd(t), µ

∗
3bcgfd(t) in

the set of admissible controls U such that the cost functional is maximized i.e.,

J = max(µ1hcq,µ2hcq,µ3hcq,µ2bcgfd,µ3bcgfd)∈U

{
J [µ1hcq(t), µ2hcq(t), µ3hcq(t)), µ2bcgfd(t)), µ3bcgfd(t))]

}
corresponding

to the optimal control problem (2.1) - (2.4).

Proof. In order to show the existence of optimal control functions, we will show that the following conditions
are satisfied :
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2.2 Characteriztion of Optimal Controls 2 MODEL WITH HCQ AND BCG FIRST DOSE

1. The solution set for the system (2.1) - (2.4) along with bounded controls must be non-empty, i.e.,
Ω 6= φ.

2. U is closed and convex and system should be expressed linearly in terms of the control variables with
coefficients that are functions of time and state variables.

3. The Lagrangian L should be convex on U and L(S, I, V, U1, U2) ≥ g(U1, U2), where g is a continuous
function of control variables such that |(µ1hcq, µ2hcq, µ3hcq, µ2bcgfd, µ3bcgfd)|−1

g(µ1hcq, µ2hcq, µ3hcq, µ2bcgfd, µ3bcgfd)→∞
whenever |(µ1hcq, µ2hcq, µ3hcq, µ2bcgfd, µ3bcgfd)| → ∞, where |.| is an l2(0, T ) norm.

Now we will show that each of the conditions are satisfied :

1. From positivity and boundedness of solutions of the system (2.1) - (2.3) [1], all solutions are bounded for
each bounded control variable in U .

Also, the right hand side of the system (2.1) - (2.3) satisfies Lipschitz condition with respect to state variables.

Hence, using the positivity and boundedness condition and the existence of solution from Picard-Lindelof
Theorem [22], we have satisfied condition 1.

2. U is closed and convex by definition. Also, the system (2.1) - (2.3) is clearly linear with respect to controls
such that coefficients are only state variables or functions dependent on time. Hence condition 2 is satisfied.

3. Choosing g(µ1hcq, µ2hcq, µ3hcq, µ2bcgfd, µ3bbcgfd)

= c(µ1hcq, µ2hcq, µ3hcq, µ2bcgfd, µ3bcgfd) such that c = min {A1, A2}, we can satisfy the condition 3.

Hence there exists a control 5-tuple (µ1hcq, µ2hcq, µ3hcq, µ2bcgfd, µ3bcgfd) ∈ U
that maximizes the cost function (2.4).

2.2 Characteriztion of Optimal Controls

We now obtain the necessary conditions for optimal control functions using the Pontryagin’s Maximum
Principle [20] and also obtain the characteristics of the optimal controls.

The Hamiltonian for this problem is given by

H(S, I, V, U1, U2, λ) = L(S, I, V, U1, U2) + λ1
dS

dt
+ λ2

dI

dt
+ λ3

dV

dt

Here λ = (λ1,λ2,λ3) is called co-state vector or adjoint vector.

Now the Canonical equations that relate the state variables to the co-state variables are given by

dλ1
dt

= −∂H
∂S

dλ2
dt

= −∂H
∂I

dλ3
dt

= −∂H
∂V

(2.5)
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3 OPTIMAL DRUG REGIMEN WITH HCQ AND BCG FIRST DOSE AS DRUG INTERVENTIONS

Substituting the Hamiltonian value gives the canonical system

dλ1
dt

= λ1(βV + µ+ µ1hcq)− λ2βV

dλ2
dt

= 1 + λ2

(
x+ (µ2hcq + µ2bcgfd + µ)

)
− λ3α

dλ3
dt

= 1 + λ1βS − λ2βS + λ3(y + µ3bcgfd + µ3hcq + µ1)

(2.6)

where x = d1 +d2 +d−3+d4 +d5 +d6and y = b1 + b2 + b3 + b4 + b5 + b6 along with transversality conditions
λ1(T ) = 0, λ2(T ) = 0, λ3(T ) = 0.

Now, to obtain the optimal controls, we will use the Hamiltonian minimization condition ∂H
∂ui

= 0 , at µ∗.

Differentiating the Hamiltonian and solving the equations, we obtain the optimal controls as

µ∗1hcq = min

{
max

{
λ1S

2A1
, 0

}
, u1hcqmax

}
µ∗2hcq = min

{
max

{
λ2I

2A1
, 0

}
, u2hcqmax

}
µ∗3hcq = min

{
max

{
λ3V

2A1
, 0

}
, u3hcqmax

}
µ∗2bcgfd = min

{
max

{
λ2I

2A2
, 0

}
, u2bcgfdmax

}
µ∗3bcgfd = min

{
max

{
λ3V

2A2
, 0

}
, u3bcgfdmax

}

3 OPTIMAL DRUGREGIMENWITHHCQAND BCG FIRST DOSE AS DRUG INTERVENTIONS

In this section, we perform numerical simulations to understand the efficacy of single and two drug interventions
and propose the optimal drug regimen in these scenarios. This is done by studying the effect of the
corresponding controls on the dynamics of the system (2.1) - (2.3).

The efficacy of combinations of controls considered are:

1. Single drug intervention administration.

2. Two drug interventions administration.

For our simulations, we have taken the total number of days as T = 30 and the parameter values from the
following table which are as in [1].

ω β µ µ1 α d1 d2 d3 d4 d5 d6 b1 b2 b3 b4 b5 b6

10 0.05 .1 1.1 .5 0.027 0.22 .1 0.428 0.01 0.01 0.1 .1 .08 .11 .1 .07

Table 1. Parameter Values
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3.1 WITHOUT ANY DRUGS / INTERVENTIONS3 OPTIMAL DRUG REGIMEN WITH HCQ AND BCG FIRST DOSE AS DRUG INTERVENTIONS

We first solve the state system numerically using Fourth Order Runge-Kutta method in MATLAB without
any interventions. We take the initial values of state variables to be S(0) = 3.2 × 105, I(0) = 0, V (0) = 5

and the initial values of the control parameters as zeros.

Now, to simulate the system with controls, we use the Forward-Backward Sweep method stating with the
initial values of controls and solve the state system forward in time. Following this we solve the adjoint state
system backward in time due to the transversality conditions, using the optimal state variables and initial
values of optimal control.

Now, using the values of adjoint state variables, the values of optimal control are updated and with these
updated control variables, we go through this process again. We continue this till the convergence criterion
is met [20].

We observed that HCQ was administered in the initial stages of the disease to avoid adverse conditions and
seems to perform fairly well [3]. Another study shows that the countries with a 10 percent greater prevalence
of the BCG vaccine also has a 10.4 percent less reduction in COVID-19 mortality[4]. It is also found that
in an in-vitro study, the booster dose of BCG vaccine along with a protein performs better in reducing the
coronavirus count by boosting the immune system[2, 4]. Based on these evidences, we choose the positive
weights for objective coefficients as A1 = 150, A2 = 100.

3.1 WITHOUT ANY DRUGS / INTERVENTIONS

In this section we simulate the behaviour of susceptible, infected cells and viral load over time. As can be
seen from figure 1 the susceptible cells reduce and the infected cells increase exponentially due to the increase
in viral load over a period of time.

Figure 1. Figure depicting the S, I, V populations for the system (2.1) - (2.3) without control interventions over the time.
The exponential growth of the infected cells and viral load can be observed.

3.2 SINGLE DRUG INTERVENTION

In this section we study the dynamics of susceptible, infected cells and viral load when HCQ and BCG first
dose are administered individually. Figures 2, 3, 4 depict the susceptible, infected population and viral load.
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3.2 SINGLE DRUG INTERVENTION3 OPTIMAL DRUG REGIMEN WITH HCQ AND BCG FIRST DOSE AS DRUG INTERVENTIONS

Drug Combinations Avg Suceptible cells Avg Infected cells Avg Viral load
U1 = U∗1 , U2 = 0 3.2682 × 105 2.9208 × 103 52.0672
U1 = 0, U2 = U∗2 3.4534 × 105 3.1071× 103 53.1666

U1 = 0, U2 = 0 3.4507 ×105 3.3999 ×103 58.3429
Table 2. Table depicting the average values of the susceptible cells, infected cells and the viral load with respect to each of
the drug interventions HCG and BCG first dose when administered individually.

Figure 2. Figure depicting the dynamics of Susceptible cells (S) under the optimal controls U∗
1 , U

∗
2 . Each curve represents

the dynamics of susceptible cells with respect to a single control intervention.

Figure 3. Figure depicting the dynamics of Infected cells (I) under the optimal controls U∗
1 , U

∗
2 . Each curve represents the

dynamics of infected cells with respect to a single control intervention.

In table 2 the average values of the susceptible cells, infected cells and the viral load with respect to each
of the drug interventions HCQ, BCG first dose when administered individually is listed. From this table 2
it can be seen that the drug HCQ (U1 = U∗1 ) reduces the infected cells and viral load the best compared
to other combinations when administered individually followed by BCG first dose (U2 = U∗2 ). Also HCQ
(U1 = U∗1 ) does the best job in reducing the susceptible cells.
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3.3 TWO DRUGS / INTERVENTIONS3 OPTIMAL DRUG REGIMEN WITH HCQ AND BCG FIRST DOSE AS DRUG INTERVENTIONS

Figure 4. Figure depicting the dynamics of Viral load (V ) under the optimal controls U∗
1 , U

∗
2 . Each curve represents the

dynamics of viral load with respect to a single control intervention.

3.3 TWO DRUGS / INTERVENTIONS

In this section we study the dynamics of susceptible, infected cells and viral load when two control interventions
are administered at a time. Figures 5, 6, 7 depict the susceptible, infected population and viral load.

Drug Combinations Avg Susceptible cells Avg Infected cells Avg Viral load
U1 = U∗1 , U2 = U∗2 3.2759 ×105 2.8079 ×103 50.1007
U1 = U2 = 0 3.4507 ×105 3.3999 ×103 58.3429

Table 3. Table depicting the average values of the susceptible cells, infected cells and the viral load with respect to two control
interventions administered at a time.

In table 3 the average values of the susceptible cells, infected cells and the viral load with respect to two
control interventions administered at a time is listed. From this table 3 it can be seen that the combination
of HCQ and BCG first dose (U1 = U∗1 , U2 = U∗2 ) reduces the infected cells and viral load the best. Also the
drug combination of HCQ and BCG first dose (U1 = U∗1 ) does a better job in reducing the susceptible cells
compared to no intervention case.
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3.3 TWO DRUGS / INTERVENTIONS3 OPTIMAL DRUG REGIMEN WITH HCQ AND BCG FIRST DOSE AS DRUG INTERVENTIONS

Figure 5. Figure depicting the dynamics of Susceptible cells (S) under the optimal controls U∗
1 , U

∗
2 Each curve represents the

dynamics of susceptible cells with respect to two control interventions administered at a time.

Figure 6. Figure depicting the dynamics of Infected cells (I) under the optimal controls U∗
1 , U

∗
2 Each curve represents the

dynamics of infected cells with respect to two control interventions administered at a time.

Figure 7. Figure depicting the dynamics of Viral load (I) under the optimal controls U∗
1 , U

∗
2 Each curve represents the

dynamics of viral load with respect to two control interventions administered at a time.
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4 MODEL WITH HCQ AND BCG BOOSTER DOSE

4 MODEL WITH HCQ AND BCG BOOSTER DOSE

In similar lines to section 2, in this section, we consider a control problem with the drug interventions
HCQ and BCG booster dose as controls. The natural history for this model is in similar lines with the
model presented by authors in [1]. We assume that the BCG primary dose is already administered to the
patient at birth or in childhood at some point of time. Because of administration of BCG primary dose the
individual will be now having an additional immunity component acquired due to BCG vaccine first dose.
Incorporating this aspect the modified control problem is now given by

dS

dt
= ω − βSV − µ1hcq(t)S − µS (4.1)

dI

dt
= βSV −

(
d1 + d2 + d3 + d4 + d5 + d6

)
I −

(
µ2hcq(t) + µ2bcgbd(t)

)
I − α1I − µI (4.2)

dV

dt
= αI −

(
b1 + b2 + b3 + b4 + b5 + b6

)
V − α2V − µ1V −

(
µ3hcq(t) + µ3bcgbd(t)

)
V (4.3)

Here the parameters α1 and α2 represent the rates of decrease of the infected and viral load because of the
immunity gained due to BCG primary dose. Evidence from animal and human studies shows that there are
significant differences in the immune response induced by different BCG vaccine strains [24]. Among the six
widely used BCG vaccine strains, BCG Tice is the most efficacious BCG vaccine[15]. The values for α1, α2

will be based on the efficacy of the particular BCG vaccine strain. Here their values are estimated to be 0.1
and .01 as for other parameter values estimated in [1].

Also, the control interventions u2bcgbd, u3bcgbd are the rates at which infected cells and viral load are reduced
due to BCG booster dose.

Definition of the objective function

Let U3 = (µ1hcq, µ2hcq, µ3hcq), U4 = (µ2bcgbd, µ3bcgbd)

J(U3, U4) =

∫ T

0

(
A3U

2
3 +A4U

2
4 − I(t)− V (t)

)
dt (4.4)

To reduce the complexity of the problem here we choose to model the control efforts via a linear combination
of the quadratic terms. Also when the objective function is quadratic with respect to the control, differential
equations arising from optimization have a known solution. Other functional forms sometimes lead to systems
of differential equations that are difficult to solve [10], [17].

The integrand of the cost function (4.4), denoted by

L(S, I, V, U3, U4) =

(
A3U

2
3 +A4U

2
4 − I(t)− V (t)

)
is called the Lagrangian of the running cost.

Here the cost function (4.4) represents the benefits of each of the interventions and the number of infected
cells and viral load throughout the observation period. Our goal is to maximize the benefits of each of the
interventions and minimize the infected and viral load.
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5 OPTIMAL DRUG REGIMEN WITH HCQ AND BCG BOOSTER DOSE AS DRUG
INTERVENTIONS

The coefficients Ai, for i = 3, 4 are the constants related to the benefits of each of the interventions.

The admissible solution set for the optimal control problem (4.1) - (4.4) is given by,

Ω = {(S, I, V, U3, U4) | S, I and V that satisfy (4.1)− (4.3) ∀ Ui ∈ U}

where U is the set of all admissible controls given by

U = {U3 = (µ1hcq(t), µ2hcq(t), µ3hcq(t)), U4 = (µ2bcgbd(t), µ3bcgbd(t))}:

µ1hcq(t)) ∈ [0, µ1hcqmax], µ2hcq(t) ∈ [0, µ2hcqmax], µ3hcq(t) ∈ [0, µ3hcqmax], µ2bcgbd(t) ∈ [0, µ2bcgbdmax], µ3bcgbd(t) ∈
[0, µ3bcgbdmax], t ∈ [0, T ]}.

The existence of optimal controls and characterization of optimal controls for the model (4.1) - (4.3) are in
similar lines to sections 2.1 and 2.2 and they are discussed in Appendix.

5 OPTIMAL DRUG REGIMEN WITH HCQ AND BCG BOOSTER DOSE AS DRUG
INTERVENTIONS

In this section, we perform numerical simulations to understand the efficacy of single and two drug interventions
and propose the optimal drug regimen in these scenarios. This is done by studying the effect of the
corresponding controls on the dynamics of the system (4.1) - (4.3).

The efficacy of various combinations of controls considered are:

1. Single drug intervention administration.

2. Two drug interventions administration.

For our simulations, we have taken the total number of days as T = 30 and the parameter values from the
table 1.

We take the initial values of state variables to be S(0) = 3.2 × 105, I(0) = 0, V (0) = 5 and the initial
values of the control parameters as zeros. Also we choose the positive weights for objective coefficients as
A3 = 150, A4 = 200.
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5.1 WITHOUT ANY DRUGS / INTERVENTIONS
5 OPTIMAL DRUG REGIMEN WITH HCQ AND BCG BOOSTER DOSE AS DRUG

INTERVENTIONS

5.1 WITHOUT ANY DRUGS / INTERVENTIONS

In this section we simulate the behaviour of susceptible, infected cells and viral load over time. As can be
seen from figure 8 the susceptible cells reduce and the infected cells increase exponentially due to the increase
in viral load over a period of time.

Figure 8. Figure depicting the S, I, V populations for the system (4.1) - (4.3) without control interventions over the time.
The exponential growth of the infected cells and viral load can be observed. This figure is qualitatively same as figure 1 but its
quantitaively different because of the additional aquired immunity due to BCG primary administered at birth/childhood.

5.2 SINGLE DRUG INTERVENTION

In this section we study the dynamics of susceptible, infected cells and viral load when each of these drugs
is administered individually. Figures 9, 10, 11 depict the susceptible, infected population and viral load.

Drug Combinations Avg Suceptible cells Avg Infected cells Avg Viral load
U3 = U∗3 , U4 = 0 3.2694 × 105 2.9019 × 103 51.8034
U3 = 0, U4 = U∗4 3.4523 × 105 3.2185× 103 55.2208

U3 = 0, U4 = 0 3.4509 ×105 3.3752 ×103 58.0082
Table 4. Table depicting the average values of the susceptible cells, infected cells and the viral load with respect to each of
these drug interventions when administered individually.
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5.2 SINGLE DRUG INTERVENTION
5 OPTIMAL DRUG REGIMEN WITH HCQ AND BCG BOOSTER DOSE AS DRUG

INTERVENTIONS

Figure 9. Figure depicting the dynamics of Susceptible cells (S) under the optimal controls U∗
3 , U

∗
4 . Each curve represents

the dynamics of susceptible cells with respect to a single control intervention.

Figure 10. Figure depicting the dynamics of Infected cells (I) under the optimal controls U∗
3 , U

∗
4 . Each curve represents the

dynamics of infected cells with respect to a single control intervention.

Figure 11. Figure depicting the dynamics of Viral load (I) under the optimal controls U∗
3 , U

∗
4 . Each curve represents the

dynamics of viral load with respect to a single control intervention.
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5.3 TWO DRUGS / INTERVENTIONS
5 OPTIMAL DRUG REGIMEN WITH HCQ AND BCG BOOSTER DOSE AS DRUG

INTERVENTIONS

In the table 4 the average values of the susceptible cells, infected cells and the viral load with respect to each
of these drug interventions when administered individually is listed. From this table 4 it can be seen that
the drug HCQ (U3 = U∗3 ) reduces the infected cells and viral load the best followed by drug BCG booster
dose (U4 = U∗4 ). Also HCQ (U3 = U∗3 ) does the best job in decreasing the susceptible cells.

5.3 TWO DRUGS / INTERVENTIONS

In this section we study the dynamics of susceptible, infected cells and viral load when two control interventions
are administered at a time. Figures 12, 12, 14 depict the susceptible, infected population and viral load.

Drug Combinations Avg Susceptible cells Avg Infected cells Avg Viral load
U3 = U∗3 , U4 = U∗4 3.2734 ×105 2.8447×103 50.8041
U3 = U4 = 0 3.4509 ×105 3.3752 ×103 58.0082

Table 5. Table depicting the average values of the susceptible cells, infected cells and the viral load with respect to two control
interventions administered at a time.

In the table 5 the average values of the susceptible cells, infected cells and the viral load with respect to two
control interventions administered at a time is listed. From this table 5 it can be seen when both HCQ and
BCG booster dose (U3 = U∗3 , U4 = U∗4 ) when administered together reduce the average infected cells and
viral load the best even when compared to the single drug intervention case. They also reduce susceptible
cells better compared to no intervention case.
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5.3 TWO DRUGS / INTERVENTIONS
5 OPTIMAL DRUG REGIMEN WITH HCQ AND BCG BOOSTER DOSE AS DRUG

INTERVENTIONS

Figure 12. Figure depicting the dynamics of Susceptible cells (S) under the optimal controls U∗
3 , U

∗
4 . Each curve represents

the dynamics of susceptible cells with respect to two control interventions administered at a time.

Figure 13. Figure depicting the dynamics of Infected cells (I) under the optimal controls U∗
3 , U

∗
4 . Each curve represents the

dynamics of infected cells with respect to two control interventions administered at a time.

Figure 14. Figure depicting the dynamics of Viral load (V ) under the optimal controls U∗
3 , U

∗
4 . Each curve represents the

dynamics of viral load with respect to two control interventions administered at a time.
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6 COMPARATIVE EFFECTIVENESS STUDY

6 COMPARATIVE EFFECTIVENESS STUDY

In this section we do the comparative effectiveness study for the system

dS

dt
= ω − βSV − µS (6.1)

dI

dt
= βSV −

(
d1 + d2 + d3 + d4 + d5 + d6

)
I − µI (6.2)

dV

dt
= αI −

(
b1 + b2 + b3 + b4 + b5 + b6

)
V − µ1V (6.3)

The basic reproductive number for the system (6.1) - (6.3) as obtained in [1] is given by

R0 =
βαω

µ(b1 + b2 + b3 + b4 + b5 + b6 + µ1)(d1 + d2 + d3 + d4 + d5 + d6 + µ)
(6.4)

The disease-free equilibrium for the system can be seen to be

E0 =
(
S0, I0, V 0

)
=

(
ω

µ
, 0, 0

)
(6.5)

and the endemic equilibrium to be

S =
(b1 + b2 + b3 + b4 + b5 + b6 + µ1) (d1 + d2 + d3 + d4 + d5 + d6 + µ)

αβ

I =
αβω − µ (b1 + b2 + b3 + b4 + b5 + b6 + µ1) (d1 + d2 + d3 + d4 + d5 + d6 + µ)

αβ (d1 + d2 + d3 + d4 + d5 + d6 + µ)

V =
αβω − µ (b1 + b2 + b3 + b4 + b5 + b6 + µ1) (d1 + d2 + d3 + d4 + d5 + d6 + µ)

β (b1 + b2 + b3 + b4 + b5 + b6 + µ1) (d1 + d2 + d3 + d4 + d5 + d6 + µ)
(6.6)

Broadly we consider three kinds of interventions for this comparative effectiveness study.

1. Drugs that inhibit viral replication : Hydroxychloroquine(HCQ) does this job. So we now choose α to
be α(1− ε1), where ε1 is the efficacy of HCQ.

2. Drugs that block virus binding to susceptible cells : Hydroxychloroquine(HCQ) does this job. So we
now choose β to be β(1− ε1), where ε1 is the efficacy of HCQ.

3. Possible Immunotherapies : BCG vaccine does this job. So we now choose (d1 +d2 +d3 +d4 +d5 +d6)

to be (d1 + d2 + d3 + d4 + d5 + d6)(1 + ε2), where ε2 are the efficacy of BCG dosage.

R0 plays a crucial role in understanding the spread of infection in the individual and V determines the
infectivity of virus in an individual. Taking the three kinds of interventions into consideration, we now have
modified basic reproductive number RE and modified virus count V E of the endemic equilibrium to be

RE =
α(1− ε1)β(1− ε1)ω

µ(b1 + b2 + b3 + b4 + b5 + b6 + µ1)((d1 + d2 + d3 + d4 + d5 + d6)(1 + ε2) + µ)

VE =
α(1− ε1)ω

(b1 + b2 + b3 + b4 + b5 + b6 + µ1) ((d1 + d2 + d3 + d4 + d5 + d6) (1 + ε2) + µ)
− µ

β(1− ε1)
(6.7)
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7 DISCUSSIONS AND CONCLUSIONS

The efficacy of these interventions is taken as follows : For HCQ, we choose ε1 = 0.6 ;
The efficacy of two BCG doses are different. So, we choose them as follows :
for BCG first dose, we choose ε2 = 0.3 ;
for BCG booster dose, we choose ε2 = 0.9 ;

We now do the comparative effectiveness study of these interventions by calculating the percentage reduction
of R′ and V for single and multiple combination of these interventions. Percentage reduction of R0 and V
are given by

Percentage reduction of R0 =

[
R0−REj

R0

]
× 100

Percentage reduction of V =

[
V−V Ej

V

]
× 100

where j stands for ε1, ε2 or combinations thereof.

Since we have 2 interventions, we consider 4 (= 22) different combinations of these drugs.

%age change %age change
No. Intervention in R0 Rank in V Rank
1 Nil 0 1 0 1

HCQ and BCG First Dose
2 ε1 84 3 367.6 3
3 ε2 21.04 2 51.86 2
4 ε1ε2 87.37 4 388.34 4

HCQ and BCG Booster Dose
5 ε1 84 3 367.6 3
6 ε2 44.43 2 109.5 2
7 ε1ε2 91.11 4 411.4 4

Table 6. Comparative Effectiveness Study

In the table 6 the comparative effectiveness is calculated and measured on a scale from 1 to 4 with 1 denoting
the lowest comparative effectiveness while 4 denoting the highest comparative effectiveness. The conclusions
from this study are the following.

1. When single drug intervention is administered, HCQ outperforms BCG vaccination for either of the
dosages w.r.t reduction in both R0 and V (refer rows 2, 3, 5, 6 in table 6).

2. When HCQ and BCG vaccine are both administered together, the best reduction in R0 and V is seen
(refer rows 4,7 in table 6).

7 DISCUSSIONS AND CONCLUSIONS

In this work we have considered three drugs interventions namely, HCQ, BCG first dose and BCG booster
dose and studied their efficacy for treatment of COVID-19 when applied individually or in combination. This
study is done in two ways. The first by modeling these interventions as control interventions and studying
the optimal control problem. The second study was the comparative effectiveness study.
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7 DISCUSSIONS AND CONCLUSIONS

Conclusions from the optimal control studies and comparative effectiveness studies suggest the following.

1. All HCQ and BCG interventions when administered individually or in combination reduce the infected
cells and viral load significantly.

2. The average infected cell count and viral load decreased the best when both the HCQ and BCG
interventions were applied together.

3. The average susceptible cell count decreased the best when HCQ alone was administered.

4. The basic reproduction number and viral count decreased the best when HCQ and BCG booster
interventions were applied together reinstating the fact obtained earlier in the optimal control setting.

This study supports the findings in the recent work [8, 23, 5] which state that

• "Mandated BCG vaccination can be effective in fight against COVID-19. Mandated BCG predicted
flattened curves for the spread of COVID-19."

• "BCG vaccination might be associated with a decrease in the incidence of sickness during the COVID-19
pandemic."

• "A combination of hydroxychloroquine, vitamin and zinc tablets along with homeopathic medicines
apart from separate medical facilities for policemen and women who contract COVID-19 has helped
control the virus among the uniformed personnel."
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8 APPENDIX

8.1 Existence of Optimal Controls

Theorem 8.1. There exists a 5-tuple of optimal controls (µ∗1hcq(t), µ
∗
2hcq(t), µ

∗
3hcq(t), µ

∗
2bcgbd(t), µ

∗
3bcgbd(t) in

the set of admissible controls U such that the cost functional is maximized i.e.,

J = max(µ1hcq,µ2hcq,µ3hcq,,µ2bcgbd,µ3bcgbd)∈U

{
J [µ1hcq(t), µ2hcq(t), µ3hcq(t)), µ2bcgbd(t)), µ3bcgbd(t))]

}
corresponding

to the optimal control problem (4.1) - (4.4).

Proof. In order to show the existence of optimal control functions, we will show that the following conditions
are satisfied :

1. The solution set for the system (4.1) - (4.4) along with bounded controls must be non-empty, i.e.,
Ω 6= φ.
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8.2 Characterization of Optimal Controls 8 APPENDIX

2. U is closed and convex and system should be expressed linearly in terms of the control variables with
coefficients that are functions of time and state variables.

3. The Lagrangian L should be convex on U and L(S, I, V, U3.U4) ≥ g(U3, U4), where g is a continuous
function of control variables such that |(µ1hcq, µ2hcq, µ3hcq, µ2bcgbd, µ3bcgbd)|−1

g(µ1hcq, µ2hcq, µ3hcq, µ2bcgbd, µ3bcgbd)→∞
whenever |(µ1hcq, µ2hcq, µ3hcq, µ2bcgbd, µ3bcgbd)| → ∞, where |.| is an l2(0, T ) norm.

Now we will show that each of the conditions are satisfied :

1. From positivity and boundedness of solutions of the system (4.1) - (4.3) [1], all solutions are bounded for
each bounded control variable in U .

Also, the right hand side of the system (4.1) - (4.3) satisfies Lipschitz condition with respect to state variables.

Hence, using the positivity and boundedness condition and the existence of solution from Picard-Lindelof
Theorem [22], we have satisfied condition 1.

2. U is closed and convex by definition. Also, the system (4.1) - (4.3) is clearly linear with respect to controls
such that coefficients are only state variables or functions dependent on time. Hence condition 2 is satisfied.

3. Choosing g(µ1hcq, µ2hcq, µ3hcq, µ2bcgbd, µ3bcgbd)

= c(µ1hcq, µ2hcq, µ3hcq, µ2bcgbd, µ3bcgbd) such that c = min {A3, A4}, we can satisfy the condition 3.

Hence there exists a control 5-tuple (µ1hcq, µ2hcq, µ3hcq, µ2bcgbd, µ3bcgbd) ∈ U
that maximizes the cost function (4.4).

8.2 Characterization of Optimal Controls

We now obtain the necessary conditions for optimal control functions using the Pontryagin’s Maximum
Principle [20] and also obtain the characteristics of the optimal controls.

The Hamiltonian for this problem is given by

H(S, I, V, U3, U4, λ) = L(S, I, V, U3, U4) + λ1
dS

dt
+ λ2

dI

dt
+ λ3

dV

dt

Here λ = (λ1,λ2,λ3) is called co-state vector or adjoint vector.

Now the Canonical equations that relate the state variables to the co-state variables are given by

dλ1
dt

= −∂H
∂S

dλ2
dt

= −∂H
∂I

dλ3
dt

= −∂H
∂V

(8.1)
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Substituting the Hamiltonian value gives the canonical system

dλ1
dt

= λ1(βV + µ+ µ1hcq)− λ2βV

dλ2
dt

= 1 + λ2

(
x+ (µ2hcq + µ2bcgbd + α1 + µ)

)
− λ3α

dλ3
dt

= 1 + λ1βS − λ2βS + λ3(y + α2 + µ3bcgbd + µ3hcq + µ1)

(8.2)

where x = d1 +d2 +d−3+d4 +d5 +d6and y = b1 + b2 + b3 + b4 + b5 + b6 along with transversality conditions
λ1(T ) = 0, λ2(T ) = 0, λ3(T ) = 0.

Now, to obtain the optimal controls, we will use the Hamiltonian minimization condition ∂H
∂ui

= 0 , at µ∗.

Differentiating the Hamiltonian and solving the equations, we obtain the optimal controls as

µ∗1hcq = min

{
max

{
λ1S

2A3
, 0

}
, u1hcqmax

}
µ∗2hcq = min

{
max

{
λ2I

2A3
, 0

}
, u2hcqmax

}
µ∗3hcq = min

{
max

{
λ3V

2A3
, 0

}
, u3hcqmax

}
µ∗2bcgbd = min

{
max

{
λ2I

2A4
, 0

}
, u2bcgbdmax

}
µ∗3bcgbd = min

{
max

{
λ3V

2A4
, 0

}
, u3bcgbdmax

}
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