
EasyChair Preprint

№ 1435

A shrinking synchronization clustering algorithm

based on a linear weighted Vicsek model

Xinquan Chen

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

August 27, 2019

 1

Title Page

A shrinking synchronization clustering algorithm

based on a linear weighted Vicsek model

Xinquan Chen1, 2
1School of Computer & Information, Anhui Polytechnic University, Wuhu, 241000, China
2Key Laboratory of Intelligent Information Processing and Control, Chongqing Three Gorges

University, Chongqing, 404100, China

chenxqscut@126.com

Author: Xinquan Chen

Corresponding Author: Xinquan Chen

* Corresponding author. Tel.: 0086-15123428097.

E-mail address: chenxqscut@126.com (X. Chen).

Post Address:

Xinquan Chen

School of Computer & Information, Anhui Polytechnic University, Wuhu, 241000,

China

Conflicts of interest: None

 2

A shrinking synchronization clustering algorithm

based on a linear weighted Vicsek model

Abstract: Clustering is an unsupervised learning method that tries to find some

distributions and patterns in unlabeled data sets. Although clustering algorithms have

been studied for many years, none of them is all purpose. This paper presents a

Shrinking Synchronization Clustering (SSynC) algorithm by using a linear weighted

Vicsek model. It is inspired by Synchronization Clustering (SynC) algorithm and

Vicsek model. After some analysis and comparison, we find that SSynC algorithm

based on the linear weighted Vicsek model has better synchronization effect than

SynC algorithm based on an extensive Kuramoto model and has similar

synchronization effect with Effective Synchronization Clustering (ESynC) algorithm

based on another linear version of Vicsek model. In the simulations, several clustering

algorithms (SynC, ESynC, K-Means, FCM, AP, DBSCAN, and Mean Shift) are used

as comparative algorithms. By some simulated experiments of some artificial data sets,

several real data sets, and three picture data sets, we observe that SSynC algorithm not

only gets better local synchronization effect but also needs less iterative times and

time cost than SynC algorithm. Moreover, SSynC algorithm needs less time cost than

ESynC algorithm and almost get the same local synchronization effect and the same

iterative times. Extensive comparison experiments with some class clustering

algorithms demonstrate the effectiveness of our algorithm. At last, it gives some

research expectations to popularize this algorithm.

Keywords: Data mining; Clustering; SynC algorithm; Kuramoto model; Shrinking

synchronization; A linear weighted Vicsek model; Near neighbor points

1. Introduction
Clustering is an unsupervised learning method that tries to find some obvious

distribution structures and patterns in unlabeled data sets by maximizing the similarity

of the objects in a common cluster and minimizing the similarity of the objects in

different clusters. Clustering has been used in many areas such as machine learning,

pattern recognition, image processing, marketing and costumer analysis, agriculture,

security and crime detection, information retrieval, and bioinformatics.

Clustering algorithms have been studied for decades. There have been hundreds

of clustering algorithms until now, but none of them is all purpose. Almost all

clustering algorithms have flaws. Some clustering algorithms are suitable for dealing

with data with certain types, and some are suitable for handling data with special

distribution structures. Many real data have complex distributions, diversiform types,

great capacity, noises, or isolates. So there is a continued demand for researching

different kinds of clustering methods. In order to obtain better clustering results in

real-world applications where the amount of data is often very large and the types of

data are diversiform, some researchers try their best to develop new efficient and

 3

effective clustering algorithms.

The traditional clustering algorithms are usually categorized into partitioning

methods (Bezdek, 1981; MacQueen, 1967), hierarchical methods (Guha et al., 1998;

Karypis et al., 1999; Zhang et al., 1996), density-based methods (Ankerst et al., 1999;

Ester et al., 1996; Roy et al., 2005; Rodriguez et al., 2014), grid-based methods

(Agrawal et al. 1998; Wang et al., 1997), model-based methods (Theodoridis et al.,

2006), and graph-based methods (Jaromczyk and Godfried, 1992; Schaeffer, 2007).

Recent clustering methods have quantum clustering algorithms (Horn et al., 2002),

spectral clustering algorithms (Luxburg, 2007; Schölkopf et al., 1998), and

synchronization clustering algorithms (Böhm et al., 2010; Huang et al., 2013; Shao et

al., 2013a, 2013b, 2014; Chen, 2017).

Recently, several original clustering algorithms, such as Affinity Propagation

(AP) algorithm (Frey et al., 2007) and Synchronization Clustering (SynC) algorithm

(Böhm et al., 2010), and clustering by fast search and find of Density Peaks (DP)

algorithm (Rodriguez et al., 2014), were published. AP is a new type of clustering

algorithm published on Science in 2007. After AP algorithm was published, clustering

based on probability graph models grew a new research direction. As we know, SynC

(Böhm et al., 2010) is the first synchronization clustering algorithm. After Böhm et al.

(2010) presented SynC algorithm, synchronization clustering attracts some

researchers, and some synchronization clustering methods (Huang et al., 2013; Shao

et al., 2013a, 2013b, 2014; Chen, 2016) were published from different views. DP

(Rodriguez et al., 2014) is a clustering algorithm based on the assumption that

“cluster centers can be characterized by a higher density than their neighbors and by a

relatively large distance from points with higher densities”. In DP algorithm

(Rodriguez et al., 2014), the number of clusters can be obtained automatically,

outliers can be identified easily, and even nonspherical clusters can be explored

quickly. So we think DP algorithm can also create a new research direction in

clustering field.

Synchronization clustering is a kind of novel clustering approach. The original

synchronization clustering algorithm named as SynC, which is a famous

synchronization clustering algorithm presented in Böhm et al. (2010), claimed that it

can find the intrinsic structure of the data set without any distribution assumptions and

handle outliers by dynamic synchronization (Böhm et al., 2010).

This paper researches another synchronization clustering method based on the

linear weighted Vicsek model comparing to SynC algorithm, and presents a Shrinking

Synchronization Clustering (SSynC) algorithm by using the linear weighted Vicsek

model. It is inspired by SynC algorithm and Vicsek model.

The remainder of this paper is organized as follows. Section 2 lists some related

works. Section 3 gives some basic knowledge. Section 4 introduces SSynC algorithm.

Section 5 validates our algorithm by some simulated experiments. Conclusions and

 4

future works are presented in Section 6.

2. Related work
This paper is inspired by several papers (Vicsek et al., 1995; Jadbabaie et al.,

2003; Wang et al., 2009; Böhm et al., 2010).

In 1995, Vicsek et al. (1995) presented a basic model of multi-agent systems that

contains noise effects. This basic model can also be regarded as a special version of

Reynolds model (Reynolds, 1987). Simulation results demonstrate that some systems

using Vicsek model (Vicsek et al., 1995) or one-dimensional models presented by

Czirok et al. (1999) can be synchronized when they have large population density and

small noise. Naturally, we expect that this kind of model can be used to explore

clusters and noises of some data sets by local synchronization. In 2003, Jadbabaie et

al. (2003) analyzed a simplified Vicsek model without noise effects and provided a

theoretical explanation for the nearest neighbor rule that can cause all agents to

eventually move in the same direction. In 2008, Liu et al. (2008) provided the

synchronization property of Vicsek model after given initial conditions and the model

parameters. In 2009, Wang et al. (2009) researched Vicsek model under noise

disturbances and presented some theoretical results. In 2010, Nagy, M. et al. (2010)

found a well-defined hierarchical leader-follower influential network among pigeon

flocks. So they suggested that hierarchical organization of group flight might be more

efficient than an egalitarian one. After that, some reports about the communication

mechanism of bird flocks were published in some famous journals, such as Nature

and its sub journals, PNAS, and PRL. In 2014, Zhang, H. T. et al. (2014) found that

pigeon flocks adopted a mode that switches between hierarchy and egalitarian. They

think the switching mechanism of pigeon flocks is promising for some industrial

applications, such as multi-robot system coordination, and unmanned vehicle

formation control. In 2015, Chen, Z. et al. (2015) found that pigeon flocks adopted a

simple two-level interactive network containing one leader and some followers. And

they think that “the two-level organization of group flight may be more efficient than

a multilevel topology for small pigeon flocks”.

In 2010, Böhm et al. presented a novel clustering approach, SynC algorithm,

inspired by the synchronization principle. SynC algorithm can find the intrinsic

structure of the data set without any distribution assumptions and handle outliers by

dynamic synchronization. In order to implement automatic clustering, those natural

clusters can be discovered by using the Minimum Description Length principle (MDL)

(GrÄunwald, 2005). After SynC algorithm was presented, Shao et al. published

several synchronization clustering papers from several views (Shao et al., 2010, 2011,

2013a, 2013b, 2014). In order to find subspace clusters of some high-dimensional

sparse data sets, a novel effective and efficient subspace clustering algorithm, ORSC

(Shao et al., 2011), was proposed. In order to detect the outliers from a real complex

data set more naturally, a novel outlier detection algorithm was presented from a new

 5

perspective, “Out of Synchronization” (Shao et al., 2010). In order to find the intrinsic

patterns of a complex graph, a novel and robust graph clustering algorithm, RSGC

(Shao et al., 2013a), was proposed by regarding the graph clustering as a dynamic

process towards synchronization. In order to explore meaningful levels of the

hierarchical cluster structure, a novel dynamic hierarchical clustering algorithm,

hSync (Shao et al., 2013b), was presented based on synchronization and the MDL

principle. In 2013, Huang et al. (2013) also presented a synchronization-based

hierarchical clustering method basing on the work of Böhm et al. (2010). In 2014,

Chen (2014) presented a Fast Synchronization Clustering (FSynC) algorithm basing

on the work of Böhm et al. (2010). In 2017, Chen (2017) presented an Effective

Synchronization Clustering (ESynC) algorithm based on a linear version of Vicsek

model.

Recent years, some physicists also researched the explosive synchronization in

some complexity networks to uncover the underlying mechanisms of the

synchronization state (Ji et al., 2013; Leyva et al., 2013; Zou et al., 2014). In these

papers, the synchronization rules of some networks were explored.

3. Some basic knowledge
Suppose there is a data set S = {X1, X2, …, Xn} in a d-dimensional Euclidean

space. Naturally, we use Euclidean metric as our dissimilarity measure, dis(·, ·). In

order to describe our algorithms clearly, some concepts are presented first.

Definition 1. The δ near neighbor point set δ(P) of point P is defined as:

δ(P) = {X | dis(X, P) ≤ δ, X S, X ≠ P}, (1)

where dis(X, P) is the dissimilarity measure between point X and point P in the data

set S. Parameter δ is a predefined threshold.

Definition 2 (Böhm et al., 2010). The extensive Kuramoto model for clustering

is defined as:

Point X = (x1, x2, …, xd) is a vector in d-dimensional Euclidean space. If each

point X is regarded as a phase oscillator, according to Kuramoto model, with an

interaction in the δ near neighbor point set δ(X), then the dynamics of the k-th

dimension xk (k = 1, 2, …, d) of point X over time is described by:

xk(t+1) = xk(t) + 



))((

))()(sin(
|))((|

1

tXY
kk txty

tX 
, (2)

where X(t = 0) = (x1(0), x2(0), …, xd(0)) represents the original phase of point X, and

xk(t+1) describes the renewal phase value in the k-th dimension of point X at the t step

evolution.

Definition 3 (Chen, 2017). The t-step δ near neighbor undirected graph Gδ(t) of

the data set S = {X1, X2, …, Xn} is defined as:

Gδ(t) = (V(t), E(t)), (3)

where V(t = 0) = S ={X1, X2, …, Xn} is the original vertex set, E(t = 0) = {(Xi, Xj) | Xj

 δ(Xi), Xi (i = 1, 2, …, n)  S} is the original edge set. V(t) ={X1(t), X2(t), …, Xn(t)}

 6

is the t-step vertex set of the data set S, E(t) = {(Xi(t), Xj(t)) | Xj(t)  δ (Xi(t)), Xi(t) (i =

1, 2, …, n)  V(t)} is the t-step edge set, and the weight computing equation of edge

(Xi, Xj) is weight(Xi, Xj) = dis(Xi, Xj).

Definition 4. The t-step average length of edges, AveLen(t), in a t-step δ near

neighbor undirected graph Gδ (t) is defined as:

AveLen(t) = 
)(|)(|

1

tEe

e
tE

, (4)

where E(t) is the t-step edge set of Gδ(t), and |e| is the length (or weight) of edge e.

The average length of edges in Gδ(t) decreases to its limit 0, that is AveLen(t) → 0, as

more δ near neighbor points synchronize together with time evolution. In our

algorithm, AveLen(t) can be used to characterize the degree of local synchronization.

Definition 5 (Böhm et al., 2010). The cluster order parameter rc characterizing

the degree of local synchronization is defined as:

rc =  
 


n

i XY

YXdise
n 1)(

),(1



. (5)

Definition 6 (Chen, 2017). A linear version of Vicsek model for clustering is

defined as:

Point X = (x1, x2, …, xd) is a vector in d-dimensional Euclidean space. If each

point X is regarded as an agent according to a linear version of Vicsek model, with an

interaction in the δ near neighbor point set δ (X), then the dynamics of point X over

time according to Jadbabaie et al. (2003) and Wang et al. (2009) is described by:

X(t+1) =   









 
))((

)(
))((1

1

tXY

YtX
tX 

, (6)

where X(t = 0) = (x1(0), x2(0), …, xd(0)) represents the original location of point X,

and X(t+1) describes the renewal location of point X at the t step evolution.

Definition 7. A core is defined as:

In our Shrinking Synchronization Clustering (SSynC) algorithm, point X can be

regarded as an active core C if and only if:

(a). Point X is active in the current synchronization step.

(b). Point X is not labeled as an attributive point of another core.

At this time, the points in the ε near neighbor point set ε(C) of core C should be

labeled as attributive points of core C, where parameter ε is a small real number that is

less than parameter δ.

The data structure of core C can be defined as:

DS(C) = (Core_Id, Core_Location, Parent_CoreId, Number_ContainingPoints).

(7)

 In Eq.(7),

Core_Id is the identification number of core C in the original data set.

 7

Core_Location is the current location of core C. It is a d-dimensional vector

expressed by C = (c1, c2, …, cd).

Parent_CoreId is the identification number of the parent of core C in the original

data set. At the original step of dynamic clustering, the Parent_CoreId of core C is

itself. At the middle or final of dynamic clustering, the Parent_CoreId of core C is the

Core_Id of the attributive core of core C.

Number_ContainingPoints is the number of points that are represented or

contained by the core C.

The main purpose of introducing the concept of core is to record the clustering

information in SSynC algorithm.

Definition 8. A synchronization model for clustering a core set is defined as:

Core C = (c1, c2, …, cd) is a vector in a d-dimensional Euclidean space. If each

core C is regarded as an agent according to an extended linear version of Vicsek

model (this model is also named as: the linear weighted Vicsek model), with an

interaction in the δ near neighbor point set δ(C), then the dynamics of core C over

time is described by:

C(t+1) =  









  


))((
))((

)()())((
))())(((

1

tCY
tCY

YYcounttCtCcount
YcounttCcount 



, (8)

where C(t = 0) = (c1(0), c2(0), …, cd(0)) represents the original phase of core C, C(t+1)

describes the renewal phase value of core C at the t step evolution, and count(C)

represents the value of the Number_ContainingPoints of core C.

In the dynamical clustering, if the Parent_CoreId of core C is itself and the value

of the Number_ContainingPoints of core C is equal to 1, then Eq.(8) is equivalent with

Eq.(6). Actually, in the dynamical clustering, if core C is represented by its parent core

(which means that the value of the Number_ContainingPoints of the parent core is

added by count(C)), then Eq.(8) can be used for saving time and space in SSynC

algorithm.

Definition 9. The data set S = {X1, X2, …, Xn} using the linear weighted Vicsek

model described by Eq.(8) for clustering is said to achieve local synchronization if the

final locations of all points satisfy:

Xi(t = T) = RCk(T), i = 1, 2, …, n, k = 1, 2, …, K, (9)

where T is the times of the final synchronization, K is the number of the root cores in

the final synchronization step, RCk(T) is the k-th root core in the final synchronization

step.

Usually, the final location of point Xi (i = 1, 2, …, n) may depend on parameter δ

and the original locations of itself and other points in the data set S.

Definition 10. The data set S = {X1, X2, …, Xn} uses the linear weighted Vicsek

model described by Eq.(8) for synchronization clustering. In each evolution step of

synchronization clustering, all cores become some trees with synchronization action.

When the number of root cores in the t-step evolution is equal to that in the (t+1)-step

 8

evolution, an average difference between the root cores in the t-step evolution and the

root cores in the (t+1)-step evolution is defined as:

differInRootCores(t, t+1) =





tn

k
kk

t

LocationCoretRCLocationCoretRCdis
n 1

)_).1(,_).((
1

, k = 1, 2, ···, nt, (10)

where nt is the number of the root cores in the t-step evolution, RCk(t).Core_Location

is the location of the k-th root core in the t-step evolution, and

dis(RCk(t).Core_Location, RCk(t+1).Core_Location) is the dissimilarity between the

location of the k-th root core in the t-step evolution and the location of the k-th root

core in the (t+1)-step evolution.

 Apparently, if the average difference between the root cores in the t-step

evolution and the root cores in the (t+1)-step evolution computed by Eq.(10) is less

than a predefined threshold, we think SSynC algorithm can exit.

Theorem 1. The data set S = {X1, X2, …, Xn} using the linear weighted Vicsek

model described by Eq.(8) for clustering will achieve local synchronization, if

parameter δ satisfies:

δmin ≤ δ ≤ δmax, (11)

Suppose emin (MST(S)), which is also equal to min{dis(Xi, Xj)| (Xi, Xj ∈ S) ∧ (Xi

≠ Xj)}, is the weight of the minimum edge in the Minimum Span Tree (MST) of the

complete graph of the data set S, and emax(MST(S)) is the weight of the maximum edge

in the MST of the complete graph of the data set S. Apparently, there is δmin =

emin(MST(S)). If the data set S has no isolate, then usually there is emax(MST(S)) ≤ δmax

≤ max{dis(Xi, Xj)| (Xi, Xj ∈ S) ∧ (Xi ≠ Xj)}. If the data set S has isolates, we should

filtrate all isolates at first.

Proof: if δ < δmin, then for any point Xi (i = 1, 2, …, n), there is δ(Xi) = Ø. In this

case, any point in the data set S cannot synchronize with other points, so

synchronization will not happen.

In another case, that is δ > δmax, then for any point Xi (i = 1, 2, …, n), there is

δ(Xi(t)) = S - {Xi(t)}. According to Eq.(8), there is Xi(t+1) = mean (S). Here, mean (S)

is the mean of all points in the data set S. Any point in the data set S will synchronize

with all other points, so global synchronization happens. After one time

synchronization, all points in the data set S will synchronize to their mean location.

Apparently, if δmin ≤ δ ≤ δmax, local synchronization will happen. And the final

result of synchronization is affected by the value of parameter δ and the original

locations of all points in the data set S.

Property 1. The data set S = {X1, X2, …, Xn} using the linear weighted Vicsek

model described by Eq.(8) for clustering will obtain an effective result of local

synchronization with some obvious clusters or isolates, if parameter δ satisfies:

max{longestEdgeInMst(clusterk) | k = 1, 2, …, K } < δ < min{dis(clusteri, clusterj)

| i ≠ j, i, j = 1, 2, …, K}, (12)

 9

where longestEdgeInMst(clusterk) is the weight of the longest edge in the minimum

spanning tree of the k-th cluster, dis(clusteri, clusterj) is the weight of the minimum

edge connecting the i-th cluster and the j-th cluster, and K is the number of clusters in

the final synchronization step.

Proof: Suppose the data set S = {X1, X2, …, Xn} has K obvious clusters. If

parameter δ is larger than or equal to max{longestEdgeInMst(clusterk) | k = 1, 2, …,

K }, then data points in the same cluster will synchronize. If parameter δ is less than

min{dis(clusteri, clusterj) | i, j = 1, 2, …, K}, then data points in different obvious

clusters cannot synchronize.

4. A shrinking synchronization clustering algorithm based on a linear

weighted Vicsek model
SSynC algorithm has similar process with SynC algorithm (Böhm et al., 2010)

and ESynC algorithm except using a different dynamical synchronization clustering

model. The synchronization model represented by Eq.(8) can be used for clustering a

core set.

Although we use the Euclidean metric as our dissimilarity measure in this paper,

the algorithm is by no means restricted to this metric and this kind of data space. If we

can construct a proper dissimilarity measure in a hybrid-attribute space, the algorithm

can also be used.

4.1 The description of SynC algorithm

The original synchronization clustering algorithm named as SynC is developed

by Böhm et al. (Böhm et al., 2010). In order to make a difference between SynC

algorithm and our algorithm, we introduce it below using our language according to

the description of (Böhm et al., 2010).

Algorithm name: Synchronization Clustering algorithm (SynC).

Input: data set S = {X1, X2, …, Xn}, dissimilarity measure dis(·, ·), and parameter

δ.

Output: The final convergent result S(T) = {X1(T), X2(T), …, Xn(T)} of the

original data set S.

The main process of SynC algorithm is described as follows:
 1 IterateStep t is set as zero firstly, that is: t ← 0;

 2 for (i = 1; i ≤ n; i++)

 3 Xi(t) ← Xi;

 4 while (the dynamical clustering does not satisfy its convergent condition)

 5 {

 6 for (i = 1; i ≤ n; i++)

 7 {

 8 Construct the δ near neighbor point set δ(Xi(t)) for each point Xi(t) (i = 1, 2, …, n)

using Eq.(1) of Definition 1;

 9 Compute the renewal value, Xi(t+1), of Xi(t) using Eq.(2) of Definition 2;

 10 }

 11 Compute the cluster order parameter rc of all points using Eq.(5) of Definition 5;

 10

 12 IterateStep t is increased by 1, that is: t++;

 13 if (rc converges or (t == 50))

 14 We think the dynamical clustering reaches its convergent result, and then exit

from the while repetition;

 15 }

 16 Finally we get a convergent result S(T) = {X1(T), X2(T), …, Xn(T)}, where T is the times of

the above while repetition. The final convergent set S(T) reflects the natural clusters or isolates of the

data set S.
4.2 The description of ESynC algorithm

Effective Synchronization Clustering algorithm (ESynC) is developed by Chen

(Chen, 2017). In order to make a difference between ESynC algorithm and our

algorithm, we introduce it simply below.

Algorithm name: an Effective Synchronization Clustering algorithm (ESynC).

Input: data set S = {X1, X2, …, Xn}, dissimilarity measure dis(·, ·), and parameter

δ.

Output: The final convergent result S(T) = {X1(T), X2(T), …, Xn(T)} of the

original data set S.

Procedure:

Step1. Initialization:
 1 IterativeStep t is set as zero firstly, that is: t ← 0;

 2 for (i = 1; i ≤ n; i++)

 3 Xi(t) ← Xi;

Step2. Execute the iterative synchronization process of the dynamical clustering:
 4 while ((the dynamical clustering does not satisfy its convergent condition) and (t < 50))

 5 {

 6 for (i = 1; i ≤ n; i++)

 7 {

 8 Construct the δ near neighbor point set δ(Xi(t)) for each point Xi(t) (i = 1,

2, …, n) using Eq.(1) of Definition 1;

 9 Compute the renewal value, Xi(t+1), of Xi(t) using Eq.(6) of Definition 6;

 10 }

 11 Compute the t-step average length of edges of all points, AveLen(t), using Eq.(4)

of Definition 4;

 /* We can also compute the cluster order parameter rc using Eq.(5) of Definition 5

instead of computing AveLen(t). */

 12 IterativeStep t is increased by 1, that is: t++;

 13 if (AveLen(t) → 0) /* AveLen(t) → 0 is equivalent with rc → the limit of rc */

 14 We think the dynamical clustering reaches its convergent result, and then exit

from the while repetition;

 15 }

Step3. Finally we get a convergent result S(T) = {X1(T), X2(T), …, Xn(T)}, where

T is the times of the while repetition in Step2. The final convergent set S(T) reflects

the natural clusters or isolates of the data set S.

4.3 The description of SSynC algorithm

Algorithm name: a Shrinking Synchronization Clustering algorithm (SSynC).

 11

Input: data set S = {X1, X2, …, Xn}, dissimilarity measure dis(·, ·), parameter δ,

and parameter ε.

Output: The final core set CS(T) = {C1(T), C2(T), …, Cn(T)}.

Procedure:

Step1. Initialization:
 1 IterateStep t is set as zero firstly, that is: t ← 0;

 /* Create initial core set C(t = 0) = {C1(t = 0), C2(t = 0), …, Cn(t = 0)}. */

 2 for (i = 1; i ≤ n; i++)

 3 {

 4 Ci(t = 0).Core_Id ← i;

 5 Ci(t = 0).Core_Location ← Xi;

 6 Ci(t = 0).Parent_CoreId ← i;

 7 Ci(t = 0).Number_ContainingPoints ← 1;

 8 } // for

 /* Create initial active point set AP(t = 0). */

 9 AP(t = 0) ← {X1, X2, …, Xn};

 10 NumberOfAP(t = 0) ← n; /* NumberOfAP(t = 0) is used to record the number of points

in the active point set AP(t = 0). */

Step2. Execute the iterative synchronization process of the dynamical clustering:
 11 while ((the dynamical clustering does not satisfy its convergent condition) and (t < 50))

 12 {

 13 for (each point Y(t) in the active point set AP(t))

 14 {

 15 According to Definition 1, in the active point set AP(t) construct the δ near

neighbor point set δ(Y(t)) for point Y(t);

 16 Compute the renewal value, Y(t+1), of Y(t) using Eq.(8) of Definition 8;

 17 } // for

 /* After the above for repetition, we get a point set AP(t+1) that is composed of

the renewal value Y(t+1) of each point Y(t) in the active point set AP(t). */

 18 for (each unlabeled point Y(t+1) in the point set AP(t+1))

 19 {

 20 The member “Core_Location” of the corresponding core of point Y(t+1) is

updated by the value of Y(t+1);
 21 According to Definition 1, in the point set AP(t+1) construct the ε near

neighbor point set ε(Y(t+1)) for point Y(t+1);

 22 for (each unlabeled point Z(t+1) in the ε near neighbor point set ε(Y(t+1)) of

point Y(t+1))

 23 {

 24 Point Z(t+1) is labeled as inactive point;

 25 The member “Parent_CoreId” of the corresponding core of point Z(t+1)

is assigned by the member “Core_Id” of the corresponding core of point Y(t+1);

 26 The member “Number_ContainingPoints” of the corresponding core of

point Z(t+1) is added into the member “Number_ContainingPoints” of the corresponding core of point

Y(t+1);

 27 } // for

 28 } // for

 29 Delete all labeled inactive points from AP(t+1); /* After this deleting process,

 12

AP(t+1) only contains those active points, which are also the root nodes in its disjoint-set forest. */

 30 NumberOfAP(t+1) is assigned by the current number of unlabeled points of the

renewal active point set AP(t+1);

 31 IterateStep t is increased by 1, that is: t++;

 32 if (NumberOfAP(t+1) == NumberOfAP(t) and (the difference between AP(t+1)

and AP(t) is very small)) /* NumberOfAP(t+1) == NumberOfAP(t) means the number of points in the

renewal active point set AP(t+1) is equal to the number of points in the active point set AP(t) , and the

difference between AP(t+1) and AP(t) can be computed by Eq.(10). */

 33 We think the dynamical clustering reaches its convergent result, and then exit

from the while repetition;

 34 } // while

 35 Compress the paths of some inactive cores in the core set CS(t) just like the joint-set

method such that the largest height of leaf cores is less than or equal to 2 (Note: the height of root cores

is 1).

Step3. Finally we get a core set CS(T) = {C1(T), C2(T), …, Cn(T)}, where T is the

times of the while repetition in Step2. The final set CS(T) reflects the natural clusters

or isolates of the data set S.

For example, if Ci(T).Core_Id is equal to Ci(T).Parent_CoreId and

Ci(T).Number_ContainingPoints is equal to 1 are satisfied, we can think the i-th point

is an isolate; if Ci(T).Core_Id is equal to Ci(T).Parent_CoreId and

Ci(T).Number_ContainingPoints >> 1 are satisfied, we can think the i-th point is a

cluster core that represents some other points.

Note: Parameter ε that is less than parameter δ is a very small real number.

Usually, if the distance of two points is less than ε, then they should always be in the

same cluster.

4.4 Compare the dynamic clustering processes of SynC algorithm, ESynC

algorithm, and SSynC algorithm

SynC algorithm uses the extensive Kuramoto model described by Eq.(2) that is a

nonlinear renewal model at each step evolution. ESynC algorithm uses the linear

version of Vicsek model described by Eq.(6) that is a linear renewal model at each

step evolution. And SSynC algorithm uses the synchronization model described by

Eq.(8) that is a linear weighted renewal model at each step evolution.

Fig. 1 uses 800 data points from DS0 to compare the tracks of the clustering

processes of SynC algorithm, ESynC algorithm, and SSynC algorithm. Fig. 2 (a)

compares the cluster order parameter with t-step evolution (t: 0 - 49) among SynC,

ESynC, and SSynC. Fig. 2 (b) compares the t-step average length of edges (t: 0 - 49)

among SynC, ESynC, and SSynC. And Fig. 2 (c) compares the relation between the

final number of clusters and the value of parameter δ among the three algorithms.

From Fig. 1, we observe that ESynC and SSynC have better local

synchronization effect than SynC. From Fig. 2 (a) and (b), we observe that the t-step

average length of edges is better than the cluster order parameter with t-step evolution

in measuring the final synchronization results. From Fig. 2 (c), we observe that the

 13

smaller parameter δ is set in SynC, ESynC, and SSynC, the larger the final number of

clusters is. For many data sets with obvious clusters, ESynC and SSynC can often get

the correct final number of clusters when parameter δ chooses any value in its valid

interval, and the final number of clusters using SynC algorithm is much larger than

the actual number of clusters when parameter δ chooses any value in a long interval.

(a) t = 0 (The original locations of 800 data points from DS0)

 (b-1) SynC algorithm, t = 1 (b-2) ESynC algorithm, t = 1

(b-3) SSynC algorithm, t = 1

 14

(c-1) SynC algorithm, t = 2 (c-2) ESynC algorithm, t = 2

(c-3) SSynC algorithm, t = 2

(d-1) SynC algorithm, t = 5 (d-2) ESynC algorithm, t = 5

 15

(d-2) SSynC algorithm, t = 5

(e-1) SynC algorithm, t = 45 (e-2) ESynC algorithm, t = 45

(e-3) SSynC algorithm, t = 45

Fig. 1. Compare the dynamical synchronization clustering processes with time evolution among

SynC algorithm, ESynC algorithm, and SSynC algorithm. From (a) to (e) of Fig. 1, the data set is 800

points from DS0, parameter δ is set as 18 in the three algorithms, and parameter ε is set as 1 in SSynC

algorithm.

 16

(a) The cluster order parameter with t-step evolution (t: 0 - 49)

(b) The t-step average length of edges (t: 0 - 49)

(c) The relation between the final number of clusters and parameter δ (δ: 0 - 99).

Fig. 2. Compare SynC algorithm, ESynC algorithm, and SSynC algorithm. In Fig. 2, the data set is

800 points from DS0, and parameter ε is set as 1 in SSynC algorithm. In Fig.2 (a) and (b), parameter δ

is set as 18 in the three algorithms.

4.5 Time and space complexity analysis of SSynC algorithm

Step1 of SSynC algorithm needs Time = O(n) and Space = O(n).

 17

In the first synchronization process of Step2, constructing the δ near neighbor

point sets for all points needs Time = O(dn2) and Space = O(nd) if using a simple

method needs. In the t-step synchronization process of Step2, constructing the δ near

neighbor point sets for all points needs Time = O(dn(t)
2) and Space = O(n(t)d) if using a

simple method, where n(t) is the number of active cores in the t-step synchronization

process. In constructing the δ near neighbor point sets, the time cost can be decreased

by using the strategy of “space exchanges time”.

Step3 needs Time = O(n) and Space = O(n).

According to Böhm et al. (2010) and our analysis, SSynC algorithm needs Time

= O(d·(n(t = 0)
2 + n(t = 1)

2 + … + n(t = T-1)
2)) < O(Tdn2), which is usually less than SynC

algorithm and ESynC algorithm. Here T is the times of the while repetition in Step2.

4.6 Setting parameters in SSynC algorithm

Parameter δ in SSynC algorithm that affects the clustering results is the same as

SynC algorithm and ESynC algorithm. In Böhm et al. (2010), parameter δ is

optimized by the MDL principle. In Chen (2015), two other methods were presented

to estimate parameter δ. Here, we can also select a proper value for parameter δ

according to Theorem 1 and Property 1.

Parameter ε affects the time cost of SSynC algorithm slightly. In simulations, we

get the same clustering results except time cost for several different values (such as

0.00001, 0.0001, 0.001, 0.01, 0.1, 1, and 10) of parameter ε. Usually, the larger

parameter ε is set, the less time cost SSynC algorithm needs.

Fig. 3 describes the number of active cores with time evolution based on SSynC

algorithm using four different data sets. From Fig. 3, we observe that different data

sets have different number of active cores with time evolution.

(a) Parameter ε = 0.00001 (b) Parameter ε = 1

Fig. 3. The number of active cores with time evolution based on SSynC algorithm using four

different data sets. In Fig. 3, parameter δ is set as 22, parameter ε is set as 0.00001 and 1, and the

numbers of points in the four data sets are all set as 2000.

 18

(a) DS1

Fig. 4. The number of active cores with time evolution based on SSynC algorithm using several

different values of parameter ε. In Fig. 4, parameter δ = 18 in DS1 and DS3, δ = 20 in DS2, δ = 22 in

DS4; parameter ε is set as seven different value (0.00001, 0.0001, 0.001, 0.01, 0.1, 1, 10) respectively;

and the number of points in the four data sets is all set as 2000. Fig. 4 (b), (c), and (d) are presented in

Online Resource of Supplementary Material.

(a) DS1

Fig. 5. The number of active cores with time evolution based on SSynC algorithm using several

different values of parameter δ. In Fig. 5, parameter δ is set as six different values (16, 20, 24, 28, 32,

36) respectively, parameter ε is set as 1, and the numbers of points in the four data sets are all set as

2000. Fig. 5 (b), (c), and (d) are presented in Online Resource of Supplementary Material.

Fig. 4 describes the number of active cores with time evolution using SSynC

algorithm for several different values of parameter ε. From Fig. 4, we observe that

parameter ε can affect the number of active cores with time evolution, which affects

the time cost of SSynC algorithm.

Fig. 5 describes the number of active cores with time evolution using SSynC

algorithm for different values of parameter δ. From Fig. 5, we observe that parameter

δ can affect the number of active cores with time evolution, which affects the time

cost of SSynC algorithm.

4.7 The improvement of SSynC algorithm

One improved version of SSynC algorithm can be designed by combining

multidimensional grid partitioning method and Red-Black tree structure to construct

the near neighbor point sets of all active cores. The improving method that can

 19

decrease the time cost of constructing near neighbor point set is introduced in Chen

(2014). Here, we describe this method as possible as simply. Generally, we first

partition the data space of the data set S = {X1, X2, …, Xn} by using a kind of

multidimensional grid partitioning method. Then we can obtain a set of all grid cells.

Last design an effective index of all grid cells and constructing the δ near neighbor

grid cell set for each grid cell. If every grid cell uses a Red-Black tree to index its

active cores in each synchronization step, then constructing the δ near neighbor point

set for every active core will become quicker when the number of grid cells is proper.

Before iterative evolution, if we set a proper value for parameter δ to filtrate

isolates, then these isolates can be set as inactive cores that will not be operated in the

next iterative evolution. This improvement of implementation technique is often

effective for some data sets.

Another improvement in time cost of SSynC algorithm is described in another

paper.

4.8 The convergence of SSynC algorithm

The renewal computing of SSynC algorithm is similar to ESynC algorithm. In all

simulations, if using SSynC algorithm to synchronize the original data set S, then all

root nodes of its final core set C(T) = {C1(T), C2(T), …, Cn(T)} will stay on some

steady locations after several iterations (many simulations only need 4 - 5 times). In

the final convergent core set C(T), those root cores that represent some points can be

regarded as their cluster centers, and some root cores that represent only one or

several points are regarded as the final synchronization locations of isolates.

5. Simulated experiments
5.1 Experimental design

Our experiments are finished in a personal computer (Capability Parameters:

Pentium(R) Dual-Core CPU E5400 2.7 GHz, 2G Memory). Experimental programs

are developed using C and C++ language under Visual C++6.0 of Windows XP.

To verify the improvement in clustering effect and time cost of our algorithm,

there will be some simulated experiments of some artificial data sets, several UCI data

sets (Frank et al., 2010), and three bmp pictures in the next sections.

DS0 is produced in a 2-D region [0, 200] × [0, 200] by a program. Four kinds of

artificial data sets (DS1 - DS4) are produced in a 2-D region [0, 600] × [0, 600] by a

program. Other kinds of artificial data sets (DS5 - DS16) are produced in a range [0,

600] in each dimension by a similar program. Iris et al. are several UCI data sets

(Frank A, et al., 2010) that used in our experiments. Three bmp pictures (named as

Picture1, Picture2, and Picture3) are obtained from Internet. The description of the

experimental data sets is presented in Table 1 of Appendix 1 of Supplementary

Material.

 20

In section 5.2, SSynC algorithm will be compared with SynC algorithm, ESynC

algorithm, and some other classic clustering algorithms (K-Means (MacQueen, 1967),

FCM (Bezdek, 1981), AP (Frey et al., 2007), DBSCAN (Ester et al., 1996), Mean

Shift (Fukunaga et al., 1975; Comaniciu et al., 2002)) in clustering quality and time

cost using some artificial data sets.

In section 5.3, SSynC algorithm will be compared with SynC algorithm, ESynC

algorithm, and some other classic clustering algorithms in clustering quality and time

cost using several UCI data sets.

In section 5.4, SSynC algorithm will be compared with SynC algorithm, ESynC

algorithm, and some other classic clustering algorithms in compress effective of

clustering results, clustering quality, and time cost using three bmp pictures.

In the experiments, parameter δ used in SynC, ESynC, SSynC, DBSCAN, and

Mean Shift is the threshold of Definition 1. In DBSCAN algorithm, parameter MinPts

is set as 4, and parameter Eps is the same as parameter δ.

The detailed discussion on how to construct δ near neighbor point sets is

described in Chen. (2013). How to select a proper value for parameter δ for SynC

algorithm is discussed in Böhm et al. (2010). SSynC algorithm and ESynC algorithm

can use the same method as SynC algorithm to select a proper value for parameter δ.

In SSynC algorithm, parameter ε has trivial effect in time cost and clustering results.

In our simulated experiments, the maximum times of synchronization moving in

the while repetition of SynC algorithm, ESynC algorithm, and SSynC algorithm is set

as 50.

Comparison results of these clustering algorithms are presented by some figures

(Figs. 6 - 8 and Figs. 7 - 9 of Appendix 1 of Supplementary Material) and some tables

(Tables 1 - 7). And performance of algorithms is measured by time cost (second).

Clustering quality of algorithms is measured by two robust information-theoretic

measures, Adjusted Mutual Information (AMI) (Vinh et al., 2010) and Normalized

Mutual Information (NMI) (Strehl et al., 2002), which are presented in Appendix 2 of

Supplementary Material. According to the opinions of Vinh et al. (2010), the higher

the value of the two measures gets, the better the clustering quality of algorithm is. In

simulations, we use the Matlab code from Vinh et al. (2010) to compute the two

clustering quality measures.

5.2 Experimental results of some artificial data sets (DS1 - DS16)

5.2.1 Compare the clustering results among SynC algorithm, ESynC algorithm, and

SSynC algorithm

 Table 1 presents the comparison results of three different synchronization

clustering algorithms (SynC, ESynC, and SSynC) by using four artificial data sets

(from DS1 - DS4). In Table 1, by intercomparing SynC, ESynC, and SSynC, we

observe that SSynC is the fastest clustering algorithm. At the same time, SSynC and

ESynC can get better local synchronization results than SynC in the four data sets.

 21

Table 1. Compare three different synchronization clustering algorithms (SynC, ESynC, and SSynC) by

using four artificial data sets (DS1 - DS4). In Table 1, parameter δ = 18, the number of data points n =

10000, and parameter ε = 0.00001 in SSynC algorithm.

Measure indexes
of algorithms

Name of algorithms
Data sets
DS1 DS2 DS3 DS4

Spend time (second)
SynC 448 553 538 525
ESynC 56 70 107 81
SSynC 52 69 34 52

Iterative times
SynC 41 50 50 50
ESynC, SSynC 4 5 8 6

The number of steady locations
SynC 254 379 260 431
ESynC, SSynC 14 5 25 8

Note: The bold in Table 1 marks the better results of SSynC algorithm or ESynC algorithm.
5.2.2 Compare the clustering results among SynC algorithm, ESynC algorithm,

SSynC algorithm, and some classical clustering algorithms
Table 2. Compare the clustering quality of several clustering algorithms (SynC, ESynC, SSynC, and

some classical clustering algorithms) using six kinds of artificial data sets (DS2, DS4, DS5, DS6, DS7,

and DS8). In Table 2, parameter δ = 18 in DS2, DS4, DS5, and DS6; parameter δ = 30 in DS7 and DS8;

parameter ε = 0.00001 in SSynC algorithm.

(a)

Measure indexes
of algorithms

Name of
algorithms

Data sets
DS2 (n = 400) DS4 (n = 400) DS2 (n = 800) DS4 (n = 800)

NMI

SSynC,
ESynC

1.0000 0.9694 1.0000 0.9643

SynC 0.5505 0.6324 0.5362 0.6099
K-Means 0.8670 0.9185 0.8659 0.9682
FCM 1.0000 0.9633 1.0000 0.9615
AP 0.7966 0.9697 0.7355 0.8375
DBSCAN 1.0000 0.9643 1.0000 0.9643
Mean Shift 0.7978 0.9028 0.7799 0.9103

AMI

SSynC,
ESynC

1.0000 0.9682 1.0000 0.9286

SynC 0.1237 0.1275 0.1653 0.1785
K-Means 0.8255 0.8980 0.8266 0.9676
FCM 1.0000 0.9616 1.0000 0.9603
AP 0.6252 0.9684 0.5333 0.7157
DBSCAN 1.0000 0.9274 1.0000 0.9286
Mean Shift 0.6251 0.8268 0.6022 0.8758

The number of
clusters

SSynC,
ESynC

5 9 5 8

SynC 227 255 314 357
K-Means 5 (predefined) 9 (predefined) 5 (predefined) 9 (predefined)
FCM 5 (predefined) 9 (predefined) 5 (predefined) 9 (predefined)
AP 13 9 20 19
DBSCAN 5 8 5 8
Mean Shift 15 15 17 14

 22

(b)

Measure
indexes of
algorithms

Name of
algorithms

Data sets

DS5 (n = 10000) DS6 (n = 10000) DS7 (n = 10000) DS8 (n = 10000)

NMI

SSynC,
ESynC

0.9765 1.0000 1.0000 1.0000

SynC 0.6231 0.5411 0.5205 0.5194
K-Means 0.8872 NaN (Matlab) 0.9194 0.8437
FCM 0.9788 0.5228 0.5226 0.5282
DBSCAN 0.9765 1.0000 1.0000 1.0000
Mean Shift 0.9708 1.0000 1.0000 1.0000

AMI

SSynC,
ESynC

0.9534 1.0000 1.0000 1.0000

SynC 0.3539 0.0973 0.0051 1.5118e-04
K-Means 0.8426 NaN (Matlab) 0.8892 0.7783
FCM 0.9781 0.5228 0.5226 0.2788
DBSCAN 0.9534 1.0000 1.0000 1.0000
Mean Shift 0.9534 1.0000 1.0000 1.0000

The number of
clusters

SSynC,
ESynC

11 12 12 12

SynC 578 5577 9729 9992
K-Means 12 (predefined) 1 (+11 null clusters) 12 (predefined) 12 (predefined)
FCM 12 (predefined) 2 (+10 null clusters) 3 (+9 null clusters) 2 (+10 null clusters)
DBSCAN 11 12 12 12
Mean Shift 12 12 12 12

Note: NMI and AMI are two clustering quality measures presented in Strehl et al. (2002) and Vinh et al.

(2010). In Table 2, the largest values of NMI and AMI and acceptable number of clusters in every data

set are shown in bold.

 Table 2 presents the clustering quality of several clustering algorithms (SynC,

ESynC, SSynC, and some classical clustering algorithms) by using six kinds of

artificial data sets (DS2, DS4, DS5, DS6, DS7, and DS8). When computing the two

information-theoretic measures (NMI and AMI), the predefined cluster labels of the

eight artificial data sets are used in true_mem that is an input file of the MATLAB

code (Vinh et al., 2010). In Table 2, by intercomparing SynC, ESynC, SSynC, and

some classical clustering algorithms, we observe that SSynC and ESynC can get

acceptable clustering results in the eight data sets. Because the three data sets (DS4 (n

= 400), DS4 (n = 800), and DS5 (n = 10000)) have two connected clusters, SSynC and

ESynC do not get the largest values of NMI and AMI.

 23

(a) Clusters identified by ESynC (15 clusters or isolates) (b) Clusters identified by SynC (204 clusters

or isolates)

(c) Clusters identified by K-Means (predefined 5 clusters) (d) Clusters identified by FCM

(predefined 5 clusters)

(e) Clusters identified by AP (14 clusters) (f) Clusters identified by DBSCAN (5 clusters)

 24

(g) Clusters identified by Mean Shift (18 clusters) (f) Clusters identified by SSynC (15 clusters or

isolates)

Fig. 6. Compare the clustering results of several algorithms (DS1, n = 400)

 Figs. 6 and Figs. 7 - 9 of Appendix 1 of Supplementary Material present the

comparison clustering results of several clustering algorithms by some display figures

that can reflect the clustering quality clearly. In Fig. 6 and Figs. 7 - 9 of Appendix 1 of

Supplementary Material, parameter δ = 18 in SynC, ESynC, SSynC, DBSCAN, and

Mean Shift; the number of data points n = 400; parameter ε = 0.00001 in SSynC

algorithm.

 From Fig. 6 and Figs. 7 - 9 of Appendix 1 of Supplementary Material, we observe

that SSynC and ESynC can get better clustering quality (obvious clusters or isolates

displayed by figures) than SynC, AP, K-Means, and FCM in some artificial data sets

(from DS1 - DS4). Mean Shift, DBSCAN can obtain similar clustering quality

(obvious clusters displayed by figures) with SSynC and ESynC for some artificial data

sets (from DS1 - DS4). Especially, SynC, ESynC, and SSynC can all easily find some

isolates if setting a proper value for parameter δ, and SSynC gets the same clustering

results (the same clusters displayed by figures) with ESynC in these data sets.

Fig. 7. Compare several clustering algorithms in time cost by using four artificial data sets (DS1 - DS4,

n = 20000).

 Fig. 7 presents the comparison results of several clustering algorithms in time

cost. In Fig. 7, parameter δ = 18 in SynC, ESynC, SSynC, DBSCAN, and Mean Shift;

 25

the number of data points n = 20000; parameter ε = 0.00001 in SSynC algorithm.

In Fig. 7, intercomparing SynC, ESynC, SSynC, Mean Shift, DBSCAN, FCM,

and K-Means, we observe that SSynC is faster than SynC and ESynC in many cases,

and K-Means is the fastest clustering algorithm.

5.2.3 Compare the valid interval of parameter δ among SynC, ESynC, SSynC,

DBSCAN, and Mean Shift using some artificial data sets (DS5 - DS16)

 Here we compare the valid interval of parameter δ among SynC algorithm,

ESynC algorithm, SSynC algorithm, DBSCAN algorithm, and Mean Shift algorithm.

 Table 3 gives the comparison results among these clustering algorithms. Here, [ek ,

ek+1] can be obtained from Eq.(8) of Chen (2015). In Table 3, intercomparing SynC,

ESynC, SSynC, DBSCAN, and Mean Shift, we observe that the valid interval of

parameter δ in SSynC and ESynC is longer than it in DBSCAN in these data sets, the

valid interval of parameter δ in DBSCAN is consistent with [ek , ek+1], and parameter δ

in Mean Shift has the longest and largest valid interval.

 Table 4 compares the valid interval of parameter δ in SSynC algorithm for several

different value of parameter ε using some artificial data sets with different dimensions.

In Table 4, intercomparing several different value of parameter ε, we observe that the

valid interval of parameter δ has very small difference for several different value of

parameter ε if parameter ε is less than parameter δ.
Table 3. Compare the valid interval of parameter δ among SynC, ESynC, SSynC, DBSCAN, and Mean

Shift using some artificial data sets with different dimensions. In Table 3, n = 10000, parameter ε =

0.00001 in SSynC algorithm.

(a)

 Data sets
DS5 DS6 DS7 DS8

The valid interval of
parameter δ

SynC δ ∈ Ø δ ∈ Ø δ ∈ Ø δ ∈ Ø
SSynC, ESynC δ ∈ [9, 58] δ ∈ [11, 164] δ ∈ [16, 214] δ ∈[22, 298]
DBSCAN δ ∈ [2, 45] δ ∈ [7, 147] δ ∈ [12, 199] δ ∈[17, 281]
Mean Shift δ ∈[15, 60] δ ∈[17, 176] δ ∈[20, 285] δ ∈[22, 396]

[ek , ek+1] In MST of the complete graph of
the data set

[2.16, 45.42] [9.82, 147.48] [15.29, 199.78] [21.04, 281.19]

(b)

 Data sets
DS9 DS10 DS11 DS12

The valid interval of
parameter δ

SynC δ ∈ Ø δ ∈ Ø δ ∈ Ø δ ∈ Ø
SSynC, ESynC δ ∈ [9, 83] δ ∈ [10, 208] δ ∈ [13, 248] δ ∈ [19, 297]
DBSCAN δ ∈ [2, 68] δ ∈ [6, 193] δ ∈ [11, 232] δ ∈ [15, 279]
Mean Shift δ ∈ [14, 89] δ ∈ [15, 219] δ ∈ [19, 261] δ ∈ [21, 312]

[ek , ek+1] In MST of the complete graph of
the data set

[1.36, 68.69] [6.89, 193.04] [6.89, 193.04] [18.47, 279.44]

 26

(c)

 Data sets
DS13 DS14 DS15 DS16

The valid interval
of parameter δ

SynC δ ∈ Ø δ ∈ Ø δ ∈ Ø δ ∈ Ø
SSynC, ESynC δ ∈ [40, 854] δ ∈ [63, 1271] δ ∈ [87, 1850] δ ∈ [123, 2917]
DBSCAN δ ∈ [34, 841] δ ∈ [57, 1257] δ ∈ [90, 1841] δ ∈ [135, 2908]
Mean Shift δ ∈ [40, 872] δ ∈ [65, 1283] δ ∈ [92, 1864] δ ∈ [136, 2935]

[ek , ek+1] In MST of the complete
graph of the data set

[39.69, 841.37] [64.05, 1257.35] [97.34, 1841.97] [142.44, 2908.82]

Table 4. Compare the valid interval of parameter δ in SSynC algorithm for several different value of

parameter ε using some artificial data sets with different dimensions. In Table 4, n = 10000, parameter ε

is set as several different value respectively in SSynC algorithm.

(a) DS5 - DS8

 Data sets
DS5 DS6 DS7 DS8

The valid interval
of parameter δ in
SSynC algorithm
for several
different value of
parameter ε

ε = 0.00001 δ ∈ [9, 58] δ ∈ [11, 164] δ ∈ [16, 214] δ ∈ [22, 298]

ε = 0.0001 δ ∈ [9, 58] δ ∈ [11, 164] δ ∈ [16, 214] δ ∈ [22, 298]

ε = 0.001 δ ∈ [9, 58] δ ∈ [11, 164] δ ∈ [16, 214] δ ∈ [22, 298]

ε = 0.01 δ ∈ [9, 58] δ ∈ [11, 164] δ ∈ [16, 214] δ ∈ [22, 298]

ε = 0.1 δ ∈ [13, 58] δ ∈ [11, 164] δ ∈ [16, 214] δ ∈ [22, 298]

ε = 1 δ ∈ [12, 58] δ ∈ [11, 164] δ ∈ [16, 215] δ ∈ [22, 298]

ε = 10 δ ∈ [14, 22] δ ∈ [16, 161] δ ∈ [17, 215] δ ∈ [22, 298]

(b) DS9 - DS12

 Data sets
DS9 DS10 DS11 DS12

The valid interval
of parameter δ in
SSynC algorithm
for several
different value of
parameter ε

ε = 0.00001 δ ∈ [9, 83] δ ∈ [10, 208] δ ∈ [13, 248] δ ∈ [19, 297]

ε = 0.0001 δ ∈ [9, 83] δ ∈ [10, 208] δ ∈ [13, 248] δ ∈ [19, 297]

ε = 0.001 δ ∈ [9, 83] δ ∈ [10, 208] δ ∈ [13, 248] δ ∈ [19, 297]

ε = 0.01 δ ∈ [9, 83] δ ∈ [10, 208] δ ∈ [13, 248] δ ∈ [19, 297]

ε = 0.1 δ ∈ [9, 83] δ ∈ [10, 208] δ ∈ [13, 248] δ ∈ [19, 297]

ε = 1 δ ∈ [9, 83] δ ∈ [10, 208] δ ∈ [13, 248] δ ∈ [19, 297]

ε = 10 δ ∈ [14, 83] δ ∈ [16, 208] δ ∈ [16, 249] δ ∈ [19, 297]

(c) DS13 - DS16

 Data sets
DS13 DS14 DS15 DS16

The valid interval
of parameter δ in
SSynC algorithm
for several
different value of
parameter ε

ε = 0.01 δ ∈ [40, 854] δ ∈ [63, 1271] δ ∈ [87, 1850] δ ∈ [123, 2917]

ε = 0.1 δ ∈ [40, 854] δ ∈ [63, 1271] δ ∈ [87, 1850] δ ∈ [123, 2917]

ε = 1 δ ∈ [40, 854] δ ∈ [63, 1271] δ ∈ [87, 1851] δ ∈ [123, 2917]

ε = 10 δ ∈ [40, 854] δ ∈ [63, 1271] δ ∈ [87, 1851] δ ∈ [123, 2917]

ε = 20 δ ∈ [40, 854] δ ∈ [63, 1271] δ ∈ [87, 1851] δ ∈ [123, 2918]

ε = 30 δ ∈ [41, 854] δ ∈ [64, 1271] δ ∈ [87, 1851] δ ∈ [125, 2919]

ε = 40 δ ∈ [42, 854] δ ∈ [65, 1271] δ ∈ [89, 1851] δ ∈ [125, 2917]

Note: SSynC algorithm gets 12 clusters when parameter δ in its valid interval. In the DS5 (n = 10000)

data set, there are two clusters that are almost connected to become one cluster, so parameter ε affects

 27

the final number of clusters very much. For other data sets, parameter ε affects the final number of

clusters little.
5.3 Experimental results of several UCI data sets

 Because we do not know the true dissimilarity measure of these UCI data sets,

all points of these UCI data sets are standardized into a range [0, 600] in each

dimension in this experiment. When computing the two information-theoretic

measures (NMI and AMI), because we do not know the true cluster labels of these

UCI data sets, the class labels of these UCI data sets are used in true_mem that is an

input file of the MATLAB code (Vinh et al., 2010).

5.3.1 Compare the clustering results among SynC algorithm, ESynC algorithm, and

SSynC algorithm

Table 5 gives the comparison results of three synchronization clustering

algorithms (SynC, ESynC, and SSynC) by using several UCI data sets. In Table 5, by

comparing SynC, ESynC, and SSynC, we observe that SSynC and ESynC can get

better local synchronization results than SynC in the eight UCI data sets, and SSynC

is the fastest algorithm.
Table 5. Compare three synchronization clustering algorithms (SynC, ESynC, and SSynC) by using

several UCI data sets. In Table 5, parameter ε = 1 in SSynC algorithm.

 (a) The setting of parameter δ in three synchronization clustering algorithms for several UCI data sets

UCI data sets
Parameter δ in SynC and
ESynC

Iris 120

Wine 305

Wdbc 345

Glass 148

Ionosphere 615

Letter-recognition 210

Segmentation 205

Cloud 380

(b) Comparison results of the first four UCI data sets

Measure indexes
of algorithms

Name of
algorithms

Data sets
Iris Wine Wdbc Glass

Spend time
(second)

SynC 0 0 15 0

ESynC 0 0 2 0

SSynC 0 0 1 0

Iterative times
SynC 50 50 50 50

SSynC, ESynC 9 6 7 6

The number of
steady locations

SynC 147 178 569 213

SSynC, ESynC 5 19 35 35

The cluster order
parameter rc

SynC 0.05333 0 0 0.009346

ESynC 54.1067 47.8876 305.3497 55.1402

SSynC 0 0 0 0

AveLen(T)
SynC 83.9640 258.3664 276.6775 97.9706

SSynC, ESynC 0 0 0 0

 28

(c) Comparison results of the next four UCI data sets

Measure indexes
of algorithms

Name of
algorithms

Data sets
Ionosphere Letter-recognition Segmentation Cloud

Spend time
(second)

SynC 5 4186 1 79

ESynC 1 2270 0 10

SSynC 1 394 0 4

Iterative times
SynC 50 50 50 50

SSynC, ESynC 9 23 7 6

The number of
steady locations

SynC 350 18668 210 2043

SSynC, ESynC 85 34 38 2

The cluster order
parameter rc

SynC 0.005698 0.2596 0.000036 0.004965

ESynC 126.49 9107.0009 19.5905 1023

SSynC 0 0 0 0

AveLen(T)
SynC 401.6912 171.9401 142.6595 215.9900

SSynC, ESynC 0 0 0 0

Note: The bold in Table 5 marks the better results of SSynC algorithm or ESynC algorithm.

5.3.2 Compare the clustering results among SynC algorithm, ESynC algorithm,

SSynC algorithm, and some classical clustering algorithms
 Table 6. Compare the clustering quality of several clustering algorithms (SynC, ESynC, SSynC,

and some classical clustering algorithms) by using several UCI data sets. In Table 6, parameter ε = 1 in

SSynC algorithm.

 (a) The setting of parameter δ in several clustering algorithms for several UCI data sets

UCI data sets
Parameter δ in
SynC, ESynC, and SSynC

Parameter δ in
DBSCAN

Parameter δ in
Mean Shift

Iris 120 75 150
Wine 305 242.725 305
Wdbc 345 215 345
Glass 148 80 120
Ionosphere 615 350 710
Letter-recognition 210 160 220
Segmentation 205 176 270
Cloud 380 350 350

 29

(b) Comparison results of the first four UCI data sets

Measure
indexes of
algorithms

Name of
algorithms

Data sets

Iris Wine Wdbc Glass

NMI

SSynC, ESynC 0.7265 0.7615 0.4655 0.4540
SynC 0.4697 0.4578 0.3226 0.5306
K-Means 0.7145 0.8782 0.6232 0.3588
FCM 0.7919 0.4823 0.5947 0.4108
AP 0.6061 0.5382 0.3594 0.4257
DBSCAN 0.6465 0.3534 0.2904 0.2574
Mean Shift 0.7265 0.7612 0.2797 0.4662

AMI

SSynC, ESynC 0.7143 0.6057 0.3513 0.2872
SynC 0.0050. 3.2528e-16 6.8369e-16 0.0012
K-Means 0.7107 0.8735 0.6110 0.3265
FCM 0.7888 0.3820 0.5887 0.2525
AP 0.3982 0.2977 0.1453 0.2423
DBSCAN 0.5712 0.3423 0.2496 0.2065
Mean Shift 0.7143 0.5819 0.2086 0.2414

The
number of
clusters

SSynC, ESynC 3 (+ 2 isolates) 3 (+ 16 isolates) 2 (+ 33 isolates) 6 (+29 isolates)
SynC 2 (+ 145 isolates) 0 (+178 isolates) 0 (+ 569 isolates) 1 (+ 212 isolates)
K-Means 3 (predefined) 3 (predefined) 2 (predefined) 6 (predefined)

FCM 3 (predefined)
3 (predefined)
Final: 2 (+1 null
cluster)

2 (predefined)
 6 (predefined)
Final: 2 (+ 4 null
clusters)

AP 11 21 36 (+ 9 isolates) 12 (+ 14 isolates)
DBSCAN 3 (+ 35 isolates) 3 (+ 75 isolates) 2 (+ 194 isolates) 6 (+ 83 isolates)

Mean Shift 3 (+ 2 isolates) 3 (+ 18 isolates)
2 (+33 isolates
+ 1 null clusters)

6 (+ 43 isolates)

 30

(c) Comparison results of the next four UCI data sets

Measure
indexes of
algorithms

Name of
algorithms

Data sets

Ionosphere Letter-recognition Segmentation Cloud

NMI

SSynC, ESynC 0.3106 0.3986 0.6086 1
SynC 0.3339 0.5768 0.6033 0.3016
K-Means 0.1299 0.3572 0.6103 0.9944
FCM 0.1264 0.0095 0.4454 0.9944
AP 0.2809 - 0.6781 0.4107
DBSCAN 0.4061 0.1517 0.4592 1
Mean Shift 0.2831 0.3649 0.6447 1

AMI

SSynC, ESynC 0.1073 0.3986 0.4212 1
SynC 3.5016e-04 0.0166 -1.6974e-15 2.4432e-04
K-Means 0.1246 0.3484 0.5286 0.9944
FCM 0.1211 0.0042 0.2574 0.9944
AP 0.1002 - 0.4897 0.1653
DBSCAN 0.3417 0.1517 0.4016 1
Mean Shift 0.0991 0.3649 0.5048 1

The number
of clusters

SSynC, ESynC 2 (+ 83 isolates) 26 (+ 8 isolates) 7 (+ 31 isolates) 2
SynC 0 (+ 350 isolates) 845 (+ 17823 isolates) 0 (+ 210 isolates) 5 (+ 2038 isolates)
K-Means 2 (predefined) 26 (predefined) 7 (predefined) 2 (predefined)

FCM 2 (predefined)
26 (predefined)
Final: 2 (+ 24 null
clusters)

7 (predefined)
Final: 2 (+ 5 null
clusters)

2 (predefined)

AP 14 (+ 44 isolates) - 17 (+ 7 isolates) 66 (+ 1 isolate)
DBSCAN 2 (+ 145 isolates) 28 (+ 323 isolates) 7 (+ 51 isolates) 2

Mean Shift 2 (+ 76 isolates)
26 (+ 3 isolates + 1
null cluster)

7 (+ 22 isolates) 2

Note1: In the Letter-recognition data set, DBSCAN algorithm obtains 21 clusters and 243 isolates

when parameter δ = 160.0001, so we set parameter δ = 160 in DBSCAN. The sign ‘-‘ in AP column

means that the time cost is too larger.

Note2: In Table 6, the largest values of NMI and AMI in every data set are shown in bold.

Table 6 gives the comparison clustering quality of several clustering algorithms

(SynC, ESynC, SSynC, and some classical clustering algorithms) by using several

UCI data sets. In Table 6, by intercomparing these clustering algorithms, we observe

that SSynC and ESynC do not get the largest values of NMI and AMI except Cloud

data set. We think there are three reasons. First, we use the Euclidean metric to

compute the dissimilarity measure for the eight UCI data sets without any actual

knowledge on these data sets. Second, we observe that the largest values of NMI and

AMI do not mean the best clustering quality for some data sets. Third, the class labels

of these UCI data sets, which are not often consistent with the actual distributions of

clusters, are used as the benchmark of clusters in our simulations (Because we have

not better choice). From the final number of clusters of Table 6, we observe that

SSynC and ESynC can get better local synchronization results than some other

clustering algorithms for some UCI data sets.

 31

5.4 Experimental results of three bmp pictures

The value in RGB (Red, Green, and Blue) color space of pixel points are in a

range [0, 255] in each dimension. In Table 7 and Fig. 8, parameter ε = 1 in SSynC

algorithm.

5.4.1 Compare the clustering results among SynC algorithm, ESynC algorithm, and

SSynC algorithm
 Table 7. Compare three different synchronization algorithms (SynC, ESynC, and SSynC) by using

three picture data sets. In Table 7, parameter δ = 18 or 30 in SynC, ESynC, and SSynC; parameter ε = 1

in SSynC algorithm.

(a). parameter δ = 18

Measure indexes
of algorithms

Name of
algorithms

Data sets
Picture1 Picture2 Picture3

Spend time
(second)

SynC 662 676 9795
ESynC 132 122 3254
SSynC 18 16 297

Iterative times
SynC 50 50 50
SSynC, ESynC 10 9 16

The number of
steady locations

SynC 941 467 2868
SSynC, ESynC 13 5 14

The cluster order
parameter rc

SynC 58.6149 118.4821 88.4415
ESynC 2712.8392 3321.3298 6127.5541
SSynC 0 0 0

AveLen(T)
SynC 11.0537 10.5757 11.5605
SSynC, ESynC 0 0 0

(b). parameter δ = 30

Measure indexes
of algorithms

Name of
algorithms

Data sets
Picture1 Picture2 Picture3

Spend time
(second)

SynC 749 797 10930
ESynC 122 179 2139
SSynC 16 16 274

Iterative times
SynC 50 50 50
SSynC, ESynC 9 13 10

The number of
steady locations

SynC 928 472 2896
SSynC, ESynC 4 2 6

The cluster order
parameter rc

SynC 55.2653 106.8353 87.9900
ESynC 3630.5206 5015.0178 11105.6154
SSynC 0 0 0

AveLen(T)
SynC 16.9417 17.5013 19.0378
SSynC, ESynC 0 0 0

Note: The bold in Table 7 marks the better results of SSynC algorithm or ESynC algorithm.

Table 7 is the experimental results in time cost and local synchronization results

among SynC, ESynC, and SSynC by clustering pixel points of three bmp picture in

RGB color space. In Table 7, by comparing SynC, ESynC, and SSynC, we observe

that SSynC and ESynC are faster than SynC for these data sets. At the same time,

SSynC and ESynC can get better local synchronization results than SynC in these data

sets.

5.4.2 Compare the clustering compress results among SynC algorithm, ESynC

 32

algorithm, SSynC algorithm, and some classical clustering algorithms

 Origina Picture SSynC, ESynC (final k = 14) SynC (final k = 2868)

 K-Means, FCM (final k = 1) DBSCAN (final k = 112) Mean Shift (final k = 10)

(a) δ = 18 for SynC, ESynC, SSynC, DBSCAN, and Mean Shift; predefined k (number of clusters) =

14 for K-Means and FCM.

 Origina Picture SSynC, ESynC (final k = 6) SynC (final k = 2896)

 K-Means, FCM (final k = 1) DBSCAN (final k = 35) Mean Shift (final k = 4)

 (b) δ = 30 for SynC, ESynC, SSynC, DBSCAN, and Mean Shift; predefined k (number of clusters) =

6 for K-Means and FCM.

Fig. 8. Compare the original picture and several compressed pictures of Picture3 by clustering pixel

 33

points of Picture3 in RGB color space using several algorithms. In Fig. 8, several compressed pictures

are drawn using the means of clusters obtained by clustering 200 * 200 pixel points of Picture3 in RGB

space.

Fig. 8 lists the original picture and several compressed pictures of Picture3. The

several compressed pictures are drawn using the means of clusters obtained by

clustering 200 * 200 pixel points of Picture3 in RGB color space using different

algorithms. Because AP needs too much time and space for Picture3, this experiment

does not use it. From Fig. 8, we observe that SSynC and ESynC can get multi-level

clustering compressed effect for different values of parameter δ.

5.5 Analysis and conclusions of experimental results

From the comparison experimental results of these figures and tables (Figs. 1 - 8,

Figs. 7 - 9 of Appendix 1 of Supplementary Material, and Tables 1 - 7), we observe

that SSynC algorithm is faster than ESynC algorithm and SynC algorithm almost in all

cases. In simulations of some artificial data sets (from DS5 to DS16), we observe that

the effective interval of parameter δ in SSynC and ESynC has a long range, and in

many cases it is longer than the effective interval of parameter δ (or Eps) in

DBSCAN.

In some displayed figures, by intercomparing SynC, ESynC, and SSynC, we

observe that SSynC can explore the same clusters and isolates (displayed by some

figures) with ESynC. For many kinds of data sets, SSynC and ESynC can explore

obvious clusters or isolates if setting a proper value of parameter δ, and SynC cannot

explore obvious clusters of many data sets.

 In simulations of some data sets, we observe that the iterative times of SynC, AP,

K-Means, and FCM is larger than the iterative times of SSynC and ESynC. For many

data sets, ESynC, SSynC, and DBSCAN have better ability than SynC, K-Means,

FCM, AP, and Mean Shift in exploring clusters and isolates. Specially, AP algorithm

needs the largest time cost.

Because the values in RGB space of the pixel points of Picture3 are almost

continuous and have no obvious clusters. In this case, SSynC algorithm and ESynC

algorithm can get more obvious multi-level compress effect than some other

algorithms, such as K-Means and FCM. In simulations, we also observe that

DBSCAN algorithm needs more space than SSynC algorithm and ESynC algorithm

because of its recursion procedure.

SSynC algorithm is an improved clustering algorithm with faster clustering

speed than ESynC algorithm almost in all cases. Usually, parameter ε has a long

effective interval (For example, the effective interval of parameter ε is about in (0, 10)

if parameter δ > 15). In simulations, we observe that if parameter ε gets some different

values in its effective interval, the clustering results of SSynC algorithm is almost the

same except the time cost.

6. Conclusions

 34

This paper presents an improved synchronization clustering algorithm, SSynC,

which often gets better clustering results than the original synchronization clustering

algorithm, SynC. From the experimental results, we observe that SSynC algorithm

can often obtain less iterative times, faster clustering speed, and better clustering

quality than SynC algorithm for many kinds of data sets. SSynC algorithm can also

get better or similar clustering results or faster clustering speed than some classical

clustering algorithms for some data sets.

To our knowledge, the linear weighted Vicsek model and shrinking

synchronization clustering are introduced firstly. The major contributions of this paper

can be summarized as follows:

(1). It presents a Shrinking Synchronization Clustering (SSynC) algorithm,

which is an improved version of SynC algorithm, by using a linear weighted Vicsek

model.

(2). It validates the improved effect of SSynC algorithm in time cost and

clustering quality by the simulated experiments of several different kinds of data sets.

(3). It presents and validates our convergent condition of dynamical clustering in

SSynC algorithm, the t-step average length of edges, by the simulated experiments of

several different kinds of data sets.

SSynC algorithm uses a global searching strategy to construct the δ near

neighbor point set for every point in each evolution, so its time complexity is O(d·(n(t

= 0)
2 + n(t = 1)

2) + … + n(t = T-1)
2)), which is less than O(Tdn2) that is the time complexity

of SynC algorithm. Where n is the number of all points, n(t) is the number of

synchronized points in the t-step synchronization, d is the number of dimensions, and

T is the times of synchronization.

 Like DBSCAN, SynC, and ESynC, SSynC algorithm is also robust to outliers or

isolates. Like DBSCAN and ESynC, SSynC can find obvious clusters with different

shapes. For DBSCAN, Mean Shift, ESynC, and SSynC, the number of clusters does

not have to be fixed before clustering. Usually, parameter δ has some valid interval

that can be determined by using an exploring method listed in Chen (2015) or using

the MDL-based method presented in Böhm et al. (2010). More often, the valid

interval of parameter δ in ESynC and SSynC is longer than it in DBSCAN.

Comparing with SynC, K-Means, FCM, and AP, ESynC and SSynC can obtain better

or similar clustering quality.

Although our algorithm has shown promising results, there are still some

limitations. First, the computational complexity of SSynC is O(d·(n(t = 0)
2 + n(t = 1)

2)

+ … + n(t = T-1)
2)), which limits its applicability to big data. Second, like DBSCAN,

ESynC, and CNNI (Chen, 2015), SSynC is also sensitive to parameter δ for some

scatter data sets. When many noises and few obvious clusters exist, DBSCAN, ESynC,

and SSynC cannot generate clusters with different levels of scatter because parameter

δ is fixed before clustering.

 35

This work opens some possibilities for further improvement and investigation.

First, do more comparative experiments. For example, in the process of constructing δ

near neighbor point sets, comparing the simplest search method with our improved

method based on δ near neighbor grid cell set (Chen, 2013) and Red-Black tree,

R-tree index structure (Guttman, 1984; Manolopoulos et al., 2006) method, and

SR-tree index structure (Katayama et al., 1997) method should be valuable for

practical work. Second, further improve SSynC algorithm in time cost. For example,

designing similarity preserving Hash function that needs O(1) time complexity is

valuable in the process of constructing δ near neighbor point sets. Third, extend the

applicability and explore the clustering effect of our algorithm in high-dimensional

data. Fourth, further explore more proper and simple methods to estimate parameter δ.

Fifth, SSynC algorithm is a dynamic synchronization clustering algorithm, and Mean

shift algorithm (Fukunaga et al., 1975; Comaniciu et al., 2002) is a clustering

algorithm based on a non-parametric modeling method. Although SSynC algorithm

and Mean shift algorithm have essential difference, they still have some similarity. So,

it is important to explore the relation between SSynC algorithm and Mean shift

algorithm further.

Acknowledgments

This work was supported by three projects (grant No: cstc2016jcyjA0521,

cstc2014jcyjA40035, cstc2016jcyjA0063) from Chongqing Cutting-edge and Applied

Foundation Research Program of China and a project (grant No: 16PY08) from

Chongqing Three Gorges University of China.

References

Agrawal, R., Gehrke, J., Gunopolos, D., et al. (1998). Automatic subspace clustering

of high dimensional data for data mining application. In SIGMOD (pp. 94–105).

Ankerst, M., Breunig, Markus M., Kriegel, Hans-Peter., & Sander, Jörg (1999).

OPTICS: Ordering points to identify the clustering structure. In SIGMOD (pp.

49–60).

Bezdek, J. C. (1981). Pattern recognition with fuzzy objective function algorithms.

New York, Plenum Press.

Böhm, C., Plant, C., Shao, J., et al. (2010). Clustering by synchronization.

Proceedings of ACM SIGKDD. Washington, USA: 583–592.

Chen, X. (2013). Clustering based on a near neighbor graph and a grid cell graph.

Journal of Intelligent Information Systems, 40(3): 529-554.

Chen, X. (2014). A fast synchronization clustering algorithm. arXiv:1407.7449

[cs.LG]. http://arxiv.org/abs/1407.7449.

Chen, X. (2015). A new clustering algorithm based on near neighbor influence. Expert

Systems with Applications, 42(21): 7746-7758.

Chen, X. (2017). An effective synchronization clustering algorithm. Applied

Intelligence, DOI: 10.1007/s10489-016-0814-y.

 36

Chen, Z., Zhang, H. T., Chen, X., Chen, D.,& Zhou, T. (2015). Two-level

leader-follower organization in pigeon flocks. Europe physics Letters,112(2), 20008.

Comaniciu, D., & Meer,P. (2002). Mean shift: A robust approach toward feature space

analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(5):

603–619.

Czirok, A., Barabasi, A. L., & Vicsek, T. (1999). Collective motion of self-propelled

particles: kinetic phase transition in one dimension. Physical Review Letters, 82:

209–212.

Ester, M., Kriegel, H. P., Sander, J., and Xu, X. (1996). A density-based algorithm for

discovering clusters in large spatial data sets with noise. The 2-th International

Conference on Knowledge Discovery and Data Mining: 226-231.

Frank, A., and Asuncion, A. (2010). UCI Machine Learning Repository Irvine,

University of California.

Frey, B. J., Dueck, D. (2007). Clustering by passing messages between data points.

Science, 315(16): 972-976.

Fukunaga, K., & Hostetler, L. (1975). The estimation of the gradient of a density

function, with applications in pattern recognition. IEEE Transactions on Information

Theory, 21(1): 32–40.

GrÄunwald, P. (2005). A tutorial introduction to the minimum description length

principle. Cambridge, MIT Press.

Guha, S., Rastogi, R., and Shim, K. (1998). CURE: An efficient clustering algorithm

for clustering large databases, in: Proceedings of the Symposium on Management of

Data (SIGMOD).

Horn, D., & Gottlieb, Assaf. (2002). Algorithm for data clustering in pattern

recognition problems based on quantum mechanics. Physical Review Letters, 88(1),

018702-018701–018702-018702.

Huang, J. B., Kang, J. M., Qi, J. J., and Sun, H. L. (2013). A hierarchical clustering

method based on a dynamic synchronization model. Science in China Series F:

Information Sciences, 43: 599 - 610.

Jadbabaie, A., Lin, J., Morse, A. S. (2003). Coordination of groups of mobile

autonomous agents using nearest neighbor rules. IEEE Trans Automat Control, 48(6):

998–1001.

Jaromczyk, J. W., & Godfried, T. (1992). Relative neighborhood graphs and their

relatives. In Proceedings of the IEEE, 80(9), 1502–1517.

Ji, P., Peron, T. K., Menck, P. J., Rodrigues, F. A., & Kurths, J. (2013). Cluster

explosive synchronization in complex networks. Physical Review Letters, 110(21).

Karypis, G., Han, E. H., and Kumar, V. (1999). CHAMELEON: A hierarchical

clustering algorithm using dynamic modeling. IEEE Computer, 32(8):68-75.

Leyva, I., Navas, A., Sendiña-Nadal, I., et al. (2013). Explosive transitions to

synchronization in networks of phase oscillators. Science Reports, 3: 1281.

 37

Liu, Z., Guo, L. (2008). Connectivity and synchronization of Vicsek model. Science

in China Series F: Information Sciences, 51(7): 848–858.

Luxburg, U. V. (2007). A tutorial on spectral clustering. Statistics and Computing,

17(4), 395–416.

MacQueen, J. B. (1967). Some methods for classification and analysis of multivariate

observations. The 5-th MSP Proceeding. Berkeley, University of California Press:

281-297.

Nagy, M., Ákos, Z., Biro, D., & Vicsek,T. (2010). Hierarchical group dynamics in

pigeon flocks. Nature, 464 (7290), 890-893.

Reynolds, C. (1987). Flocks, birds, and schools: a distributed behavioral

model."Computer Graphics 21: 25–34.

Rodriguez, A. Laio, A. (2014). Clustering by fast search and find of density peaks.

Science, 344(6191): 1492 - 1496.

Roy, S., & Bhattacharyya, D. K. (2005). An approach to find embedded clusters using

density based techniques. Lecture Notes in Computer Science, 3816, 523–535.

Schaeffer, S. E. (2007). Graph clustering. Computer Science Review, 1(1), 27-64.

Schölkopf, B., Smola, A., & Müller, K. R. (1998). Nonlinear component analysis as a

kernel eigenvalue problem. Neural Computation, 10(5): 1299-1319.

Shao, J., Yang, Q., Böhm, C, & Plant, C. (2011). Detection of arbitrarily oriented

synchronized clusters in high-dimensional data. In ICDM: 607-616.

Shao, J., Hahn, K.,Yang, Q., et al. (2010). Hierarchical density-based clustering of

white matter tracts in the human brain. International Journal of Knowledge Discovery

in Bioinformatics, 1(4): 1-25.

Shao, J., He, X., Plant, C., Yang, Q., & Böhm, C. (2013). Robust

synchronization-based graph clustering. The 17-th Pacific-Asia Conference on

Knowledge Discovery and Data Mining: 249-260.

Shao, J., He, X., Böhm, C., Yang, Q., & Plant, C. (2013). Synchronization inspired

partitioning and hierarchical clustering. IEEE Transaction on Knowledge and Data

Engineering, 25(4): 893-905.

Shao, J., Ahmadi, Z., Kramer, S. (2014). Prototype-based learning on concept-drifting

data streams. Proceedings of ACM SIGKDD: 412-421.

Strehl, A., & Ghosh, J. (2002). Cluster ensembles - a knowledge reuse framework for

combining multiple partitions. Journal of Machine Learning Research, 3: 583-617.

Theodoridis, S., & Koutroumbas, K. (2006). Pattern recognition, Academic Press.

Vicsek, T., Czirok, A., Ben-Jacob, E., et al. (1995). Novel type of phase transitions in

a system of self-driven particles. Physics Review Letter, 75(6): 1226-1229.

Vinh, N. X., Epps, J., & Bailey, J. (2010). Information theoretic measures for

clusterings comparison: Variants, properties, normalization and correction for chance.

Journal of Machine Learning Research, 11: 2837-2854.

Wang, L., & Liu, Z. (2009). Robust consensus of multi-agent systems with noise.

 38

Science in China Series F: Information Sciences, 52(5): 824–834.

Wang, W., Yang, J., & Muntz, R. (1997). STING: A statistical information grid

approach to spatial data mining. In VLDB (pp. 186–195).

Zhang, H. T., Chen, Z., Vicsek, T., Feng,G., Sun, L., Su, R., & Zhou, T. (2014).

Route-dependent switch betweenhierarchical and egalitarian strategies in pigeon

flocks. Scientific Reports, 4, 5805.

Zhang, T., Ramakrishnan R., and Livny, M. (1996). BIRCH: An efficient data

clustering method for very large databases, in: SIGMOD Conference, pp. 103–114.

Zou, Y., Pereira, T., Small, M., Liu, Z., & Kurths, J. (2014). Basin of attraction

determines hysteresis in explosive synchronization. Physical Review Letters, 112(11):

114102.

