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Abstract—SpMV (Sparse matrix-vector multiplication) has
attracted the attention of researchers in related fields at home
and abroad. Of course, improving SpMV performance has also
been a research hot spot for researchers in related fields. In
this paper, we propose a new sparse matrix storage format
CSR2 (Compressed Sparse Row 2) suitable for SIMD (Single
Instruction Multiple Data)-accelerated SpMV. First, the format
operation of CSR2 is easy to implement and has a low overhead
of conversion. Second, CSR2 is a new single format and suitable
for use on processor platforms with SIMD vectorization. We
compare the SpMV algorithm based on CSR21 with the one based
on the current most advanced single format CSR5 (Compressed
Sparse Row 5) on two mainstream high-performance processors:
Intel Core i7-7700HQ CPU and Intel Xeon CPU E5-2670 v3.
We choose 10 sets of regular matrices and 3 sets of irregular
matrices to be used as benchmark suit. Experiments show that
for the 13 sets of regular and irregular matrices in the benchmark
suite, CSR2 has an average performance improvement of more
than 50% compared to CSR5 (up to 125% on Intel Core i7-
7700HQ CPU and 303% on Intel Xeon CPU E5-2670 v3). For
applications with multiple iterations, in reality, using our CSR2
can bring low-overhead format conversion and high-throughput
computing performance.

Index Terms—SpMV, SIMD Vectorization, CSR2, CSR5, Stor-
age Formats, CPU

I. INTRODUCTION

The use of sparse matrix-vector multiplication (SpMV) has
been pervasive. In the field of graph computing, it is vital to
have an architecture for large-scale graph analysis, and many
graph computing algorithms are inseparable from the support
of SpMV [1]-[2]. In the field of deep learning, we can also
see the existence of SpMV, which is used in the optimization
of some neural network algorithms such as DNN (Deep
Neural Networks) [3]-[4]. In the field of linear algebra, some
scholars have developed high-performance processing systems
specifically for linear algebra, so SpMV is also used very
frequently [5]-[6]. As for solving eigenvalue problems, the
emergence of SpMV is inevitable, because in some complex
formulas, the performance of SpMV often directly affects the
overall performance of the problem solving [7]-[8].

Moreover, a series of research fields that involve complex
computing and are closely related to SpMV, such as fluid dy-
namics, require high-performance solution systems and meth-
ods [9]-[10]. Therefore, in most cases, SpMV often occupies
a pivotal position as long as it is needed. The performance

1The source code of this work is downloadable at
https://github.com/nulidangxueshen/CSR2

of SpMV has always been a research focus for researchers in
related fields. For example, in the PageRank algorithm, the
core that affects program performance is SpMV. However,
even with the rapid development of hardware performance
today, people still cannot stand only to improve single-core
performance to meet the needs of program performance.
Therefore, for SpMV of fixed complexity, most users use
multi-core CPU and GPU and other processor architectures
to accelerate SpMV calculations in parallel to obtain better
performance.

In the rapid development of the multi-core era, there are also
many types of processors. Of course, different processors have
different effects on program performance. On the SW26010
platform, parallelizing SpMV by efficiently compressing com-
pressed sparse row (CSR) can achieve considerable perfor-
mance improvements [11]-[13]. On the multi-core and multi-
threaded high-performance processor owned by Intel Xeon
Phi, the performance improvement of SpMV or SpMM can be
achieved by saturating the memory bandwidth [14]-[15],[29].
On the NVIDIA GPUs platform, SpMV is accelerated based
on the ELLPACK-R format, and a significant performance
speedup is obtained [16]-[20]. On the FPGA platform, par-
titioning effectively solves the limited buffer under large-
scale data, which can accelerate SpMV [21]. On the AMD
GPU platform, the PageRank ranking algorithm is effectively
accelerated and has a perfect effect [22]-[23].

Secondly, the parallel effects of SpMV calculation of dif-
ferent data sets in different formats are also very different.
Currently, there are two types of sparse matrix storage meth-
ods: single format and mixed format. The operation of a
single format is easier to implement and understand than the
mixed format. Compressed sparse row 5 (CSR5) [24] is one
of the rare formats in existence that can achieve not only
higher calculations but also load balancing under low time
overhead. Among the many benchmarks for comparing SpMV
performance, in addition to the common CSR, Coordinate
(COO), ELLPACK (ELL), Diagonal (DIA), and other formats,
researchers often use CSR5 as one of the benchmarks for
performance comparison. In addition to CSR5, there are also
some single formats such as CSX [25], BCCOO [26], which
have good performance improvements. The use of mixed
formats can achieve more effective and balanced performance
improvement compared with the single formats. For example,
ELLPACK-RP [27] can be used to reduce load imbalance to
improve the performance of SpMV.



Moreover, the ability to give full play to processor per-
formance is also the key to SpMV calculation speed im-
provement. In addition to using OpenMP in multiple threads
and MPI in multi-machine communication, the optimization
of the instruction set is also an indispensable part of the
overall program performance improvement. At present, most
processors support extended 256bit, extended 512bit, or even
higher single instruction multiple data (SIMD) vectorization
technology, which allows programs to achieve a certain de-
gree of performance improvement based on multi-threading
and multi-processing. For example, the AVX2 and AVX512
instruction set technologies under the Intel architecture can
bring good performance improvements to programs [28]-[30].

In order to make full use of SIMD vectorization to acceler-
ate SpMV, we have designed compressed sparse row 2 (CSR2),
a sparse matrix compression format suitable for SIMD-enabled
platforms to accelerate SpMV. This is a new storage format
extended from CSR. As for CSR2, three arrays are retained
based on CSR, while the values of the corresponding elements
may change, which is also designed to take full advantage of
SIMD vectorization. Of course, CSR2 occupies more storage
space than CSR generally. However, the parameter control
can make CSR2 expand little space-based on CSR with better
performance improvement. From the test results, we found that
CSR2 occupies a storage space that is equivalent to or less
than CSR5. At the same time, the implementation of CSR2 is
convenient and straightforward, and the conversion overhead
is equivalent to or less than that of CSR5.

In this article, we have made the following three contribu-
tions:

(1)We propose a new format CSR2, which is suitable for
SIMD-enabled processors to accelerate SpMV. This format has
lower conversion overhead and smaller space occupation and
can make full use of SIMD vectorization to achieve parallel
execution with better performance.

(2)We analyze the principle of CSR2 in detail and give a
parallel implementation algorithm of SpMV based on CSR2.

(3)On Intel Xeon CPU E5-2670 v3 and Intel Core i7-
7700HQ CPU platforms, we use the performance of the SpMV
parallel program implemented based on CSR5 format as a test
benchmark to compare the one based on the CSR2 format we
designed. A benchmark suite consisting of 13 sets of data was
selected as performance test data. Finally, we made a detailed
analysis of the experimental results.

By using the Benchmark suite consisting of 10 sets of
regular matrices and 3 sets of irregular matrices, we find
that CSR2 has better performance than CSR5 on the parallel
implementation of SpMV, and its conversion overhead is also
equivalent to or less than CSR5. During the actual running
process of the program test, we found that the physical
memory space occupied by CSR2 is equivalent to or less than
CSR5 by using the RES parameter under the Htop test tool. At
the same time, the implementation of CSR2 is convenient and
easy to understand, and the conversion overhead is equivalent
to or less than that of CSR5.

II. BACKGROUND

A. PageRank

PageRank is a page ranking algorithm which is used by
Google to reflect the importance of web pages. The core idea
has two points: (1) If many other pages link a web page, it
means that the web page is essential, so the PageRank value
will be higher. (2) If the PageRank value of web pages is
relatively high, then the PageRank value of the webpage to
which it is linked will also increase to a certain extent. During
the calculation of the algorithm, due to multiple iterations, the
PageRank values of all linked webpages are 0s (the termination
point problem), or the PageRank value of one of the linked
webpages is 1, and the remains are 0s (trap problems) (Figure
1).

(a) End point problem (b) Trap problem

Fig. 1: End point and trap problem.

This algorithm has also undergone a series of improvements
and has become a well-known classic algorithm. Equation (1)
is the principle formula for calculating the PageRank value,
where d represents the probability of viewing the current web
page, pi represents the i-th web page, N represents the total
number of the linked web pages, L (pi) represents the number
of links from the i-th web page to others, and pj ∈ M (pj)
represents the i-th web page belonging to the entire web page
collection:

PageRank (pi) =
1− d
N

+ d
∑

pj∈M(pj)
PageRank(pj)

L(pi)
(1)

Equation (2) is a formula used in the real solution process,
where Vi represents the vector obtained by the i-th iteration,
α represents the probability of viewing the current webpage,
M represents the proportion of links between webpages, and
e represents the unit vector:

Vi = αMVi−1 + (1− α) e (2)

B. Sparse matrix vector multiplication

Matrix vector multiplication is one of the knowledge points
in linear algebra, which is often used to solve the system of
linear equations. Its mathematical expression is:

A = BX (3)

In Equation (3), B represents a matrix, X represents a vector,
and A represents the result of multiplying a matrix by a vector.
Assuming that B is a N×M matrix and X is a M×1 matrix,
the resulting A should be a N × 1 vector. The calculation



process of matrix-vector multiplication is shown in Figure 2
below. In the figure, a 4 × 4 matrix is multiplied by a 4 × 1
vector:

The process of the sparse matrix-vector multiplication algo-
rithm in the common matrix format is shown in Algorithm 1,
where matrix represents a n ×m matrix, vector represents a
vector of m× 1, and ans represents the result of the product,
which is a n× 1 vector.

Algorithm 1 Sparse matrix vector multiplication

1: for i = 0 to n− 1 do
2: for j = 0 to m− 1 do
3: ans[i] = ans[i] + matrix[i ∗ n+ j] ∗ vector[j]
4: end for
5: end for

Fig. 2: Sparse matrix vector multiplication.

In Figure 2, we can find that there are a large number
of zero elements in the matrix, and the appearance of these
zero elements is worthless; on the contrary, it will also bring
the extra calculation. SpMV is the core of the calculation
of the PageRank algorithm. Since most of the matrices, in
reality, are sparse, compressing the sparse matrix reasonably
has become the key to reduce the complexity of the entire
SpMV algorithm, and it is also the key to speed up the entire
PageRank algorithm.

III. RELATED WORK

A. The CSR storage format and SpMV algorithm

CSR is a matrix compression format with high storage
efficiency based on behavioral order. This format consists of
three arrays that store data elements:

(1) Row offset pointer array: It is used to mark the offset
distance between the first address and the first address of each
row. For the N-row matrix, the row offset pointer array has a
total of N + 1 elements;

(2) Column index array: It is used to mark the sequence
number of the column corresponding to each non-zero ele-
ment, and the number of array elements (M) is equal to the
number of non-zero elements in the matrix (Nonzero);

(3) Value array: It is used to store the value of each non-
zero element, and the number of array elements is equal to
Nonzero;

The CSR format is shown in Figure 3.
Algorithm 2 is an N ×M sparse matrix multiplied by an

M × 1 dense vector. The value array represents the matrix,
the vec array represents the vector, and the answer array is the
final result vector. It is assumed that the number of non-zero

Fig. 3: The CSR storage format.

Algorithm 2 The CSR-based serial SpMV

1: for i = 0 to N − 1 do
2: for j = row ptr[i] to row ptr[i+ 1] do
3: answer[i] = answer[i] + val[j] ∗ vec[col idx[j]]
4: end for
5: end for

elements in the sparse matrix is nzz, so the time complexity
of the algorithm is O(nzz), which is much smaller than the
time complexity of the ordinary matrix operations.

B. The CSR5 storage format and SpMV algorithm

The CSR5 [24] storage format is based on the serial CSR
prefix summation algorithm and adds the idea of matrix
partitioning to obtain a balanced load. As a matter of course,
CSR5 that gets a balanced load has an excellent performance
in both regular and irregular matrices. It stores the matrix value
array and column index value array in CSR format in the
main column order on the pre-divided block matrix. Besides,
each matrix will have a corresponding auxiliary matrix. The
bit flag array is used to mark whether the current element is
the first element of the block or the first element in the original
matrix, which can easily find the value of the segmentation
sum. y offset is used to mark the position of the first T element
of each column of the current block in row ptr.

Algorithm 3 Core of the CSR5-based SpMV for the tidth tile

1: for i = 0 to w − 1 in parallel do
2: sum = 0
3: for j = 0 to σ − 1 do
4: ptr = tid ∗ ω ∗ σ + j ∗ ω + i
5: sum = sum + val[ptr] ∗ x[col val[ptr]]
6: if /*Tmp part*/ then
7: tmp[i− 1] = sum
8: sum = 0
9: else if /*Full part*/ then

10: y[tile ptr[tid] + y offset[i]] = sum
11: y offset[i] = y offset[i] +1
12: sum = 0
13: end if
14: end for
15: last tmp[i] = sum
16: end for

Furthermore, if there are no T elements, the y offset value
of the column is the sum of the number of T elements in the



first few columns. seg offset is used to mark whether there is
a column in the block that is as same as a row in the matrix,
which is set to facilitate CSR5 to use SIMD vectorization to
process elements during processing blocks. The purpose of
setting the empty offset array is to use this array instead of
the y offset array value to ensure correct processing results
when there is a situation where the current block spans a row
or more than zero. Figure 4 shows the CSR5 format.

Fig. 4: The CSR5 storage format.

Algorithm 3 is a part of the SpMV algorithm based on
CSR5, where w represents the number of columns of the
block, and σ represents the number of rows of the block. If the
bit flag of the first element of each column is F, the sum of the
elements that are between the element at that position and the
first T element will be stored in the array tmp, which is labeled
with Tmp part in Algorithm 3. and the sum of the elements
that are between the first T element and the last element will be
stored in the array last tmp. For a certain column element in
the block, if a complete row in the matrix appears, we use the
Full part labeled in Algorithm 3. Algorithm 3 only shows the
block product summation part of the SpMV algorithm based
on CSR5.

IV. THE CSR2 STORAGE FORMAT

A. Format information

CSR2 is a new format improved on CSR and is suitable
for the processors with SIMD function to accelerate SpMV.
The CSR2 format has the following two modifications to the
original CSR format:

(1) We will divide the two arrays of value and col idx by se-
lecting appropriate block sizes, and add an appropriate amount
of redundancy (zero elements) during the filling process to
facilitate the full use of the SIMD vectorization function of the
processor so that the computer can achieve better performance.

(2) For the expanded value and col idx, the corresponding
transformation is performed according to the block size; the
value of the element corresponding to each position of the
row ptr row offset may change; the total number of elements
does not change; the number of rows is added 1. Figure 5
shows the CSR2 conversion operation.

Figure (a) is a sparse matrix and a dense vector. We will use
the CSR2 format to compress it. In order to help understand
the process of designing CSR2, some necessary steps are
shown in Figure (b), although this does not exist in the format
conversion. Figures (c) and (d) are elements contained in the
expanded CSR value and col idx arrays. Figure (e) is the
Row ptr row offset array in CSR2 format. The value and
col idx in Figures (f) and (g) are defined as m256d type,
a data type of the avx2 instruction set. These two arrays are
stored by column. For example, using the AVX2 instruction
set to define the value value[0] in the first column of value,
the storage content of value[0] is {1,6,1,3}. Similarly, using
the AVX2 instruction set to define the value of col idx[1]
in the first column, the content of col idx[0] is {1,8,2,3}. In
the col idx array, we start counting with the value 1 for the
first element of each row in the original matrix. This is to
make the value of the array at position 0 be 0 so that the
expanded zero elements can use the value of the array with
position 0 to mark their current values uniformly. Similarly, the
corresponding vector storage also stores elements starting from
position 1, and the value of the empty position 0 is marked as
zero, which facilitates the calculation operation of the SpMV
algorithm.

B. Block size selection

Assume that the sparse element matrix is n×m; the number
of non-zero elements is nzz; the block width is mtx width;
the height is mtx high, so the minimum value and col idx
of the expanded value are nzz and the maximum is nzz +
(mtx width− 1)× n.

Therefore, the space occupied by the entire CSR2 format
depends on the value of mtx width. For the automatic value
operation of the mtx width value, we show it through the
process shown in Figure 6.

The algorithm for automatically adjusting the mtx width
value is shown in Algorithm 4. In the algorithm, nzz size
represents the number of non-zero elements in the matrix,
row size represents the number of rows in the matrix, x is



the average number of non-zero elements in each row, and
cnt ite represents the leftward shift times.

(a) Matrix

(b) Value and Col idx

(c) Value array expanded based on CSR format

(d) Col idx array expanded based on CSR format

(e) Row offset array Row ptr in CSR2 format

(f) Value array in CSR2 format

(g) Col idx array in CSR2 format

Fig. 5: The CSR2 storage format of sparse matrix of size 8×8.

The selection of the mtx high value should depend on the
type of data. Assume that the maximum bit width of the
instruction set supported by the current device is x bits, and
a single data can be represented by y bits in binary, so the
value of mtx high should be x/y. For example, x/64 should
be selected as mtx high for double-precision floating-point
and 64-bit integer , while x/32 for single-precision floating-
point and 32-bit integer.

C. Algorithm for converting CSR to CSR2 format

Fig. 6: Get mtx width automatically.

Algorithm 4 Get mtx width automatically

1: x = INT(nzz size ∗ 1.0 / row size + 0.5)
2: if x > 16 then
3: if x ≥ 128 then
4: cnt ite = 0
5: while x ≥ 128 do
6: if x & 1 then
7: x++
8: end if
9: x = x >> 1

10: if cnt ite == 4 then
11: break
12: end if
13: cnt ite++
14: end while
15: else
16: if x ≥ 36 then
17: cnt ite = 0
18: while x ≥ 36 do
19: if x & 1 then
20: x++
21: end if
22: x = x >> 1
23: if cnt ite == 2 then
24: break
25: end if
26: cnt ite++
27: end while
28: else
29: if x & 1 then
30: if x % 10 ≥ 5 then
31: x = (x / 10 + 1) ∗ 10
32: else
33: x = x / 10 ∗ 10
34: end if
35: end if
36: x = x >> 1
37: end if
38: end if
39: end if
40: mtx width = x



Algorithm 5 The CSR storage format convert CSR2 storage
format

1: for i = 0 to row num + 1 in parallel do
2: CSR2 row ptr[i] = CSR row ptr[i] / mtx width
3: end for
4: block size = mtx high ∗ mtx width
5: for i = 0 to nonzero num in parallel do
6: x = (i / block size) ∗ mtx width + i % mtx width
7: y = (i % block size) / mtx width
8: CSR2 mtx val[x][y] = mtx val[i]
9: end for

As shown in Algorithm 5, transform CSR to CSR2 requires
two steps. The first step is to convert row ptr in parallel. The
CSR2 row pointer is the result of dividing each element by
the block width mtx width based on the expanded CSR row
pointer. The first step is to convert the value in parallel. The
CSR2 mtx val in the algorithm is not presented as a two-
dimensional array in a real program, but it appears as a one-
dimensional array in the array defined by the instruction set,
and the x-th element in the array consists of y elements. This
step can complete the conversion of value. For Col idx, we do
not take conversion. Here we will put mtx width processing
once in the specific calculation operation, which can reduce
storage overhead. After format conversion, the storage space
occupied by row ptr and the value of the original CSR can
be released.

V. THE CSR2-BASED SPMV ALGORITHM

A. CSR2 block multiply and sum algorithm

As shown in Figure 7, it is based on the operation of
multiplying and accumulating elements in the corresponding
position of the array under the AVX2 instruction set. The data
type used in the figure is a double-precision floating-point
format. This operation is the core part of the CSR2 block
multiply and sum algorithm, and it is also the only place in
the entire algorithm where SIMD calculation instructions are
used.

Fig. 7: multiply and sum in AVX2.

The block multiply and sum algorithm is the core algorithm
of SpMV parallel computing in the CSR2 storage format.
It can take full advantage of OpenMP parallel language and
SIMD instruction set (Algorithm 6 uses the AVX2 instruction

set) vectorization with SpMV and perform dot product and
sum operation in the first stage, which is also the key to
improving the performance of the entire algorithm. Assuming
that the device supports x threads, the SIMD instruction set
can be multiplied and added to y data at one time. So, in
theory, at the same time, the computer can multiply and add
x× y numbers. Of course, in actual practice, we also gained
a significant performance improvement.

As shown in Figure 8, the three-block matrices, (a), (c), and
(e) three-block matrices are executed by thread 1, thread 2, and
thread 3, respectively. The fmadd operation can be performed
4 times in each thread. The three pictures, (b), (d), and (f) are
the specific execution flow in each thread.

(a) Col val array and Value array of block 1

(b) Thread 1 task calculation process

(c) Col val array and Value array of block 2

(d) Thread 2 task calculation process

(e) Col val array and Value array of block 3

(f) Thread 3 task calculation process

Fig. 8: Detailed steps to parallelize block multiply and sum
with OpenMP and AVX2.

In Algorithm 6, Nonzero num represents the number of
stored elements after CSR expansion, tile size represents the
number of elements contained in each matrix and is equal to
the value of mtx width × mtx high. The CSR2 mid val
array is used to store the final multiplication result, and the
CSR2 col val array is used to store the values of the elements



in the vector corresponding to each element of the original
matrix.

Algorithm 6 The block multiply and sum

1: i end = nonzero num / block size
2: for i = 0 to i end in parallel do
3: CSR2 mid val[i] = mm256 setzero pd()
4: xx = i ∗ mtx width
5: yy = xx ∗ mtx high
6: for j = 0 to mtx width do
7: m256d CSR2 col val
8: yy = yy + j
9: CSR2 col val = mm256 set pd(

10: vec val[Col idx[yy + 3 ∗ mtx width]],
11: vec val[Col idx[yy + 2 ∗ mtx width]],
12: vec val[Col idx[yy + mtx width]],
13: vec val[Col idx[yy]])
14: CSR2 mid val[i] = mm256 fmadd pd(
15: CSR2 mtx val[xx + j],
16: CSR2 col val,
17: CSR2 mid val[i])
18: end for
19: end for

B. CSR2 block accumulation sum algorithm

For the intermediate value CSR2 mid val obtained by the
CSR2 block multiply and sum algorithm, we use OpenMP
multithreading to perform a summation operation according
to the defined block offset pointer CSR2 row ptr, and obtain
the final result mtx ans. The specific operation process of the
block accumulation sum algorithm is shown in Figure 9.

Fig. 9: Detailed steps to parallelize block accumulation sum
with OpenMP.

The SpMV algorithm based on the CSR2 format consists of
a block multiply and sum algorithm and a block accumulation
sum algorithm. The block multiply and sum algorithm is
also the key to the acceleration of the entire SpMV algo-
rithm. It can fully utilize the fmadd function in Figure 7
for SIMD vectorization, and the performance of the program
has been dramatically improved coupled with multi-threaded
parallelism. Moreover, the block multiply and sum algorithm
and the block accumulation sum algorithm are efficient and
straightforward, and easy to read.

The block accumulation sum algorithm is shown in Algo-
rithm 7.

Algorithm 7 The block accumulation sum

1: memset(mtx ans , 0 , sizeof(double) * row num)
2: for i = 0 to row num in parallel do
3: for j = CSR2 row ptr[i] to CSR2 row ptr[i + 1] do
4: mtx ans[i] = mtx ans[i] +
5: CSR2 mid val[j / mtx high][j % mtx high]
6: end for
7: end for

VI. PERFORMANCE EVALUATION

A. Execution platform

TABLE I: Execution platform

Execution platform
Dual Socket Intel Xeon CPU E5-2670 v3

(Haswell ,2*12 cores@2.3GHz ,
1766.4SPFlops ,883.2DPFlops ,

L1d cache: 32K ,L1i cache: 32K ,
L2 cache:256K ,L3 cache: 30720K ,128GB RAM)

Intel Core i7-7700HQ CPU
(Kaby Lake ,1*4 Cores@2.8GHz ,thread nums: 8 ,

358.4SPFlops ,179.2DPFlops ,L1d cache: 32K ,
L1i cache: 32K ,L2 cache: 256K ,

L3 cache: 6 MB ,8GB RAM)

As shown in table I above, We selected Intel Core i7-
7700HQ CPU and Intel Xeon CPU E5-2670 v3 to test SpMV
in CSR2 and CSR5 formats. The details of these two platforms
are shown in the table above. We use Intel Core i7-7700HQ
CPU and Intel Xeon CPU E5-2670 v3 of Ubuntu 18.04 LTS
system, and compile our SpMV program in CSR2 and the
CSR5 program downloaded from Github through Intel C / C
++ compiler 2019 compiler; two platforms we selected both
support the use of the AVX2 instruction set and the OpenMP
parallel language. The data precision uses double-precision
uniformly.

B. Benchmark suite

As shown in table II above, we selected 10 sets of regular
matrices and 3 sets of irregular matrices to gather a total
of 13 sets of sparse matrix data as our benchmark suite
for this experiment. The diagram shows the dimensions and
sparseness of these data. In the selection of the matrix, we have
selected the hot test data of many scholars who have studied
SpMV [24],[29]. Related data sets can be downloaded from the
University of Florida Sparse Matrix Collection official website.

C. SpMV performance comparison

As shown in figure 10 above, this is the execution time
of 13 sets of the sparse matrix for 100 and 1000 itera-
tions on the Intel Core i7-7700HQ platform. We compared
our proposed CSR2 with the current most advanced format
CSR5. In the figure, we can find that in the first ten sets
of regular matrices, nd24k, Dense, and crankseg 2 all have
performance improvements of nearly 1x or even more, This
is because the number of non-zero elements in each row



TABLE II: Benchmark suite

ID Name Dim nnz
nzz
per
row

Regular
Matrix

1 nd24k 70K×70K 14393817 200
2 Si41Ge41H72 181K×181K 7598452 41
3 Dense 2K×2K 4194304 2048
4 Ga41As41H72 262K×262K 9378286 35
5 pwtk 213K×213K 5926171 27
6 pdb1HYS 36K×36K 2190591 60
7 cant 61K×61K 2034917 32
8 crankseg 2 62K×62K 7106348 111
9 QCD 48K×48K 1916928 39
10 shipsec1 137K×137K 3977139 28

Irregular
Matrix

11 ins2 302K×302K 1530448 5
12 mip1 65K×65K 5209641 78
13 rail4284 4K×1.1M 11284032 2634

Note: 1K = 1024 , 1M = 1024 × 1024

is relatively large and the distribution is relatively uniform.
The conversion from CSR storage format to CSR2 storage
format requires less redundancy, which is more conducive
to the calculation of SpMV based on CSR2 storage format
The advantages. At the same time, more non-zero elements
participating in the calculation can fully take advantage of
SIMD vectorization. The data QCD and CSR5 are equivalent,
and the remaining six groups of data have varying degrees of
performance improvement. For the last three sets of irregular
matrices, we find good performance improvements for both
100 iterations and 1000 iterations. Among them, mip1 has a
larger performance improvement, which also fully illustrates
that CSR2 has achieved a good performance improvement for
both regular and irregular matrices compared to CSR5 on this
platform. Besides, we can also intuitively see that there is
no obvious performance difference between CSR2 for 100
iterations and 1000 iterations, which also shows that the SpMV
performance of CSR2 on this platform is slightly affected by
the number of iterations.

Figure 11 shows the execution time of 13 sets of sparse
matrix iterations for 100 and 1000 iterations on the Intel Xeon
CPU E5-2670 v3 platform. We still compare our proposed
CSR2 with the format CSR5. First, we can find that the time
consumption is significantly reduced, which means that the
performance of the program with 24 threads is better than 8
threads by 2-3 or even more times. Here we can find that for
the ten sets of regular matrices, the two sets of data, Dense
and shipsec1, have more than 1x performance improvement;
pdb1HYS, cant also achieve nearly 1x improvement, and the
performance of the remaining six sets of data have varying
degrees improvement. As for the irregular matrices, mip1
and ins2 both have more than 1x performance improvement.
The performance improvement of rail4284 is very satisfactory
in the case of 100 iterations, but it does not work well in
the case of 1000 iterations. CSR2 maintains a low execution
time for both 100 and 1000 iterations, while the execution of
CSR5 is relatively unstable. Comparing the performance of
the ten sets of regular matrices on the i7-7700HQ platform,
we can find that although the improvements are varying, the

Fig. 10: SpMV performance on Intel Core i7-7700HQ.

overall improvement trend is very considerable. For the three
sets of irregular matrices, we also find that the performance
improvement of the test on the Intel Xeon CPU E5-2670 v3
platform is better than on the i7-7700HQ platform.

Fig. 11: SpMV performance on Intel Xeon CPU E5-2670 v3.

Comparing the implementation of SpMV in the CSR2 and
CSR5 formats on different platforms, in general, our proposed
CSR2 has a better performance improvement, which is also
our intention to give full play to the SIMD function.

In order to more intuitively show that SpMV based on



TABLE III: Impact of platforms and iterations on SpMV
performance.

ID
Intel Xeon CPU

E5-2670 v3
Intel Core
i7-7700HQ

SpeedUp
(ite=100)

SpeedUp
(ite=1000)

SpeedUp
(ite=100)

SpeedUp
(ite=1000)

Regular
Matrix

1 1.56x 1.32x 1.82x 1.81x
2 1.27x 1.17x 1.57x 1.59x
3 4.03x 3.61x 2.25x 2.24x
4 1.17x 1.12x 1.57x 1.55x
5 1.60x 1.50x 1.47x 1.47x
6 1.90x 1.75x 1.69x 1.73x
7 1.78x 1.75x 1.72x 1.61x
8 1.43x 1.39x 1.81x 1.79x
9 1.21x 1.15x 1.08x 1.13x

10 2.85x 2.45x 1.58x 1.58x

Irregular
Matrix

11 2.24x 2.20x 1.35x 1.29x
12 2.37x 2.22x 1.72x 1.70x
13 1.89x 1.22x 1.07x 1.09x

harmonic mean 1.73x 1.56x 1.53x 1.53x
Note: ite means iteration

the CSR2 format has a better performance improvement
than CSR5, we list the 13 sets of data in the table above.
Each set is iterated 100 times and 1000 times on the Intel
Xeon CPU E5-2670 v3 and Intel Core i7-7700HQ platform.
According to Table III, we can find that performing 100
iterations on the Intel Xeon CPU E5-2670 v3 platform can
achieve a minimum performance of 17% faster than CSR5
and maximum performance improvement of 303%. For the
vast performance improvement of the Dense matrix, we found
in tests that under the same conditions, iterating 100 or 1000
times, using CSR2 can get better and more stable performance,
while the performance of CSR5 fluctuates greatly, of course,
occasionally CSR5 will also have Good performance, so we
can only take the average of 10 measurements as the final
evaluation standard. We calculated the geometric average of
13 sets of performance data. The performance improvement
of SpMV can reach more than 70% for 100 iterations, and
it can reach more than 50% performance for 1000 iterations.
Although the performance is reduced compared with 100 itera-
tions, however, the reduction rate is still lower than its speedup.
On the Intel Core i7-7700HQ platform, the performance speed
fluctuation caused by the increase of the number of iterations
is minimal. We can find that the average performance of 13
groups of data is improved by more than 50% for 100 and
1000 iterations. Although the SpMV speedup of rail4284 data
is only about 10%, it still maintains the performance equivalent
to CSR5.

For the calculation method of SpeedUp in the table, we get
the corresponding results by the following Equation 4.

SpeedUp =
CSR5SpMV time

CSR2SpMV time
(4)

In the process of data testing, we turned on the Htop
monitor and collected the physical memory size that was stably
displayed under RES. By comparing the data memory space
in Figure 12, we can find that for the 13 sets of test data,

Fig. 12: Comparison of data memory space.

CSR2 requires the same or less memory space than CSR5
under the same SpMV operation, which is also the advantage
of CSR2 that occupies less data memory in the real running
of the program.

Fig. 13: Comparison of format conversion costs.

In the process of real sparse matrix compression, the
overhead of format conversion often has a significant impact
on the overall performance of SpMV. The format conversion
overhead of CSR5 has taken a significant advantage over
other formats. Moreover, we also made statistics on the format
conversion cost during the experimental comparison process.
As shown in Figure 13, the conversion overhead of CSR2
for the 13 sets of test data is equal to or even less than
CSR5. Of course, for the case where part of the data overhead
exceeds CSR5, which is minimal for dozens or even hundreds
of iterations, CSR2 will also fill the gap in several SpMV
iterations. Therefore, the overall performance of CSR2 is
superior to CSR5 in regular and irregular matrices and SpMV
iteration scenarios of dozens or even hundreds of times.

VII. CONCLUSION

We use OpenMP parallel language and AVX2 instruction set
on Intel Xeon CPU E5-2670 v3 and Intel Core i7-7700HQ to
compare the performance of SpMV based on CSR5 format
to that of the one based on CSR5. First, the data storage
space occupied by the CSR2 format is lower than CSR5;
second, CSR2 has comparable or lower conversion overhead
than CSR5; furthermore, the CSR2 format is suitable for use
on platforms with SIMD functions, because it can make full
use of its SIMD vectorization utilization rate. Besides, the



conversion process of CSR2 format and the SpMV solution
process are simple and easy to understand. Of course, in the
final block sum of SpMV, SIMD vectorization can be further
used to optimize the instruction set for this, which is also
where further improvements are needed in related work in the
future.
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