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A shrinking synchronization clustering algorithm  

based on a linear weighted Vicsek model 

Abstract: Clustering is an unsupervised learning method that tries to find some 

distributions and patterns in unlabeled data sets. Although clustering algorithms have 

been studied for many years, none of them is all purpose. This paper presents a 

Shrinking Synchronization Clustering (SSynC) algorithm by using a linear weighted 

Vicsek model. It is inspired by Synchronization Clustering (SynC) algorithm and 

Vicsek model. After some analysis and comparison, we find that SSynC algorithm 

based on the linear weighted Vicsek model has better synchronization effect than 

SynC algorithm based on an extensive Kuramoto model and has similar 

synchronization effect with Effective Synchronization Clustering (ESynC) algorithm 

based on another linear version of Vicsek model. In the simulations, several clustering 

algorithms (SynC, ESynC, K-Means, FCM, AP, DBSCAN, and Mean Shift) are used 

as comparative algorithms. By some simulated experiments of some artificial data sets, 

several real data sets, and three picture data sets, we observe that SSynC algorithm not 

only gets better local synchronization effect but also needs less iterative times and 

time cost than SynC algorithm. Moreover, SSynC algorithm needs less time cost than 

ESynC algorithm and almost get the same local synchronization effect and the same 

iterative times. Extensive comparison experiments with some class clustering 

algorithms demonstrate the effectiveness of our algorithm. At last, it gives some 

research expectations to popularize this algorithm. 

Keywords: Data mining; Clustering; SynC algorithm; Kuramoto model; Shrinking 

synchronization; A linear weighted Vicsek model; Near neighbor points 

1. Introduction 
Clustering is an unsupervised learning method that tries to find some obvious 

distribution structures and patterns in unlabeled data sets by maximizing the similarity 

of the objects in a common cluster and minimizing the similarity of the objects in 

different clusters. Clustering has been used in many areas such as machine learning, 

pattern recognition, image processing, marketing and costumer analysis, agriculture, 

security and crime detection, information retrieval, and bioinformatics. 

Clustering algorithms have been studied for decades. There have been hundreds 

of clustering algorithms until now, but none of them is all purpose. Almost all 

clustering algorithms have flaws. Some clustering algorithms are suitable for dealing 

with data with certain types, and some are suitable for handling data with special 

distribution structures. Many real data have complex distributions, diversiform types, 

great capacity, noises, or isolates. So there is a continued demand for researching 

different kinds of clustering methods. In order to obtain better clustering results in 

real-world applications where the amount of data is often very large and the types of 

data are diversiform, some researchers try their best to develop new efficient and 
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effective clustering algorithms. 

The traditional clustering algorithms are usually categorized into partitioning 

methods (Bezdek, 1981; MacQueen, 1967), hierarchical methods (Guha et al., 1998; 

Karypis et al., 1999; Zhang et al., 1996), density-based methods (Ankerst et al., 1999; 

Ester et al., 1996; Roy et al., 2005; Rodriguez et al., 2014), grid-based methods 

(Agrawal et al. 1998; Wang et al., 1997), model-based methods (Theodoridis et al., 

2006), and graph-based methods (Jaromczyk and Godfried, 1992; Schaeffer, 2007). 

Recent clustering methods have quantum clustering algorithms (Horn et al., 2002), 

spectral clustering algorithms (Luxburg, 2007; Schölkopf et al., 1998), and 

synchronization clustering algorithms (Böhm et al., 2010; Huang et al., 2013; Shao et 

al., 2013a, 2013b, 2014; Chen, 2017). 

Recently, several original clustering algorithms, such as Affinity Propagation 

(AP) algorithm (Frey et al., 2007) and Synchronization Clustering (SynC) algorithm 

(Böhm et al., 2010), and clustering by fast search and find of Density Peaks (DP) 

algorithm (Rodriguez et al., 2014), were published. AP is a new type of clustering 

algorithm published on Science in 2007. After AP algorithm was published, clustering 

based on probability graph models grew a new research direction. As we know, SynC 

(Böhm et al., 2010) is the first synchronization clustering algorithm. After Böhm et al. 

(2010) presented SynC algorithm, synchronization clustering attracts some 

researchers, and some synchronization clustering methods (Huang et al., 2013; Shao 

et al., 2013a, 2013b, 2014; Chen, 2016) were published from different views. DP 

(Rodriguez et al., 2014) is a clustering algorithm based on the assumption that 

“cluster centers can be characterized by a higher density than their neighbors and by a 

relatively large distance from points with higher densities”. In DP algorithm 

(Rodriguez et al., 2014), the number of clusters can be obtained automatically, 

outliers can be identified easily, and even nonspherical clusters can be explored 

quickly. So we think DP algorithm can also create a new research direction in 

clustering field. 

Synchronization clustering is a kind of novel clustering approach. The original 

synchronization clustering algorithm named as SynC, which is a famous 

synchronization clustering algorithm presented in Böhm et al. (2010), claimed that it 

can find the intrinsic structure of the data set without any distribution assumptions and 

handle outliers by dynamic synchronization (Böhm et al., 2010). 

This paper researches another synchronization clustering method based on the 

linear weighted Vicsek model comparing to SynC algorithm, and presents a Shrinking 

Synchronization Clustering (SSynC) algorithm by using the linear weighted Vicsek 

model. It is inspired by SynC algorithm and Vicsek model. 

The remainder of this paper is organized as follows. Section 2 lists some related 

works. Section 3 gives some basic knowledge. Section 4 introduces SSynC algorithm. 

Section 5 validates our algorithm by some simulated experiments. Conclusions and 
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future works are presented in Section 6. 

2. Related work 
This paper is inspired by several papers (Vicsek et al., 1995; Jadbabaie et al., 

2003; Wang et al., 2009; Böhm et al., 2010). 

In 1995, Vicsek et al. (1995) presented a basic model of multi-agent systems that 

contains noise effects. This basic model can also be regarded as a special version of 

Reynolds model (Reynolds, 1987). Simulation results demonstrate that some systems 

using Vicsek model (Vicsek et al., 1995) or one-dimensional models presented by 

Czirok et al. (1999) can be synchronized when they have large population density and 

small noise. Naturally, we expect that this kind of model can be used to explore 

clusters and noises of some data sets by local synchronization. In 2003, Jadbabaie et 

al. (2003) analyzed a simplified Vicsek model without noise effects and provided a 

theoretical explanation for the nearest neighbor rule that can cause all agents to 

eventually move in the same direction. In 2008, Liu et al. (2008) provided the 

synchronization property of Vicsek model after given initial conditions and the model 

parameters. In 2009, Wang et al. (2009) researched Vicsek model under noise 

disturbances and presented some theoretical results. In 2010, Nagy, M. et al. (2010) 

found a well-defined hierarchical leader-follower influential network among pigeon 

flocks. So they suggested that hierarchical organization of group flight might be more 

efficient than an egalitarian one. After that, some reports about the communication 

mechanism of bird flocks were published in some famous journals, such as Nature 

and its sub journals, PNAS, and PRL. In 2014, Zhang, H. T. et al. (2014) found that 

pigeon flocks adopted a mode that switches between hierarchy and egalitarian. They 

think the switching mechanism of pigeon flocks is promising for some industrial 

applications, such as multi-robot system coordination, and unmanned vehicle 

formation control. In 2015, Chen, Z. et al. (2015) found that pigeon flocks adopted a 

simple two-level interactive network containing one leader and some followers. And 

they think that “the two-level organization of group flight may be more efficient than 

a multilevel topology for small pigeon flocks”. 

In 2010, Böhm et al. presented a novel clustering approach, SynC algorithm, 

inspired by the synchronization principle. SynC algorithm can find the intrinsic 

structure of the data set without any distribution assumptions and handle outliers by 

dynamic synchronization. In order to implement automatic clustering, those natural 

clusters can be discovered by using the Minimum Description Length principle (MDL) 

(GrÄunwald, 2005). After SynC algorithm was presented, Shao et al. published 

several synchronization clustering papers from several views (Shao et al., 2010, 2011, 

2013a, 2013b, 2014). In order to find subspace clusters of some high-dimensional 

sparse data sets, a novel effective and efficient subspace clustering algorithm, ORSC 

(Shao et al., 2011), was proposed. In order to detect the outliers from a real complex 

data set more naturally, a novel outlier detection algorithm was presented from a new 
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perspective, “Out of Synchronization” (Shao et al., 2010). In order to find the intrinsic 

patterns of a complex graph, a novel and robust graph clustering algorithm, RSGC 

(Shao et al., 2013a), was proposed by regarding the graph clustering as a dynamic 

process towards synchronization. In order to explore meaningful levels of the 

hierarchical cluster structure, a novel dynamic hierarchical clustering algorithm, 

hSync (Shao et al., 2013b), was presented based on synchronization and the MDL 

principle. In 2013, Huang et al. (2013) also presented a synchronization-based 

hierarchical clustering method basing on the work of Böhm et al. (2010). In 2014, 

Chen (2014) presented a Fast Synchronization Clustering (FSynC) algorithm basing 

on the work of Böhm et al. (2010). In 2017, Chen (2017) presented an Effective 

Synchronization Clustering (ESynC) algorithm based on a linear version of Vicsek 

model.  

Recent years, some physicists also researched the explosive synchronization in 

some complexity networks to uncover the underlying mechanisms of the 

synchronization state (Ji et al., 2013; Leyva et al., 2013; Zou et al., 2014). In these 

papers, the synchronization rules of some networks were explored. 

3. Some basic knowledge 
Suppose there is a data set S = {X1, X2, …, Xn} in a d-dimensional Euclidean 

space. Naturally, we use Euclidean metric as our dissimilarity measure, dis(·, ·). In 

order to describe our algorithms clearly, some concepts are presented first. 

Definition 1. The δ near neighbor point set δ(P) of point P is defined as: 

δ(P) = {X | dis(X, P) ≤ δ, X S, X ≠ P},                 (1) 

where dis(X, P) is the dissimilarity measure between point X and point P in the data 

set S. Parameter δ is a predefined threshold. 

Definition 2 (Böhm et al., 2010). The extensive Kuramoto model for clustering 

is defined as: 

Point X = (x1, x2, …, xd) is a vector in d-dimensional Euclidean space. If each 

point X is regarded as a phase oscillator, according to Kuramoto model, with an 

interaction in the δ near neighbor point set δ(X), then the dynamics of the k-th 

dimension xk (k = 1, 2, …, d) of point X over time is described by: 

xk(t+1) = xk(t) + 



))((

))()(sin(
|))((|
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tX 
,           (2) 

where X(t = 0) = (x1(0), x2(0), …, xd(0)) represents the original phase of point X, and 

xk(t+1) describes the renewal phase value in the k-th dimension of point X at the t step 

evolution. 

Definition 3 (Chen, 2017). The t-step δ near neighbor undirected graph Gδ(t) of 

the data set S = {X1, X2, …, Xn} is defined as: 

Gδ(t) = (V(t), E(t)),                          (3) 

where V(t = 0) = S ={X1, X2, …, Xn} is the original vertex set, E(t = 0) = {(Xi, Xj) | Xj 

 δ(Xi), Xi (i = 1, 2, …, n)  S} is the original edge set. V(t) ={X1(t), X2(t), …, Xn(t)} 
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is the t-step vertex set of the data set S, E(t) = {(Xi(t), Xj(t)) | Xj(t)  δ (Xi(t)), Xi(t) (i = 

1, 2, …, n)  V(t)} is the t-step edge set, and the weight computing equation of edge 

(Xi, Xj) is weight(Xi, Xj) = dis(Xi, Xj). 

Definition 4. The t-step average length of edges, AveLen(t), in a t-step δ near 

neighbor undirected graph Gδ (t) is defined as: 

AveLen(t) = 
 )(|)(|

1

tEe

e
tE

,                        (4) 

where E(t) is the t-step edge set of Gδ(t), and |e| is the length (or weight) of edge e. 

The average length of edges in Gδ(t) decreases to its limit 0, that is AveLen(t) → 0, as 

more δ near neighbor points synchronize together with time evolution. In our 

algorithm, AveLen(t) can be used to characterize the degree of local synchronization. 

Definition 5 (Böhm et al., 2010). The cluster order parameter rc characterizing 

the degree of local synchronization is defined as: 

rc =  
 


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.                        (5) 

Definition 6 (Chen, 2017). A linear version of Vicsek model for clustering is 

defined as: 

Point X = (x1, x2, …, xd) is a vector in d-dimensional Euclidean space. If each 

point X is regarded as an agent according to a linear version of Vicsek model, with an 

interaction in the δ near neighbor point set δ (X), then the dynamics of point X over 

time according to Jadbabaie et al. (2003) and Wang et al. (2009) is described by: 

X(t+1) =   





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,              (6) 

where X(t = 0) = (x1(0), x2(0), …, xd(0)) represents the original location of point X, 

and X(t+1) describes the renewal location of point X at the t step evolution. 

Definition 7. A core is defined as: 

In our Shrinking Synchronization Clustering (SSynC) algorithm, point X can be 

regarded as an active core C if and only if: 

(a). Point X is active in the current synchronization step. 

(b). Point X is not labeled as an attributive point of another core. 

At this time, the points in the ε near neighbor point set ε(C) of core C should be 

labeled as attributive points of core C, where parameter ε is a small real number that is 

less than parameter δ. 

The data structure of core C can be defined as: 

DS(C) = (Core_Id, Core_Location, Parent_CoreId, Number_ContainingPoints). 

(7) 

    In Eq.(7), 

Core_Id is the identification number of core C in the original data set. 
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Core_Location is the current location of core C. It is a d-dimensional vector 

expressed by C = (c1, c2, …, cd). 

Parent_CoreId is the identification number of the parent of core C in the original 

data set. At the original step of dynamic clustering, the Parent_CoreId of core C is 

itself. At the middle or final of dynamic clustering, the Parent_CoreId of core C is the 

Core_Id of the attributive core of core C. 

Number_ContainingPoints is the number of points that are represented or 

contained by the core C. 

The main purpose of introducing the concept of core is to record the clustering 

information in SSynC algorithm. 

Definition 8. A synchronization model for clustering a core set is defined as: 

Core C = (c1, c2, …, cd) is a vector in a d-dimensional Euclidean space. If each 

core C is regarded as an agent according to an extended linear version of Vicsek 

model (this model is also named as: the linear weighted Vicsek model), with an 

interaction in the δ near neighbor point set δ(C), then the dynamics of core C over 

time is described by: 

C(t+1) =  









  


))((
))((

)()())((
))())(((
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YYcounttCtCcount
YcounttCcount 



, (8) 

where C(t = 0) = (c1(0), c2(0), …, cd(0)) represents the original phase of core C, C(t+1) 

describes the renewal phase value of core C at the t step evolution, and count(C) 

represents the value of the Number_ContainingPoints of core C. 

In the dynamical clustering, if the Parent_CoreId of core C is itself and the value 

of the Number_ContainingPoints of core C is equal to 1, then Eq.(8) is equivalent with 

Eq.(6). Actually, in the dynamical clustering, if core C is represented by its parent core 

(which means that the value of the Number_ContainingPoints of the parent core is 

added by count(C)), then Eq.(8) can be used for saving time and space in SSynC 

algorithm. 

Definition 9. The data set S = {X1, X2, …, Xn} using the linear weighted Vicsek 

model described by Eq.(8) for clustering is said to achieve local synchronization if the 

final locations of all points satisfy: 

Xi(t = T) = RCk(T), i = 1, 2, …, n, k = 1, 2, …, K,           (9) 

where T is the times of the final synchronization, K is the number of the root cores in 

the final synchronization step, RCk(T) is the k-th root core in the final synchronization 

step. 

Usually, the final location of point Xi (i = 1, 2, …, n) may depend on parameter δ 

and the original locations of itself and other points in the data set S. 

Definition 10. The data set S = {X1, X2, …, Xn} uses the linear weighted Vicsek 

model described by Eq.(8) for synchronization clustering. In each evolution step of 

synchronization clustering, all cores become some trees with synchronization action. 

When the number of root cores in the t-step evolution is equal to that in the (t+1)-step 
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evolution, an average difference between the root cores in the t-step evolution and the 

root cores in the (t+1)-step evolution is defined as: 

differInRootCores(t, t+1) = 





tn

k
kk

t

LocationCoretRCLocationCoretRCdis
n 1

)_).1(,_).((
1

, k = 1, 2, ···, nt,   (10) 

where nt is the number of the root cores in the t-step evolution, RCk(t).Core_Location 

is the location of the k-th root core in the t-step evolution, and 

dis(RCk(t).Core_Location, RCk(t+1).Core_Location) is the dissimilarity between the 

location of the k-th root core in the t-step evolution and the location of the k-th root 

core in the (t+1)-step evolution. 

 Apparently, if the average difference between the root cores in the t-step 

evolution and the root cores in the (t+1)-step evolution computed by Eq.(10) is less 

than a predefined threshold, we think SSynC algorithm can exit. 

Theorem 1. The data set S = {X1, X2, …, Xn} using the linear weighted Vicsek 

model described by Eq.(8) for clustering will achieve local synchronization, if 

parameter δ satisfies: 

δmin ≤ δ ≤ δmax,                   (11) 

Suppose emin (MST(S)), which is also equal to min{dis(Xi, Xj)| (Xi, Xj ∈ S) ∧ (Xi 

≠ Xj)}, is the weight of the minimum edge in the Minimum Span Tree (MST) of the 

complete graph of the data set S, and emax(MST(S)) is the weight of the maximum edge 

in the MST of the complete graph of the data set S. Apparently, there is δmin = 

emin(MST(S)). If the data set S has no isolate, then usually there is emax(MST(S)) ≤ δmax 

≤ max{dis(Xi, Xj)| (Xi, Xj ∈ S) ∧ (Xi ≠ Xj)}. If the data set S has isolates, we should 

filtrate all isolates at first. 

Proof: if δ < δmin, then for any point Xi (i = 1, 2, …, n), there is δ(Xi) = Ø. In this 

case, any point in the data set S cannot synchronize with other points, so 

synchronization will not happen. 

In another case, that is δ > δmax, then for any point Xi (i = 1, 2, …, n), there is 

δ(Xi(t)) = S - {Xi(t)}. According to Eq.(8), there is Xi(t+1) = mean (S). Here, mean (S) 

is the mean of all points in the data set S. Any point in the data set S will synchronize 

with all other points, so global synchronization happens. After one time 

synchronization, all points in the data set S will synchronize to their mean location. 

Apparently, if δmin ≤ δ ≤ δmax, local synchronization will happen. And the final 

result of synchronization is affected by the value of parameter δ and the original 

locations of all points in the data set S. 

Property 1. The data set S = {X1, X2, …, Xn} using the linear weighted Vicsek 

model described by Eq.(8) for clustering will obtain an effective result of local 

synchronization with some obvious clusters or isolates, if parameter δ satisfies: 

max{longestEdgeInMst(clusterk) | k = 1, 2, …, K } < δ < min{dis(clusteri, clusterj) 

| i ≠ j, i, j = 1, 2, …, K},           (12) 
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where longestEdgeInMst(clusterk) is the weight of the longest edge in the minimum 

spanning tree of the k-th cluster, dis(clusteri, clusterj) is the weight of the minimum 

edge connecting the i-th cluster and the j-th cluster, and K is the number of clusters in 

the final synchronization step. 

Proof: Suppose the data set S = {X1, X2, …, Xn} has K obvious clusters. If 

parameter δ is larger than or equal to max{longestEdgeInMst(clusterk) | k = 1, 2, …, 

K }, then data points in the same cluster will synchronize. If parameter δ is less than 

min{dis(clusteri, clusterj) | i, j = 1, 2, …, K}, then data points in different obvious 

clusters cannot synchronize. 

4. A shrinking synchronization clustering algorithm based on a linear 

weighted Vicsek model 
SSynC algorithm has similar process with SynC algorithm (Böhm et al., 2010) 

and ESynC algorithm except using a different dynamical synchronization clustering 

model. The synchronization model represented by Eq.(8) can be used for clustering a 

core set. 

Although we use the Euclidean metric as our dissimilarity measure in this paper, 

the algorithm is by no means restricted to this metric and this kind of data space. If we 

can construct a proper dissimilarity measure in a hybrid-attribute space, the algorithm 

can also be used. 

4.1 The description of SynC algorithm 

The original synchronization clustering algorithm named as SynC is developed 

by Böhm et al. (Böhm et al., 2010). In order to make a difference between SynC 

algorithm and our algorithm, we introduce it below using our language according to 

the description of (Böhm et al., 2010). 

Algorithm name: Synchronization Clustering algorithm (SynC). 

Input: data set S = {X1, X2, …, Xn}, dissimilarity measure dis(·, ·), and parameter 

δ. 

Output: The final convergent result S(T) = {X1(T), X2(T), …, Xn(T)} of the 

original data set S. 

The main process of SynC algorithm is described as follows: 
 1 IterateStep t is set as zero firstly, that is: t ← 0; 

 2 for (i = 1; i ≤ n; i++) 

 3  Xi(t) ← Xi; 

 4 while (the dynamical clustering does not satisfy its convergent condition) 

 5 { 

 6  for (i = 1; i ≤ n; i++) 

 7  { 

 8   Construct the δ near neighbor point set δ(Xi(t)) for each point Xi(t) (i = 1, 2, …, n) 

using Eq.(1) of Definition 1; 

 9   Compute the renewal value, Xi(t+1), of Xi(t) using Eq.(2) of Definition 2; 

 10  } 

 11  Compute the cluster order parameter rc of all points using Eq.(5) of Definition 5; 
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 12  IterateStep t is increased by 1, that is: t++; 

 13  if (rc converges or (t == 50)) 

 14   We think the dynamical clustering reaches its convergent result, and then exit 

from the while repetition; 

 15 } 

 16 Finally we get a convergent result S(T) = {X1(T), X2(T), …, Xn(T)}, where T is the times of 

the above while repetition. The final convergent set S(T) reflects the natural clusters or isolates of the 

data set S. 
4.2 The description of ESynC algorithm 

Effective Synchronization Clustering algorithm (ESynC) is developed by Chen 

(Chen, 2017). In order to make a difference between ESynC algorithm and our 

algorithm, we introduce it simply below. 

Algorithm name: an Effective Synchronization Clustering algorithm (ESynC). 

Input: data set S = {X1, X2, …, Xn}, dissimilarity measure dis(·, ·), and parameter 

δ. 

Output: The final convergent result S(T) = {X1(T), X2(T), …, Xn(T)} of the 

original data set S. 

Procedure: 

Step1. Initialization:  
  1 IterativeStep t is set as zero firstly, that is: t ← 0; 

  2 for (i = 1; i ≤ n; i++) 

  3  Xi(t) ← Xi; 

Step2. Execute the iterative synchronization process of the dynamical clustering: 
  4 while ((the dynamical clustering does not satisfy its convergent condition) and (t < 50)) 

  5 { 

  6  for (i = 1; i ≤ n; i++) 

  7  { 

  8   Construct the δ near neighbor point set δ(Xi(t)) for each point Xi(t) (i = 1, 

2, …, n) using Eq.(1) of Definition 1; 

  9   Compute the renewal value, Xi(t+1), of Xi(t) using Eq.(6) of Definition 6; 

  10  } 

  11  Compute the t-step average length of edges of all points, AveLen(t), using Eq.(4) 

of Definition 4; 

    /* We can also compute the cluster order parameter rc using Eq.(5) of Definition 5 

instead of computing AveLen(t). */ 

  12  IterativeStep t is increased by 1, that is: t++; 

  13  if (AveLen(t) → 0) /* AveLen(t) → 0 is equivalent with rc → the limit of rc */ 

  14   We think the dynamical clustering reaches its convergent result, and then exit 

from the while repetition; 

  15 } 

Step3. Finally we get a convergent result S(T) = {X1(T), X2(T), …, Xn(T)}, where 

T is the times of the while repetition in Step2. The final convergent set S(T) reflects 

the natural clusters or isolates of the data set S. 

4.3 The description of SSynC algorithm 

Algorithm name: a Shrinking Synchronization Clustering algorithm (SSynC). 
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Input: data set S = {X1, X2, …, Xn}, dissimilarity measure dis(·, ·), parameter δ, 

and parameter ε. 

Output: The final core set CS(T) = {C1(T), C2(T), …, Cn(T)}. 

Procedure: 

Step1. Initialization: 
  1 IterateStep t is set as zero firstly, that is: t ← 0; 

   /* Create initial core set C(t = 0) = {C1(t = 0), C2(t = 0), …, Cn(t = 0)}. */ 

  2 for (i = 1; i ≤ n; i++) 

  3 { 

  4  Ci(t = 0).Core_Id ← i; 

  5  Ci(t = 0).Core_Location ← Xi; 

  6  Ci(t = 0).Parent_CoreId ← i; 

  7  Ci(t = 0).Number_ContainingPoints ← 1; 

  8 } // for 

   /* Create initial active point set AP(t = 0). */ 

  9 AP(t = 0) ← {X1, X2, …, Xn}; 

  10 NumberOfAP(t = 0) ← n; /* NumberOfAP(t = 0) is used to record the number of points 

in the active point set AP(t = 0). */ 

Step2. Execute the iterative synchronization process of the dynamical clustering: 
  11 while ((the dynamical clustering does not satisfy its convergent condition) and (t < 50)) 

  12 { 

  13  for (each point Y(t) in the active point set AP(t)) 

  14  { 

  15   According to Definition 1, in the active point set AP(t) construct the δ near 

neighbor point set δ(Y(t)) for point Y(t); 

  16   Compute the renewal value, Y(t+1), of Y(t) using Eq.(8) of Definition 8; 

  17  } // for 

    /* After the above for repetition, we get a point set AP(t+1) that is composed of 

the renewal value Y(t+1) of each point Y(t) in the active point set AP(t). */ 

  18  for (each unlabeled point Y(t+1) in the point set AP(t+1)) 

  19  { 

  20   The member “Core_Location” of the corresponding core of point Y(t+1) is 

updated by the value of Y(t+1); 
  21   According to Definition 1, in the point set AP(t+1) construct the ε near 

neighbor point set ε(Y(t+1)) for point Y(t+1); 

  22   for (each unlabeled point Z(t+1) in the ε near neighbor point set ε(Y(t+1)) of 

point Y(t+1)) 

  23   { 

  24    Point Z(t+1) is labeled as inactive point; 

  25    The member “Parent_CoreId” of the corresponding core of point Z(t+1) 

is assigned by the member “Core_Id” of the corresponding core of point Y(t+1); 

  26    The member “Number_ContainingPoints” of the corresponding core of 

point Z(t+1) is added into the member “Number_ContainingPoints” of the corresponding core of point 

Y(t+1); 

  27   } // for 

  28  } // for 

  29  Delete all labeled inactive points from AP(t+1); /* After this deleting process, 
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AP(t+1) only contains those active points, which are also the root nodes in its disjoint-set forest. */ 

  30  NumberOfAP(t+1) is assigned by the current number of unlabeled points of the 

renewal active point set AP(t+1); 

  31  IterateStep t is increased by 1, that is: t++; 

  32  if (NumberOfAP(t+1) == NumberOfAP(t) and (the difference between AP(t+1) 

and AP(t) is very small)) /* NumberOfAP(t+1) == NumberOfAP(t) means the number of points in the 

renewal active point set AP(t+1) is equal to the number of points in the active point set AP(t) , and the 

difference between AP(t+1) and AP(t) can be computed by Eq.(10). */ 

  33   We think the dynamical clustering reaches its convergent result, and then exit 

from the while repetition; 

  34 } // while 

  35 Compress the paths of some inactive cores in the core set CS(t) just like the joint-set 

method such that the largest height of leaf cores is less than or equal to 2 (Note: the height of root cores 

is 1). 

Step3. Finally we get a core set CS(T) = {C1(T), C2(T), …, Cn(T)}, where T is the 

times of the while repetition in Step2. The final set CS(T) reflects the natural clusters 

or isolates of the data set S. 

For example, if Ci(T).Core_Id is equal to Ci(T).Parent_CoreId and 

Ci(T).Number_ContainingPoints is equal to 1 are satisfied, we can think the i-th point 

is an isolate; if Ci(T).Core_Id is equal to Ci(T).Parent_CoreId and 

Ci(T).Number_ContainingPoints >> 1 are satisfied, we can think the i-th point is a 

cluster core that represents some other points. 

Note: Parameter ε that is less than parameter δ is a very small real number. 

Usually, if the distance of two points is less than ε, then they should always be in the 

same cluster. 

4.4 Compare the dynamic clustering processes of SynC algorithm, ESynC 

algorithm, and SSynC algorithm 

SynC algorithm uses the extensive Kuramoto model described by Eq.(2) that is a 

nonlinear renewal model at each step evolution. ESynC algorithm uses the linear 

version of Vicsek model described by Eq.(6) that is a linear renewal model at each 

step evolution. And SSynC algorithm uses the synchronization model described by 

Eq.(8) that is a linear weighted renewal model at each step evolution. 

Fig. 1 uses 800 data points from DS0 to compare the tracks of the clustering 

processes of SynC algorithm, ESynC algorithm, and SSynC algorithm. Fig. 2 (a) 

compares the cluster order parameter with t-step evolution (t: 0 - 49) among SynC, 

ESynC, and SSynC. Fig. 2 (b) compares the t-step average length of edges (t: 0 - 49) 

among SynC, ESynC, and SSynC. And Fig. 2 (c) compares the relation between the 

final number of clusters and the value of parameter δ among the three algorithms. 

From Fig. 1, we observe that ESynC and SSynC have better local 

synchronization effect than SynC. From Fig. 2 (a) and (b), we observe that the t-step 

average length of edges is better than the cluster order parameter with t-step evolution 

in measuring the final synchronization results. From Fig. 2 (c), we observe that the 
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smaller parameter δ is set in SynC, ESynC, and SSynC, the larger the final number of 

clusters is. For many data sets with obvious clusters, ESynC and SSynC can often get 

the correct final number of clusters when parameter δ chooses any value in its valid 

interval, and the final number of clusters using SynC algorithm is much larger than 

the actual number of clusters when parameter δ chooses any value in a long interval. 

  
(a) t = 0 (The original locations of 800 data points from DS0) 

   
 (b-1) SynC algorithm, t = 1   (b-2) ESynC algorithm, t = 1 

 
(b-3) SSynC algorithm, t = 1 
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(c-1) SynC algorithm, t = 2   (c-2) ESynC algorithm, t = 2 

 
(c-3) SSynC algorithm, t = 2 

  
(d-1) SynC algorithm, t = 5   (d-2) ESynC algorithm, t = 5   
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(d-2) SSynC algorithm, t = 5 

  
(e-1) SynC algorithm, t = 45   (e-2) ESynC algorithm, t = 45  

 
(e-3) SSynC algorithm, t = 45 

Fig. 1. Compare the dynamical synchronization clustering processes with time evolution among 

SynC algorithm, ESynC algorithm, and SSynC algorithm. From (a) to (e) of Fig. 1, the data set is 800 

points from DS0, parameter δ is set as 18 in the three algorithms, and parameter ε is set as 1 in SSynC 

algorithm. 
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(a) The cluster order parameter with t-step evolution (t: 0 - 49) 

 
(b) The t-step average length of edges (t: 0 - 49) 

 
(c) The relation between the final number of clusters and parameter δ (δ: 0 - 99). 

Fig. 2. Compare SynC algorithm, ESynC algorithm, and SSynC algorithm. In Fig. 2, the data set is 

800 points from DS0, and parameter ε is set as 1 in SSynC algorithm. In Fig.2 (a) and (b), parameter δ 

is set as 18 in the three algorithms. 

4.5 Time and space complexity analysis of SSynC algorithm 

Step1 of SSynC algorithm needs Time = O(n) and Space = O(n). 
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In the first synchronization process of Step2, constructing the δ near neighbor 

point sets for all points needs Time = O(dn2) and Space = O(nd) if using a simple 

method needs. In the t-step synchronization process of Step2, constructing the δ near 

neighbor point sets for all points needs Time = O(dn(t)
2) and Space = O(n(t)d) if using a 

simple method, where n(t) is the number of active cores in the t-step synchronization 

process. In constructing the δ near neighbor point sets, the time cost can be decreased 

by using the strategy of “space exchanges time”. 

Step3 needs Time = O(n) and Space = O(n). 

According to Böhm et al. (2010) and our analysis, SSynC algorithm needs Time 

= O(d·(n(t = 0)
2 + n(t = 1)

2 + … + n(t = T-1)
2)) < O(Tdn2), which is usually less than SynC 

algorithm and ESynC algorithm. Here T is the times of the while repetition in Step2. 

4.6 Setting parameters in SSynC algorithm 

Parameter δ in SSynC algorithm that affects the clustering results is the same as 

SynC algorithm and ESynC algorithm. In Böhm et al. (2010), parameter δ is 

optimized by the MDL principle. In Chen (2015), two other methods were presented 

to estimate parameter δ. Here, we can also select a proper value for parameter δ 

according to Theorem 1 and Property 1. 

Parameter ε affects the time cost of SSynC algorithm slightly. In simulations, we 

get the same clustering results except time cost for several different values (such as 

0.00001, 0.0001, 0.001, 0.01, 0.1, 1, and 10) of parameter ε. Usually, the larger 

parameter ε is set, the less time cost SSynC algorithm needs. 

Fig. 3 describes the number of active cores with time evolution based on SSynC 

algorithm using four different data sets. From Fig. 3, we observe that different data 

sets have different number of active cores with time evolution. 

  
(a) Parameter ε = 0.00001     (b) Parameter ε = 1 

Fig. 3. The number of active cores with time evolution based on SSynC algorithm using four 

different data sets. In Fig. 3, parameter δ is set as 22, parameter ε is set as 0.00001 and 1, and the 

numbers of points in the four data sets are all set as 2000. 
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(a) DS1 

Fig. 4. The number of active cores with time evolution based on SSynC algorithm using several 

different values of parameter ε. In Fig. 4, parameter δ = 18 in DS1 and DS3, δ = 20 in DS2, δ = 22 in 

DS4; parameter ε is set as seven different value (0.00001, 0.0001, 0.001, 0.01, 0.1, 1, 10) respectively; 

and the number of points in the four data sets is all set as 2000. Fig. 4 (b), (c), and (d) are presented in 

Online Resource of Supplementary Material. 

 
(a) DS1 

Fig. 5. The number of active cores with time evolution based on SSynC algorithm using several 

different values of parameter δ. In Fig. 5, parameter δ is set as six different values (16, 20, 24, 28, 32, 

36) respectively, parameter ε is set as 1, and the numbers of points in the four data sets are all set as 

2000. Fig. 5 (b), (c), and (d) are presented in Online Resource of Supplementary Material. 

Fig. 4 describes the number of active cores with time evolution using SSynC 

algorithm for several different values of parameter ε. From Fig. 4, we observe that 

parameter ε can affect the number of active cores with time evolution, which affects 

the time cost of SSynC algorithm. 

Fig. 5 describes the number of active cores with time evolution using SSynC 

algorithm for different values of parameter δ. From Fig. 5, we observe that parameter 

δ can affect the number of active cores with time evolution, which affects the time 

cost of SSynC algorithm. 

4.7 The improvement of SSynC algorithm 

One improved version of SSynC algorithm can be designed by combining 

multidimensional grid partitioning method and Red-Black tree structure to construct 

the near neighbor point sets of all active cores. The improving method that can 
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decrease the time cost of constructing near neighbor point set is introduced in Chen 

(2014). Here, we describe this method as possible as simply. Generally, we first 

partition the data space of the data set S = {X1, X2, …, Xn} by using a kind of 

multidimensional grid partitioning method. Then we can obtain a set of all grid cells. 

Last design an effective index of all grid cells and constructing the δ near neighbor 

grid cell set for each grid cell. If every grid cell uses a Red-Black tree to index its 

active cores in each synchronization step, then constructing the δ near neighbor point 

set for every active core will become quicker when the number of grid cells is proper. 

Before iterative evolution, if we set a proper value for parameter δ to filtrate 

isolates, then these isolates can be set as inactive cores that will not be operated in the 

next iterative evolution. This improvement of implementation technique is often 

effective for some data sets. 

Another improvement in time cost of SSynC algorithm is described in another 

paper. 

4.8 The convergence of SSynC algorithm 

The renewal computing of SSynC algorithm is similar to ESynC algorithm. In all 

simulations, if using SSynC algorithm to synchronize the original data set S, then all 

root nodes of its final core set C(T) = {C1(T), C2(T), …, Cn(T)} will stay on some 

steady locations after several iterations (many simulations only need 4 - 5 times). In 

the final convergent core set C(T), those root cores that represent some points can be 

regarded as their cluster centers, and some root cores that represent only one or 

several points are regarded as the final synchronization locations of isolates. 

5. Simulated experiments 
5.1 Experimental design 

Our experiments are finished in a personal computer (Capability Parameters: 

Pentium(R) Dual-Core CPU E5400 2.7 GHz, 2G Memory). Experimental programs 

are developed using C and C++ language under Visual C++6.0 of Windows XP. 

To verify the improvement in clustering effect and time cost of our algorithm, 

there will be some simulated experiments of some artificial data sets, several UCI data 

sets (Frank et al., 2010), and three bmp pictures in the next sections. 

DS0 is produced in a 2-D region [0, 200] × [0, 200] by a program. Four kinds of 

artificial data sets (DS1 - DS4) are produced in a 2-D region [0, 600] × [0, 600] by a 

program. Other kinds of artificial data sets (DS5 - DS16) are produced in a range [0, 

600] in each dimension by a similar program. Iris et al. are several UCI data sets 

(Frank A, et al., 2010) that used in our experiments. Three bmp pictures (named as 

Picture1, Picture2, and Picture3) are obtained from Internet. The description of the 

experimental data sets is presented in Table 1 of Appendix 1 of Supplementary 

Material. 
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In section 5.2, SSynC algorithm will be compared with SynC algorithm, ESynC 

algorithm, and some other classic clustering algorithms (K-Means (MacQueen, 1967), 

FCM (Bezdek, 1981), AP (Frey et al., 2007), DBSCAN (Ester et al., 1996), Mean 

Shift (Fukunaga et al., 1975; Comaniciu et al., 2002)) in clustering quality and time 

cost using some artificial data sets. 

In section 5.3, SSynC algorithm will be compared with SynC algorithm, ESynC 

algorithm, and some other classic clustering algorithms in clustering quality and time 

cost using several UCI data sets. 

In section 5.4, SSynC algorithm will be compared with SynC algorithm, ESynC 

algorithm, and some other classic clustering algorithms in compress effective of 

clustering results, clustering quality, and time cost using three bmp pictures. 

In the experiments, parameter δ used in SynC, ESynC, SSynC, DBSCAN, and 

Mean Shift is the threshold of Definition 1. In DBSCAN algorithm, parameter MinPts 

is set as 4, and parameter Eps is the same as parameter δ. 

The detailed discussion on how to construct δ near neighbor point sets is 

described in Chen. (2013). How to select a proper value for parameter δ for SynC 

algorithm is discussed in Böhm et al. (2010). SSynC algorithm and ESynC algorithm 

can use the same method as SynC algorithm to select a proper value for parameter δ. 

In SSynC algorithm, parameter ε has trivial effect in time cost and clustering results. 

In our simulated experiments, the maximum times of synchronization moving in 

the while repetition of SynC algorithm, ESynC algorithm, and SSynC algorithm is set 

as 50. 

Comparison results of these clustering algorithms are presented by some figures 

(Figs. 6 - 8 and Figs. 7 - 9 of Appendix 1 of Supplementary Material) and some tables 

(Tables 1 - 7). And performance of algorithms is measured by time cost (second). 

Clustering quality of algorithms is measured by two robust information-theoretic 

measures, Adjusted Mutual Information (AMI) (Vinh et al., 2010) and Normalized 

Mutual Information (NMI) (Strehl et al., 2002), which are presented in Appendix 2 of 

Supplementary Material. According to the opinions of Vinh et al. (2010), the higher 

the value of the two measures gets, the better the clustering quality of algorithm is. In 

simulations, we use the Matlab code from Vinh et al. (2010) to compute the two 

clustering quality measures. 

5.2 Experimental results of some artificial data sets (DS1 - DS16) 

5.2.1 Compare the clustering results among SynC algorithm, ESynC algorithm, and 

SSynC algorithm 

 Table 1 presents the comparison results of three different synchronization 

clustering algorithms (SynC, ESynC, and SSynC) by using four artificial data sets 

(from DS1 - DS4). In Table 1, by intercomparing SynC, ESynC, and SSynC, we 

observe that SSynC is the fastest clustering algorithm. At the same time, SSynC and 

ESynC can get better local synchronization results than SynC in the four data sets. 
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Table 1. Compare three different synchronization clustering algorithms (SynC, ESynC, and SSynC) by 

using four artificial data sets (DS1 - DS4). In Table 1, parameter δ = 18, the number of data points n = 

10000, and parameter ε = 0.00001 in SSynC algorithm. 

Measure indexes  
of algorithms 

Name of algorithms
Data sets 
DS1 DS2 DS3 DS4 

Spend time (second) 
SynC 448 553 538 525 
ESynC 56 70 107 81 
SSynC 52 69 34 52 

Iterative times 
SynC 41 50 50 50 
ESynC, SSynC 4 5 8 6 

The number of steady locations
SynC 254 379 260 431 
ESynC, SSynC 14 5 25 8 

Note: The bold in Table 1 marks the better results of SSynC algorithm or ESynC algorithm. 
5.2.2 Compare the clustering results among SynC algorithm, ESynC algorithm, 

SSynC algorithm, and some classical clustering algorithms 
Table 2. Compare the clustering quality of several clustering algorithms (SynC, ESynC, SSynC, and 

some classical clustering algorithms) using six kinds of artificial data sets (DS2, DS4, DS5, DS6, DS7, 

and DS8). In Table 2, parameter δ = 18 in DS2, DS4, DS5, and DS6; parameter δ = 30 in DS7 and DS8; 

parameter ε = 0.00001 in SSynC algorithm. 

(a) 

Measure indexes 
of algorithms 

Name of 
algorithms 

Data sets 
DS2 (n = 400) DS4 (n = 400) DS2 (n = 800) DS4 (n = 800) 

NMI 

SSynC, 
ESynC 

1.0000 0.9694 1.0000 0.9643 

SynC 0.5505 0.6324 0.5362 0.6099 
K-Means 0.8670 0.9185 0.8659 0.9682 
FCM 1.0000 0.9633 1.0000 0.9615 
AP 0.7966 0.9697 0.7355 0.8375 
DBSCAN 1.0000 0.9643 1.0000 0.9643 
Mean Shift 0.7978 0.9028 0.7799 0.9103 

AMI 

SSynC, 
ESynC 

1.0000 0.9682 1.0000 0.9286 

SynC 0.1237 0.1275 0.1653 0.1785 
K-Means 0.8255 0.8980 0.8266 0.9676 
FCM 1.0000 0.9616 1.0000 0.9603 
AP 0.6252 0.9684 0.5333 0.7157 
DBSCAN 1.0000 0.9274 1.0000 0.9286 
Mean Shift 0.6251 0.8268 0.6022 0.8758 

The number of 
clusters 

SSynC, 
ESynC 

5 9 5 8 

SynC 227 255 314 357 
K-Means 5 (predefined) 9 (predefined) 5 (predefined) 9 (predefined) 
FCM 5 (predefined) 9 (predefined) 5 (predefined) 9 (predefined) 
AP 13 9 20 19 
DBSCAN 5 8 5 8 
Mean Shift 15 15 17 14 
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(b) 

Measure 
indexes of 
algorithms 

Name of 
algorithms

Data sets 

DS5 (n = 10000) DS6 (n = 10000) DS7 (n = 10000) DS8 (n = 10000) 

NMI 

SSynC, 
ESynC 

0.9765 1.0000 1.0000 1.0000 

SynC 0.6231 0.5411 0.5205 0.5194 
K-Means 0.8872 NaN (Matlab) 0.9194 0.8437 
FCM 0.9788 0.5228 0.5226 0.5282 
DBSCAN 0.9765 1.0000 1.0000 1.0000 
Mean Shift 0.9708 1.0000 1.0000 1.0000 

AMI 

SSynC, 
ESynC 

0.9534 1.0000 1.0000 1.0000 

SynC 0.3539 0.0973 0.0051 1.5118e-04 
K-Means 0.8426 NaN (Matlab) 0.8892 0.7783 
FCM 0.9781 0.5228 0.5226 0.2788 
DBSCAN 0.9534 1.0000 1.0000 1.0000 
Mean Shift 0.9534 1.0000 1.0000 1.0000 

The number of 
clusters 

SSynC, 
ESynC 

11 12 12 12 

SynC 578 5577 9729 9992 
K-Means 12 (predefined) 1 (+11 null clusters) 12 (predefined) 12 (predefined) 
FCM 12 (predefined) 2 (+10 null clusters) 3 (+9 null clusters) 2 (+10 null clusters)
DBSCAN 11 12 12 12 
Mean Shift 12 12 12 12 

 
Note: NMI and AMI are two clustering quality measures presented in Strehl et al. (2002) and Vinh et al. 

(2010). In Table 2, the largest values of NMI and AMI and acceptable number of clusters in every data 

set are shown in bold. 

     Table 2 presents the clustering quality of several clustering algorithms (SynC, 

ESynC, SSynC, and some classical clustering algorithms) by using six kinds of 

artificial data sets (DS2, DS4, DS5, DS6, DS7, and DS8). When computing the two 

information-theoretic measures (NMI and AMI), the predefined cluster labels of the 

eight artificial data sets are used in true_mem that is an input file of the MATLAB 

code (Vinh et al., 2010). In Table 2, by intercomparing SynC, ESynC, SSynC, and 

some classical clustering algorithms, we observe that SSynC and ESynC can get 

acceptable clustering results in the eight data sets. Because the three data sets (DS4 (n 

= 400), DS4 (n = 800), and DS5 (n = 10000)) have two connected clusters, SSynC and 

ESynC do not get the largest values of NMI and AMI. 
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(a) Clusters identified by ESynC (15 clusters or isolates) (b) Clusters identified by SynC (204 clusters 

or isolates) 

  
(c) Clusters identified by K-Means (predefined 5 clusters)  (d) Clusters identified by FCM 

(predefined 5 clusters) 

  
(e) Clusters identified by AP (14 clusters)   (f) Clusters identified by DBSCAN (5 clusters) 
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(g) Clusters identified by Mean Shift (18 clusters) (f) Clusters identified by SSynC (15 clusters or 

isolates) 

Fig. 6. Compare the clustering results of several algorithms (DS1, n = 400) 

 Figs. 6 and Figs. 7 - 9 of Appendix 1 of Supplementary Material present the 

comparison clustering results of several clustering algorithms by some display figures 

that can reflect the clustering quality clearly. In Fig. 6 and Figs. 7 - 9 of Appendix 1 of 

Supplementary Material, parameter δ = 18 in SynC, ESynC, SSynC, DBSCAN, and 

Mean Shift; the number of data points n = 400; parameter ε = 0.00001 in SSynC 

algorithm. 

 From Fig. 6 and Figs. 7 - 9 of Appendix 1 of Supplementary Material, we observe 

that SSynC and ESynC can get better clustering quality (obvious clusters or isolates 

displayed by figures) than SynC, AP, K-Means, and FCM in some artificial data sets 

(from DS1 - DS4). Mean Shift, DBSCAN can obtain similar clustering quality 

(obvious clusters displayed by figures) with SSynC and ESynC for some artificial data 

sets (from DS1 - DS4). Especially, SynC, ESynC, and SSynC can all easily find some 

isolates if setting a proper value for parameter δ, and SSynC gets the same clustering 

results (the same clusters displayed by figures) with ESynC in these data sets. 

 
Fig. 7. Compare several clustering algorithms in time cost by using four artificial data sets (DS1 - DS4, 

n = 20000). 

 Fig. 7 presents the comparison results of several clustering algorithms in time 

cost. In Fig. 7, parameter δ = 18 in SynC, ESynC, SSynC, DBSCAN, and Mean Shift; 
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the number of data points n = 20000; parameter ε = 0.00001 in SSynC algorithm. 

In Fig. 7, intercomparing SynC, ESynC, SSynC, Mean Shift, DBSCAN, FCM, 

and K-Means, we observe that SSynC is faster than SynC and ESynC in many cases, 

and K-Means is the fastest clustering algorithm. 

5.2.3 Compare the valid interval of parameter δ among SynC, ESynC, SSynC, 

DBSCAN, and Mean Shift using some artificial data sets (DS5 - DS16) 

 Here we compare the valid interval of parameter δ among SynC algorithm, 

ESynC algorithm, SSynC algorithm, DBSCAN algorithm, and Mean Shift algorithm. 

 Table 3 gives the comparison results among these clustering algorithms. Here, [ek , 

ek+1] can be obtained from Eq.(8) of Chen (2015). In Table 3, intercomparing SynC, 

ESynC, SSynC, DBSCAN, and Mean Shift, we observe that the valid interval of 

parameter δ in SSynC and ESynC is longer than it in DBSCAN in these data sets, the 

valid interval of parameter δ in DBSCAN is consistent with [ek , ek+1], and parameter δ 

in Mean Shift has the longest and largest valid interval. 

 Table 4 compares the valid interval of parameter δ in SSynC algorithm for several 

different value of parameter ε using some artificial data sets with different dimensions. 

In Table 4, intercomparing several different value of parameter ε, we observe that the 

valid interval of parameter δ has very small difference for several different value of 

parameter ε if parameter ε is less than parameter δ. 
Table 3. Compare the valid interval of parameter δ among SynC, ESynC, SSynC, DBSCAN, and Mean 

Shift using some artificial data sets with different dimensions. In Table 3, n = 10000, parameter ε = 

0.00001 in SSynC algorithm. 

(a) 

 Data sets 
DS5 DS6 DS7 DS8 

The valid interval of 
parameter δ 

SynC δ ∈ Ø δ ∈ Ø δ ∈ Ø δ ∈ Ø 
SSynC, ESynC δ ∈ [9, 58] δ ∈ [11, 164] δ ∈ [16, 214] δ ∈[22, 298] 
DBSCAN δ ∈ [2, 45] δ ∈ [7, 147] δ ∈ [12, 199] δ ∈[17, 281] 
Mean Shift δ ∈[15, 60] δ ∈[17, 176] δ ∈[20, 285] δ ∈[22, 396] 

[ek , ek+1] In MST of the complete graph of 
the data set 

[2.16, 45.42] [9.82, 147.48] [15.29, 199.78] [21.04, 281.19] 

 
(b) 

 Data sets 
DS9 DS10 DS11 DS12 

The valid interval of 
parameter δ 

SynC δ ∈ Ø δ ∈ Ø δ ∈ Ø δ ∈ Ø 
SSynC, ESynC δ ∈ [9, 83] δ ∈ [10, 208] δ ∈ [13, 248] δ ∈ [19, 297] 
DBSCAN δ ∈ [2, 68] δ ∈ [6, 193] δ ∈ [11, 232] δ ∈ [15, 279] 
Mean Shift δ ∈ [14, 89] δ ∈ [15, 219] δ ∈ [19, 261] δ ∈ [21, 312] 

[ek , ek+1] In MST of the complete graph of 
the data set 

[1.36, 68.69] [6.89, 193.04] [6.89, 193.04] [18.47, 279.44] 
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(c) 

 Data sets 
DS13 DS14 DS15 DS16 

The valid interval 
of parameter δ 

SynC δ ∈ Ø δ ∈ Ø δ ∈ Ø δ ∈ Ø 
SSynC, ESynC δ ∈ [40, 854] δ ∈ [63, 1271] δ ∈ [87, 1850] δ ∈ [123, 2917] 
DBSCAN δ ∈ [34, 841] δ ∈ [57, 1257] δ ∈ [90, 1841] δ ∈ [135, 2908] 
Mean Shift δ ∈ [40, 872] δ ∈ [65, 1283] δ ∈ [92, 1864] δ ∈ [136, 2935] 

[ek , ek+1] In MST of the complete 
graph of the data set 

[39.69, 841.37] [64.05, 1257.35] [97.34, 1841.97] [142.44, 2908.82] 

 

Table 4. Compare the valid interval of parameter δ in SSynC algorithm for several different value of 

parameter ε using some artificial data sets with different dimensions. In Table 4, n = 10000, parameter ε 

is set as several different value respectively in SSynC algorithm. 

(a) DS5 - DS8 

 Data sets 
DS5 DS6 DS7 DS8 

The valid interval 
of parameter δ in 
SSynC algorithm 
for several 
different value of 
parameter ε 

ε = 0.00001 δ ∈ [9, 58] δ ∈ [11, 164] δ ∈ [16, 214] δ ∈ [22, 298] 

ε = 0.0001 δ ∈ [9, 58] δ ∈ [11, 164] δ ∈ [16, 214] δ ∈ [22, 298] 

ε = 0.001 δ ∈ [9, 58] δ ∈ [11, 164] δ ∈ [16, 214] δ ∈ [22, 298] 

ε = 0.01 δ ∈ [9, 58] δ ∈ [11, 164] δ ∈ [16, 214] δ ∈ [22, 298] 

ε = 0.1 δ ∈ [13, 58]  δ ∈ [11, 164]  δ ∈ [16, 214]  δ ∈ [22, 298] 

ε = 1 δ ∈ [12, 58]  δ ∈ [11, 164]  δ ∈ [16, 215]  δ ∈ [22, 298] 

ε = 10 δ ∈ [14, 22]  δ ∈ [16, 161]  δ ∈ [17, 215]  δ ∈ [22, 298] 

 

(b) DS9 - DS12 

 Data sets 
DS9 DS10 DS11 DS12 

The valid interval 
of parameter δ in 
SSynC algorithm 
for several 
different value of 
parameter ε 

ε = 0.00001 δ ∈ [9, 83] δ ∈ [10, 208] δ ∈ [13, 248] δ ∈ [19, 297] 

ε = 0.0001 δ ∈ [9, 83] δ ∈ [10, 208] δ ∈ [13, 248] δ ∈ [19, 297] 

ε = 0.001 δ ∈ [9, 83] δ ∈ [10, 208] δ ∈ [13, 248] δ ∈ [19, 297] 

ε = 0.01 δ ∈ [9, 83] δ ∈ [10, 208] δ ∈ [13, 248] δ ∈ [19, 297] 

ε = 0.1 δ ∈ [9, 83]  δ ∈ [10, 208]  δ ∈ [13, 248]  δ ∈ [19, 297] 

ε = 1 δ ∈ [9, 83]  δ ∈ [10, 208]  δ ∈ [13, 248]  δ ∈ [19, 297] 

ε = 10 δ ∈ [14, 83]  δ ∈ [16, 208]  δ ∈ [16, 249]  δ ∈ [19, 297] 

 

(c) DS13 - DS16 

 Data sets 
DS13 DS14 DS15 DS16 

The valid interval 
of parameter δ in 
SSynC algorithm 
for several 
different value of 
parameter ε 

ε = 0.01 δ ∈ [40, 854] δ ∈ [63, 1271] δ ∈ [87, 1850] δ ∈ [123, 2917] 

ε = 0.1 δ ∈ [40, 854] δ ∈ [63, 1271] δ ∈ [87, 1850] δ ∈ [123, 2917] 

ε = 1 δ ∈ [40, 854] δ ∈ [63, 1271] δ ∈ [87, 1851] δ ∈ [123, 2917] 

ε = 10 δ ∈ [40, 854] δ ∈ [63, 1271] δ ∈ [87, 1851] δ ∈ [123, 2917] 

ε = 20 δ ∈ [40, 854]  δ ∈ [63, 1271]  δ ∈ [87, 1851]  δ ∈ [123, 2918] 

ε = 30 δ ∈ [41, 854]  δ ∈ [64, 1271]  δ ∈ [87, 1851]  δ ∈ [125, 2919] 

ε = 40 δ ∈ [42, 854]  δ ∈ [65, 1271]  δ ∈ [89, 1851]  δ ∈ [125, 2917] 

 

Note: SSynC algorithm gets 12 clusters when parameter δ in its valid interval. In the DS5 (n = 10000) 

data set, there are two clusters that are almost connected to become one cluster, so parameter ε affects 
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the final number of clusters very much. For other data sets, parameter ε affects the final number of 

clusters little. 
5.3 Experimental results of several UCI data sets 

 Because we do not know the true dissimilarity measure of these UCI data sets, 

all points of these UCI data sets are standardized into a range [0, 600] in each 

dimension in this experiment. When computing the two information-theoretic 

measures (NMI and AMI), because we do not know the true cluster labels of these 

UCI data sets, the class labels of these UCI data sets are used in true_mem that is an 

input file of the MATLAB code (Vinh et al., 2010). 

5.3.1 Compare the clustering results among SynC algorithm, ESynC algorithm, and 

SSynC algorithm 

Table 5 gives the comparison results of three synchronization clustering 

algorithms (SynC, ESynC, and SSynC) by using several UCI data sets. In Table 5, by 

comparing SynC, ESynC, and SSynC, we observe that SSynC and ESynC can get 

better local synchronization results than SynC in the eight UCI data sets, and SSynC 

is the fastest algorithm. 
Table 5. Compare three synchronization clustering algorithms (SynC, ESynC, and SSynC) by using 

several UCI data sets. In Table 5, parameter ε = 1 in SSynC algorithm. 

 (a) The setting of parameter δ in three synchronization clustering algorithms for several UCI data sets 

UCI data sets 
Parameter δ in SynC and 
ESynC 

Iris 120 

Wine 305 

Wdbc 345 

Glass 148 

Ionosphere 615 

Letter-recognition 210 

Segmentation 205 

Cloud 380 

 

(b) Comparison results of the first four UCI data sets 

Measure indexes 
of algorithms 

Name of 
algorithms 

Data sets 
Iris Wine Wdbc Glass 

Spend time 
(second) 

SynC 0 0 15 0 

ESynC 0 0 2 0 

SSynC 0 0 1 0 

Iterative times 
SynC 50 50 50 50 

SSynC, ESynC 9 6 7 6 

The number of 
steady locations 

SynC 147 178 569 213 

SSynC, ESynC 5 19 35 35 

The cluster order 
parameter rc 

SynC 0.05333 0 0 0.009346 

ESynC 54.1067 47.8876 305.3497 55.1402 

SSynC 0 0 0 0 

AveLen(T) 
SynC 83.9640 258.3664 276.6775 97.9706 

SSynC, ESynC 0 0 0 0 
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(c) Comparison results of the next four UCI data sets 

Measure indexes 
of algorithms 

Name of 
algorithms 

Data sets 
Ionosphere Letter-recognition Segmentation Cloud 

Spend time 
(second) 

SynC 5 4186 1 79 

ESynC 1 2270 0 10 

SSynC 1 394 0 4 

Iterative times 
SynC 50 50 50 50 

SSynC, ESynC 9 23 7 6 

The number of 
steady locations 

SynC 350 18668 210 2043 

SSynC, ESynC 85 34 38 2 

The cluster order 
parameter rc 

SynC 0.005698 0.2596 0.000036 0.004965 

ESynC 126.49 9107.0009 19.5905 1023 

SSynC 0 0 0 0 

AveLen(T) 
SynC 401.6912 171.9401 142.6595 215.9900 

SSynC, ESynC 0 0 0 0 

 

Note: The bold in Table 5 marks the better results of SSynC algorithm or ESynC algorithm. 

5.3.2 Compare the clustering results among SynC algorithm, ESynC algorithm, 

SSynC algorithm, and some classical clustering algorithms 
 Table 6. Compare the clustering quality of several clustering algorithms (SynC, ESynC, SSynC, 

and some classical clustering algorithms) by using several UCI data sets. In Table 6, parameter ε = 1 in 

SSynC algorithm. 

 (a) The setting of parameter δ in several clustering algorithms for several UCI data sets 

UCI data sets 
Parameter δ in 
SynC, ESynC, and SSynC

Parameter δ in 
DBSCAN

Parameter δ in 
Mean Shift 

Iris 120 75 150 
Wine 305 242.725 305 
Wdbc 345 215 345 
Glass 148 80 120 
Ionosphere 615 350 710 
Letter-recognition 210 160 220 
Segmentation 205 176 270 
Cloud 380 350 350 
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(b) Comparison results of the first four UCI data sets 

Measure 
indexes of 
algorithms 

Name of 
algorithms 

Data sets 

Iris Wine Wdbc Glass 

NMI 

SSynC, ESynC 0.7265 0.7615 0.4655 0.4540 
SynC 0.4697 0.4578 0.3226 0.5306 
K-Means 0.7145 0.8782 0.6232 0.3588 
FCM 0.7919 0.4823 0.5947 0.4108 
AP 0.6061 0.5382 0.3594 0.4257 
DBSCAN 0.6465 0.3534 0.2904 0.2574 
Mean Shift 0.7265 0.7612 0.2797 0.4662 

AMI 

SSynC, ESynC 0.7143 0.6057 0.3513 0.2872 
SynC 0.0050. 3.2528e-16 6.8369e-16 0.0012 
K-Means 0.7107 0.8735 0.6110 0.3265 
FCM 0.7888 0.3820 0.5887 0.2525 
AP 0.3982 0.2977 0.1453 0.2423 
DBSCAN 0.5712 0.3423 0.2496 0.2065 
Mean Shift 0.7143 0.5819 0.2086 0.2414 

The 
number of 
clusters 

SSynC, ESynC 3 (+ 2 isolates) 3 (+ 16 isolates) 2 (+ 33 isolates) 6 (+29 isolates) 
SynC 2 (+ 145 isolates) 0 (+178 isolates) 0 (+ 569 isolates) 1 (+ 212 isolates) 
K-Means 3 (predefined) 3 (predefined) 2 (predefined) 6 (predefined) 

FCM 3 (predefined) 
3 (predefined) 
Final: 2 (+1 null 
cluster) 

2 (predefined) 
 6 (predefined) 
Final: 2 (+ 4 null 
clusters) 

AP 11 21 36 (+ 9 isolates) 12 (+ 14 isolates) 
DBSCAN 3 (+ 35 isolates) 3 (+ 75 isolates) 2 (+ 194 isolates) 6 (+ 83 isolates) 

Mean Shift 3 (+ 2 isolates) 3 (+ 18 isolates) 
2 (+33 isolates  
+ 1 null clusters) 

6 (+ 43 isolates) 
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(c) Comparison results of the next four UCI data sets 

Measure 
indexes of 
algorithms 

Name of 
algorithms 

Data sets 

Ionosphere Letter-recognition Segmentation Cloud 

NMI 

SSynC, ESynC 0.3106 0.3986 0.6086 1 
SynC 0.3339 0.5768 0.6033 0.3016 
K-Means 0.1299 0.3572 0.6103 0.9944 
FCM 0.1264 0.0095 0.4454 0.9944 
AP 0.2809 - 0.6781 0.4107 
DBSCAN 0.4061 0.1517 0.4592 1 
Mean Shift 0.2831 0.3649 0.6447 1 

AMI 

SSynC, ESynC 0.1073 0.3986 0.4212 1 
SynC 3.5016e-04 0.0166 -1.6974e-15 2.4432e-04 
K-Means 0.1246 0.3484 0.5286 0.9944 
FCM 0.1211 0.0042 0.2574 0.9944 
AP 0.1002 - 0.4897 0.1653 
DBSCAN 0.3417 0.1517 0.4016 1 
Mean Shift 0.0991 0.3649 0.5048 1 

The number 
of clusters 

SSynC, ESynC 2 (+ 83 isolates) 26 (+ 8 isolates) 7 (+ 31 isolates) 2 
SynC 0 (+ 350 isolates) 845 (+ 17823 isolates) 0 (+ 210 isolates) 5 (+ 2038 isolates) 
K-Means 2 (predefined) 26 (predefined) 7 (predefined) 2 (predefined) 

FCM 2 (predefined) 
26 (predefined) 
Final: 2 (+ 24 null 
clusters) 

7 (predefined) 
Final: 2 (+ 5 null 
clusters) 

2 (predefined) 

AP 14 (+ 44 isolates) - 17 (+ 7 isolates) 66 (+ 1 isolate) 
DBSCAN 2 (+ 145 isolates) 28 (+ 323 isolates) 7 (+ 51 isolates) 2 

Mean Shift 2 (+ 76 isolates) 
26 (+ 3 isolates + 1 
null cluster) 

7 (+ 22 isolates) 2 

 

Note1: In the Letter-recognition data set, DBSCAN algorithm obtains 21 clusters and 243 isolates 

when parameter δ = 160.0001, so we set parameter δ = 160 in DBSCAN. The sign ‘-‘ in AP column 

means that the time cost is too larger. 

Note2: In Table 6, the largest values of NMI and AMI in every data set are shown in bold. 

Table 6 gives the comparison clustering quality of several clustering algorithms 

(SynC, ESynC, SSynC, and some classical clustering algorithms) by using several 

UCI data sets. In Table 6, by intercomparing these clustering algorithms, we observe 

that SSynC and ESynC do not get the largest values of NMI and AMI except Cloud 

data set. We think there are three reasons. First, we use the Euclidean metric to 

compute the dissimilarity measure for the eight UCI data sets without any actual 

knowledge on these data sets. Second, we observe that the largest values of NMI and 

AMI do not mean the best clustering quality for some data sets. Third, the class labels 

of these UCI data sets, which are not often consistent with the actual distributions of 

clusters, are used as the benchmark of clusters in our simulations (Because we have 

not better choice). From the final number of clusters of Table 6, we observe that 

SSynC and ESynC can get better local synchronization results than some other 

clustering algorithms for some UCI data sets. 
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5.4 Experimental results of three bmp pictures 

The value in RGB (Red, Green, and Blue) color space of pixel points are in a 

range [0, 255] in each dimension. In Table 7 and Fig. 8, parameter ε = 1 in SSynC 

algorithm. 

5.4.1 Compare the clustering results among SynC algorithm, ESynC algorithm, and 

SSynC algorithm 
 Table 7. Compare three different synchronization algorithms (SynC, ESynC, and SSynC) by using 

three picture data sets. In Table 7, parameter δ = 18 or 30 in SynC, ESynC, and SSynC; parameter ε = 1 

in SSynC algorithm. 

(a). parameter δ = 18 

Measure indexes 
of algorithms 

Name of 
algorithms 

Data sets 
Picture1 Picture2 Picture3 

Spend time 
(second) 

SynC 662 676 9795 
ESynC 132 122 3254 
SSynC 18 16 297 

Iterative times 
SynC 50 50 50 
SSynC, ESynC 10 9 16 

The number of 
steady locations 

SynC 941 467 2868 
SSynC, ESynC 13 5 14 

The cluster order 
parameter rc 

SynC 58.6149 118.4821 88.4415 
ESynC 2712.8392 3321.3298 6127.5541 
SSynC 0 0 0 

AveLen(T) 
SynC 11.0537 10.5757 11.5605 
SSynC, ESynC 0 0 0 

 

(b). parameter δ = 30 

Measure indexes 
of algorithms 

Name of 
algorithms 

Data sets 
Picture1 Picture2 Picture3 

Spend time 
(second) 

SynC 749 797 10930 
ESynC 122 179 2139 
SSynC 16 16 274 

Iterative times 
SynC 50 50 50 
SSynC, ESynC 9 13 10 

The number of 
steady locations 

SynC 928 472 2896 
SSynC, ESynC 4 2 6 

The cluster order 
parameter rc 

SynC 55.2653 106.8353 87.9900 
ESynC 3630.5206 5015.0178 11105.6154 
SSynC 0 0 0 

AveLen(T) 
SynC 16.9417 17.5013 19.0378 
SSynC, ESynC 0 0 0 

 

Note: The bold in Table 7 marks the better results of SSynC algorithm or ESynC algorithm. 

Table 7 is the experimental results in time cost and local synchronization results 

among SynC, ESynC, and SSynC by clustering pixel points of three bmp picture in 

RGB color space. In Table 7, by comparing SynC, ESynC, and SSynC, we observe 

that SSynC and ESynC are faster than SynC for these data sets. At the same time, 

SSynC and ESynC can get better local synchronization results than SynC in these data 

sets. 

5.4.2 Compare the clustering compress results among SynC algorithm, ESynC 
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algorithm, SSynC algorithm, and some classical clustering algorithms 

   
 Origina Picture    SSynC, ESynC (final k = 14)  SynC (final k = 2868) 

   
 K-Means, FCM (final k = 1)  DBSCAN (final k = 112)  Mean Shift (final k = 10) 

(a) δ = 18 for SynC, ESynC, SSynC, DBSCAN, and Mean Shift; predefined k (number of clusters) = 

14 for K-Means and FCM. 

   
 Origina Picture    SSynC, ESynC (final k = 6)  SynC (final k = 2896) 

   
 K-Means, FCM (final k = 1)  DBSCAN (final k = 35)  Mean Shift (final k = 4) 

 (b) δ = 30 for SynC, ESynC, SSynC, DBSCAN, and Mean Shift; predefined k (number of clusters) = 

6 for K-Means and FCM. 

Fig. 8. Compare the original picture and several compressed pictures of Picture3 by clustering pixel 
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points of Picture3 in RGB color space using several algorithms. In Fig. 8, several compressed pictures 

are drawn using the means of clusters obtained by clustering 200 * 200 pixel points of Picture3 in RGB 

space. 

Fig. 8 lists the original picture and several compressed pictures of Picture3. The 

several compressed pictures are drawn using the means of clusters obtained by 

clustering 200 * 200 pixel points of Picture3 in RGB color space using different 

algorithms. Because AP needs too much time and space for Picture3, this experiment 

does not use it. From Fig. 8, we observe that SSynC and ESynC can get multi-level 

clustering compressed effect for different values of parameter δ. 

5.5 Analysis and conclusions of experimental results 

From the comparison experimental results of these figures and tables (Figs. 1 - 8, 

Figs. 7 - 9 of Appendix 1 of Supplementary Material, and Tables 1 - 7), we observe 

that SSynC algorithm is faster than ESynC algorithm and SynC algorithm almost in all 

cases. In simulations of some artificial data sets (from DS5 to DS16), we observe that 

the effective interval of parameter δ in SSynC and ESynC has a long range, and in 

many cases it is longer than the effective interval of parameter δ (or Eps) in 

DBSCAN. 

In some displayed figures, by intercomparing SynC, ESynC, and SSynC, we 

observe that SSynC can explore the same clusters and isolates (displayed by some 

figures) with ESynC. For many kinds of data sets, SSynC and ESynC can explore 

obvious clusters or isolates if setting a proper value of parameter δ, and SynC cannot 

explore obvious clusters of many data sets. 

 In simulations of some data sets, we observe that the iterative times of SynC, AP, 

K-Means, and FCM is larger than the iterative times of SSynC and ESynC. For many 

data sets, ESynC, SSynC, and DBSCAN have better ability than SynC, K-Means, 

FCM, AP, and Mean Shift in exploring clusters and isolates. Specially, AP algorithm 

needs the largest time cost. 

Because the values in RGB space of the pixel points of Picture3 are almost 

continuous and have no obvious clusters. In this case, SSynC algorithm and ESynC 

algorithm can get more obvious multi-level compress effect than some other 

algorithms, such as K-Means and FCM. In simulations, we also observe that 

DBSCAN algorithm needs more space than SSynC algorithm and ESynC algorithm 

because of its recursion procedure. 

SSynC algorithm is an improved clustering algorithm with faster clustering 

speed than ESynC algorithm almost in all cases. Usually, parameter ε has a long 

effective interval (For example, the effective interval of parameter ε is about in (0, 10) 

if parameter δ > 15). In simulations, we observe that if parameter ε gets some different 

values in its effective interval, the clustering results of SSynC algorithm is almost the 

same except the time cost. 

6. Conclusions 
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This paper presents an improved synchronization clustering algorithm, SSynC, 

which often gets better clustering results than the original synchronization clustering 

algorithm, SynC. From the experimental results, we observe that SSynC algorithm 

can often obtain less iterative times, faster clustering speed, and better clustering 

quality than SynC algorithm for many kinds of data sets. SSynC algorithm can also 

get better or similar clustering results or faster clustering speed than some classical 

clustering algorithms for some data sets. 

To our knowledge, the linear weighted Vicsek model and shrinking 

synchronization clustering are introduced firstly. The major contributions of this paper 

can be summarized as follows: 

(1). It presents a Shrinking Synchronization Clustering (SSynC) algorithm, 

which is an improved version of SynC algorithm, by using a linear weighted Vicsek 

model. 

(2). It validates the improved effect of SSynC algorithm in time cost and 

clustering quality by the simulated experiments of several different kinds of data sets. 

(3). It presents and validates our convergent condition of dynamical clustering in 

SSynC algorithm, the t-step average length of edges, by the simulated experiments of 

several different kinds of data sets. 

SSynC algorithm uses a global searching strategy to construct the δ near 

neighbor point set for every point in each evolution, so its time complexity is O(d·(n(t 

= 0)
2 + n(t = 1)

2) + … + n(t = T-1)
2)), which is less than O(Tdn2) that is the time complexity 

of SynC algorithm. Where n is the number of all points, n(t) is the number of 

synchronized points in the t-step synchronization, d is the number of dimensions, and 

T is the times of synchronization. 

 Like DBSCAN, SynC, and ESynC, SSynC algorithm is also robust to outliers or 

isolates. Like DBSCAN and ESynC, SSynC can find obvious clusters with different 

shapes. For DBSCAN, Mean Shift, ESynC, and SSynC, the number of clusters does 

not have to be fixed before clustering. Usually, parameter δ has some valid interval 

that can be determined by using an exploring method listed in Chen (2015) or using 

the MDL-based method presented in Böhm et al. (2010). More often, the valid 

interval of parameter δ in ESynC and SSynC is longer than it in DBSCAN. 

Comparing with SynC, K-Means, FCM, and AP, ESynC and SSynC can obtain better 

or similar clustering quality. 

Although our algorithm has shown promising results, there are still some 

limitations. First, the computational complexity of SSynC is O(d·(n(t = 0)
2 + n(t = 1)

2) 

+ … + n(t = T-1)
2)), which limits its applicability to big data. Second, like DBSCAN, 

ESynC, and CNNI (Chen, 2015), SSynC is also sensitive to parameter δ for some 

scatter data sets. When many noises and few obvious clusters exist, DBSCAN, ESynC, 

and SSynC cannot generate clusters with different levels of scatter because parameter 

δ is fixed before clustering. 
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This work opens some possibilities for further improvement and investigation. 

First, do more comparative experiments. For example, in the process of constructing δ 

near neighbor point sets, comparing the simplest search method with our improved 

method based on δ near neighbor grid cell set (Chen, 2013) and Red-Black tree, 

R-tree index structure (Guttman, 1984; Manolopoulos et al., 2006) method, and 

SR-tree index structure (Katayama et al., 1997) method should be valuable for 

practical work. Second, further improve SSynC algorithm in time cost. For example, 

designing similarity preserving Hash function that needs O(1) time complexity is 

valuable in the process of constructing δ near neighbor point sets. Third, extend the 

applicability and explore the clustering effect of our algorithm in high-dimensional 

data. Fourth, further explore more proper and simple methods to estimate parameter δ. 

Fifth, SSynC algorithm is a dynamic synchronization clustering algorithm, and Mean 

shift algorithm (Fukunaga et al., 1975; Comaniciu et al., 2002) is a clustering 

algorithm based on a non-parametric modeling method. Although SSynC algorithm 

and Mean shift algorithm have essential difference, they still have some similarity. So, 

it is important to explore the relation between SSynC algorithm and Mean shift 

algorithm further. 
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