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Abstract. This paper proposes the voxelized generalized iterative clos-
est point (VGICP) algorithm for fast and accurate three-dimensional
point cloud registration. The proposed approach extends the generalized
iterative closest point (GICP) approach with voxelization to avoid costly
nearest neighbor search while retaining its accuracy. In contrast to the
normal distributions transform (NDT), which calculates voxel distribu-
tions from point positions, we estimate voxel distributions by aggregat-
ing the distribution of each point in the voxel. The voxelization approach
allows us to efficiently process the optimization in parallel, and the pro-
posed algorithm can run at 30 Hz on a CPU and 120 Hz on a GPU.
Through evaluations in simulated and real environments, we confirmed
that the accuracy of the proposed algorithm is comparable to GICP, but
is substantially faster than existing methods. This will enable the devel-
opment of real-time 3D LIDAR applications that require extremely fast
evaluations of the relative poses between LIDAR frames.

Keywords: point cloud, registration, GPU computing.

1 Introduction

Registration of three-dimensional (3D) point clouds is a crucial task for many
3D LIDAR applications, such as calibration, localization, mapping, and envi-
ronment recognition. There are two popular point cloud registration methods
for 3D LIDARs: Generalized Iterative Closest Point (GICP) [8] and the Nor-
mal Distributions Transform (NDT) [2,4]. Whereas GICP extends the classical
ICP algorithm [15] in a distribution-to-distribution comparison manner for ac-
curate registration, the NDT takes advantage of the voxelization approach to
avoid costly nearest neighbor search and improve processing speed. Both meth-
ods have their own weaknesses. Because GICP and other ICP-variants highly
depend on nearest neighbor search, it is sometimes hard to run them in real
time on a computer with limited computational power if the number of points is
large. The NDT is typically very sensitive to the choice of the voxel resolution.
The best voxel resolution depends on the environment and sensor properties,
and if we do not choose an appropriate resolution, the registration accuracy of
the NDT drastically drops.

In this paper, we propose the Voxelized GICP (VGICP) algorithm for fast
and accurate 3D point cloud registration. The voxelization approach enables the
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proposed algorithm to efficiently run in parallel, and our VGICP implementation
can process a point cloud containing 15,000 points at 30 Hz on a CPU and 120 Hz
on a GPU. By aggregating the distribution of all points in a voxel (multi-point
distributions to a single-voxel distribution), we estimate the distributions of the
voxels robustly. In contrast to the NDT, which estimates voxel distributions from
point positions, this approach yields valid voxel distributions even when there are
few points in a voxel, yielding an algorithm that is robust to changes in voxel
resolution. The evaluation in simulated and real environments illustrates that
the proposed VGICP algorithm shows registration accuracy that is comparable
to that of GICP and outperforms other methods in terms of processing speed.

The contribution of this paper is three-fold. First, we propose a multi-point
distribution aggregation approach to robustly estimate the distribution of a voxel
from a smaller number of points. Second, we propose the VGICP algorithm,
which is as accurate as GICP but substantially faster than existing methods.
Third, the implementations are available from a public repository . The reposi-
tory contains the implementation of the proposed VGICP as well as a parallelized
implementation of GICP.

2 Related Work

2.1 GICP

There are many variants of the classic ICP algorithm, such as Trimmed ICP [3]
and Normal ICP [9]. GICP [8] is one of the most popular ICP variants. GICP
extends the classical ICP algorithm in a distribution-to-distribution matching
fashion. Although it is known for its good accuracy, this algorithm (and other
ICP-variants) highly depend on nearest neighbor search to associate the closest
points. Although an efficient KD-tree-based search is typically used, the nearest
neighbor search often becomes a bottleneck so that the algorithm cannot run in
real time when the number of points is large. Furthermore, a method based on
a nearest neighbor search is not suitable for optimization on a GPU because it
makes heavy use of conditional branches, which decreases the efficiency of the
GPU computation significantly.

2.2 NDT

The NDT [2] takes a voxel-based association approach instead of an exact near-
est neighbor search. This algorithm first splits an input point cloud into a set
of voxels and fits a normal distribution to the points in each voxel. Then, it
aligns another point cloud to the voxelized one by finding the transformation
that maximizes the likelihood of the input points under the distributions of the
voxels. Because the NDT avoids the costly nearest neighbor association, it is
inherently much faster than ICP-variant algorithms. D2D-NDT (Distribution-
to-Distribution NDT) [12] is an extension of the NDT that voxelizes both the

! https://github.com/SMRT-AIST/fast_gicp
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source and target point clouds and calculate the distance between the distribu-
tions of the source and target voxels. Its comparison scheme is similar to that
of GICP, and [5] suggests that D2D-NDT is superior to the classic NDT in
terms of accuracy. However, the accuracy of the NDT and its variants depends
on the choice of the voxel size. To obtain the best performance with the NDT,
we need to carefully choose an appropriate voxel size depending on the sensor
and environment properties. Some studies have proposed methods to make the
NDT robust to hyper-parameter changes (e.g., multi-resolution [13] and trilinear
voxel smoothing [4]). However, those extensions have a negative influence on the
processing speed.

2.3 Feature-based registration

Feature-based registration methods first extract a number of representative fea-
tures from input point clouds and then estimate the transformation from the
feature correspondences. Many features have been proposed for point cloud reg-
istration, such as basic plane and edge features [11,15], Fast Point Feature His-
togram (FPFH) [6], and Signature of Histograms of OrienTations (SHOT) [7].
Because these features enable correspondences between point clouds to be ro-
bustly found, feature-based methods are inherently robust to initial pose errors
(some do not even require an initial guess). However, because feature-based
methods use only a limited number of features (which is usually much smaller
than the number of input points), their accuracy is worse than that of point-
based methods. Therefore, in a typical use case, a point-based fine registration
is performed after a feature-based method. Feature-based and point-based reg-
istration methods are orthogonal, and they should be used to complement each
other.

3 Proposed Method

In this section, we first explain the GICP algorithm and then extend it in a one-
to-multiple distribution correspondence fashion to derive our VGICP algorithm.

3.1 GICP algorithm

We consider the estimation of the transformation T, which aligns a set of points
A = {ag, - ,an} (source point cloud) with respect to another set of points
B = {by,- - ,bn} (target point cloud). Following the classic ICP algorithm, we
assume that the correspondences between A4 and B are given by nearest neighbor
search: b; = Ta;. The GICP algorithm [8] models the surface from which a point
was sampled as a Gaussian distribution: a; ~ N (a;, C{), b; ~ N (b;, CP). Then,
we define the transformation error as follows:

d; = b; — Ta,. (1)
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The distribution of d; is given by the reproductive property of the Gaussian
distribution as

d; ~ N'(b; — Ta;, CF + TCATT) (2)
= N(0,CB + TCATT). (3)

The GICP algorithm finds the transformation T that maximizes the log likeli-
hood of Eq. (3) as follows:

T = argmax ) log(p(d;) (4)

= arg minZdiT(CiB +TCATT) 4. (5)
T

The covariance matrix of each point is typically estimated from its k£ neighbors
(e.g., k = 20). Following the suggestion in [8], each covariance matrix is regular-
ized by replacing its eigenvalues with (1,1, ¢). This regularization makes GICP
work as a plane-to-plane ICP.

3.2 Voxelized GICP algorithm

To derive the voxelized GICP algorithm, we first extend Eq. (1) so that it cal-
culates the distances between a; and its neighbor points {b;|||a; — b;|| < r} as
follows:

&= (13]- - T&i> . (6)
J
This equation can be interpreted as smoothing the target point distributions.
Then, similar to Eq. (3), the distribution of d} is given by
dj ~ (u¥,C"), (7)
ph =% "(b; — Ta;) = 0, (8)
J

ch =>"(cP +TCiTh). (9)
J
We estimate the transformation T that maximizes the log likelihood of Eq. (7)
as follows:
T —1
T = argj{ninzi: XJ: (bj — Tay) ZJ: (c? +TCciTT) ZJ: (b; — Tay)

(10)

To efficiently calculate the above equation, we modify it to



(a) GICP (b) NDT (c) VGICP

Fig.1: Correspondence models for distance calculation in (a) GICP, (b) the
NDT, and (c) VGICP. The red circles indicate a source point and the blue cir-
cles indicate target points. (GICP: nearest distribution-to-distribution, NDT:
voxel-based point-to-distribution, VGICP: voxel-based distribution-to-multi-
distribution.) The VGICP model yields a valid distribution even when a voxel
contains only a few points.

_ . >b; AR At )
Targj{llln;Nl( N, Ta; N, +TC T

where N; is the number of neighbor points. Eq. (11) suggests that we can effi-
ciently compute the objective function by substituting the mean of the distribu-
tions of the points (b; and C7) around a; for b; and CF in Eq. (5) and weighting
the function by N;. We can naturally adapt this equation to voxel-based calcu-

N;
Fig. 1 illustrates the correspondence models used in GICP, the NDT, and our

VGICP. GICP employs the nearest distribution-to-distribution correspondence
model, which is reasonable, but relies on costly nearest neighbor search. For
fast registration, the NDT uses the point-to-voxel-distribution correspondence
model. However, we need at least four points (more than ten in practice) to
calculate a 3D covariance matrix. If the number of points in the voxel is low, the
covariance matrix becomes corrupted. Our VGICP exploits single-to-multiple
distributions in the voxel correspondences to deal with the case in which only
a few points fall within a voxel. Because it calculates a voxel distribution from
point distributions, it yields a proper covariance matrix even when the voxel
contains only one point.

B
lation by storing b, = % and C] = & in each voxel.

3.3 Implementation

Algorithm 1 describes the registration procedure of VGICP in detail. As stated
above, the VGICP algorithm does not require costly nearest neighbor search
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Algorithm 1 VGICP algorithm

1: Point clouds : A = {ao,--- ,an}, B={bo, - ,bn}
2: Covariances : gA ={cg,...,cd, cB={CB,...,CcE}

3: Initial guess: T ~
4: procedure VGICP(A, B, cA,cB,T)

5 T+ T

6: V  VOXELIZATION(B,C?) > Voxelization of target points B

T while T is not converged do

s e=[,J =)

9: for i € {0,--- ,N} do

10: voxel_index ¢ convert_to_voxel_index(a;)

11: if voxel.index ¢ V then > Point did not fall in a voxel
12: continue

13: ei, Ji < Cost(T, ai, C{*,v.u,v.C,v.N) > Objective defined by eq. 11
14: e+ elUe;,J <+~ JUJ;

15: 6T + —(JTI)"ti%e > Gauss-Newton update
16: T+ THIT

return

17: procedure VOXELIZATION(B,C”)

18: V|

19: for j € {0,---,M} do
20: voxel_-index = convert_to_voxel_index (b;)
21: if voxel.index ¢ V then
22: Insert (u=0,C =0,N = 0) to V[voxel_index]
23: V[voxel_index].p < V[voxel_index].p + b;
24: V[voxel_index].C + V[voxel.index].C' + C;’
25: V[voxel_index].N < V[voxel.index].N + 1
26: for v €V do
27: v v.p/v.N
28: v.C < v.C/v.N

return V

during optimization, and it can hence leverage CPU and GPU parallel process-
ing. For pose optimization, we choose the Gauss—Newton optimizer because it
converges quickly and requires no hyper-parameters, unlike quasi-Newton meth-
ods.

We implemented three versions of the VGICP algorithm: single-threaded,
multi-threaded, and GPU processing. All versions first estimate the covariance
matrix of each point using a KD-tree-based nearest neighbor search [1]. This
covariance estimation is parallelized in the multi-threaded and GPU processing
versions. We also implemented a GPU-based brute force nearest neighbor search.
As the baseline, we implemented the GICP algorithm in addition to VGICP. The
GICP implementation is also parallelized by CPU multi-threading, is but not
implemented on the GPU because it relies on KD-tree nearest neighbor search,
which is not suitable for the GPU.



VII

4 Experiment

4.1 Simulated environment

We evaluated the proposed VGICP algorithm in a simulated environment. For
this evaluation, we developed a realistic LIDAR data simulator. To generate
realistic LIDAR data, the simulator first renders an omnidirectional depth image
and then performs ray casting to generate Velodyne-like rotating LIDAR data.
Fig. 2 shows examples of point clouds generated by our simulator and Microsoft
AirSim [10]. Whereas our simulator generates realistic point clouds, Airsim and
other popular simulators generate LIDAR data from collision models, and thus
their point clouds are not realistic.

With this simulator, we generated a sequence of LIDAR point clouds (P, - -+, Pn)
and corresponding sensor poses (RO7 -+ Ry and Do, - ,Dn). We used the pa-
rameters of Velodyne’s HDL-32e sensor to simulate a real sensor model. We
applied a scan matching method between consecutive frames and estimated the
sensor pose (R;,p:) at time ¢ by accumulating the scan matching results (i.e.,
the scan matching odometry). Following [16], we calculated the absolute trajec-
tory error (ATE) and relative error (RE) to evaluate the accuracy of the scan
matching methods.

The ATE is defined as follows:

ATE; o = (}VZHAAR» ||2> , (12)

1
1 2
ATEpos = (N Z ||Api||2> , (13)

where AR; = Ri(Ri)_l and Ap; = p; — AR;p;. Note that the estimated sensor
trajectories are aligned with respect to the ground truth using [14]. The RE is
defined as follows:

REyof = £ (6Fy) = £ (RRT), (14)
REpos = [|pe — 0 RiPel|2, (15)

where R, = R, 1Rt+ ~ and p. = p; — pe4-n. Parameters ¢ and ¢t + N define the
size of the window used to evaluate the RE. We set the window size to 1, 5, and
25 m (sensor travel distance) and evaluated the RE using a sliding window.

Fig. 3 shows the REs of different registration methods, and the absolute
trajectory errors are shown in Table 1. We evaluated our VGICP and GICP
implementations as well as the ICP, GICP, and NDT implementations in Point
Cloud Library (PCL). For VGICP and the NDT, we tested several voxel reso-
lutions to evaluate the stability of their performance with respect to changes in
hyper-parameter values.

The accuracy of the NDT heavily relies on the choice of voxel resolution.
We can see that the registration accuracy of the NDT largely drops for voxel
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(b) Microsoft Airsim [10].

Fig. 2: Examples of point clouds generated by our simulator and Microsoft Air-
Sim. AirSim generates point clouds from collision models, and thus objects in
the LIDAR data have shapes that are too simplified (see the points on the trees,
cars, and buildings), and objects without collision models (pedestrians) do not
appear in the point clouds. Our simulator performs raycasting on an omnidirec-
tional depth image to generate realistic point clouds.

resolutions of 1, 2, and 6 m compared to the best one. In this evaluation, we
observed the best accuracy with the NDT when the voxel resolution is 4.0 m.
This value is, however, too large to capture the fine details of the environment,
and thus the accuracy of the NDT is worse than that of GICP.

The GICP-based algorithms show superior accuracy compared to the classic
ICP algorithm. Our VGICP and GICP implementations yield slightly better ac-
curacy than does the PCL implementation of GICP. This might be due to the
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Fig. 3: REs of different registration methods.

Table 1: Absolute trajectory errors.
| [m] [deg]
GICP(ours) [0.562 1.696
VGICP(1.0m)|0.624 2.777
GICP(PCL) |0.954 1.724
ICP 75.349 32.171
NDT(4.0m) |7.952 23.971

Bold indicates the top three results.

choice of the optimizer (our implementations use Gauss—Newton, which can be
faster and more accurate than the Broyden—Fletcher-Goldfarb—Shanno (BFGS)
algorithm used in the PCL version of GICP). We note that our VGICP algo-
rithm shows consistent results over a wide range of voxel resolutions thanks to
the proposed voxelization approach, which yields a valid distribution even when
the number of points in a voxel is low. This result illustrates that the proposed
VGICP algorithm shows comparable accuracy with respect to GICP and is ro-
bust to hyper-parameter changes.

Fig. 4 shows the average processing times of the registration methods. All
methods were run on an Intel Core i9-9900K and NVIDIA Geforce RTX2080Ti.
For our GICP and VGICP implementations, we evaluated both the single and
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Fig. 4: Average processing time per scan.

multi-threaded versions. We also evaluated the GPU version of our VGICP al-
gorithm. The results show that our single-thread implementations (GICP: 189
msec, VGICP: 156 msec) are faster than the reference GICP implementation in
PCL (201 msec). Because the preprocessing part (the estimation of the covari-
ance matrix of each point) is the same for both GICP and VGICP, they spend
the same amount of time for preprocessing. The following pose optimization part
is greatly sped up by the voxelization approach. This suggests that in scenarios
in which the target point cloud is not frequently changed (e.g., keyframe-based
odometry estimation), we can obtain more benefits from the high efficiency of
the VGICP algorithm. With multi-threading, our implementations of GICP and
VGICP are further sped up, taking only 68 msec and 50 msec, respectively. Our
GPU-implementation of VGICP is extremely fast and takes only 6 msec to op-
timize. It is worth mentioning that the GPU-based brute-force nearest neighbor
search is slower than the CPU-based parallel KD-tree in this evaluation. How-
ever, it would be a reasonable choice for computers with a low-specification CPU
and a high-performance GPU such as the NVIDIA Jetson.

4.2 Real environment

We recorded eight LIDAR sequences in the environment shown in Fig. 5 using a
Velodyne HDL-32e sensor. The length of each trajectory is about 120 [m], and
the number of points in each frame is about 15,000. Similar to the evaluation in
Sec. 4.1, we estimated the sensor trajectory by applying registration algorithms
between consecutive frames. For our implementations, we reused the calculated
covariance matrices of an input point cloud in the registration of the next frame
to reduce the preprocessing cost. For each sequence, we aligned the last frame
with respect to the first frame using GICP and used the result as ground truth.

Table 2 shows the pose estimation errors at the last frames (i.e., the accu-
mulated registration errors). ICP and the NDT obtain worse results than the
GICP-based algorithms. The NDT obtains the best accuracy (2.717 m and 0.164
deg error) when the voxel resolution is set to 1.0 m. However, the accuracy dras-
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Fig. 5: Experimental environment.

Table 2: Processing speed and transformation errors

Method ‘FPS (CPU/GPU)‘Translation[mH Rotation[deg]
VGICP (0.5m)|  28.7/116  |0.852 £ 0.289]0.049 £ 0.013
VGICP (1.0m)|  30.4/120  [1.177 + 0.456(0.048 + 0.026
GICP (ours) 20.5 0.893 £+ 0.210(0.045 4+ 0.023
GICP (PCL) 5.2 1.316 £ 0.310 | 0.051 + 0.022
NDT (0.5m) 8.3 7.119 4+ 5.640 | 0.443 £ 0.331
NDT (1.0m) 10.3 2.717 £ 2.645 [ 0.164 4+ 0.088
NDT (2.0m) 10.4 3.290 + 1.420 [ 0.116 £ 0.066
NDT (4.0m) 9.3 5.590 £ 2.177 [0.149 £+ 0.077
ICP 11.0 10.192 £ 4.365|0.371 £ 0.106

Bold indicates the top three results.

tically drops when the voxel resolution is too small or too large (7.119 m and
0.443 deg for 0.5 m resolution; 5.590 m and 0.149 deg for 4.0 m resolution).

The PCL-based GICP obtains a better result than do ICP and the NDT
(1.316 m and 0.051 deg). However, because it heavily relies on costly nearest
neighbor search, it is the slowest of the evaluated methods (5.2 fps).

Our GICP implementation is substantially sped up by multi-threading and
the fast Gauss—Newton optimizer (20.5 fps). It also obtains a higher accuracy
than the PCL-based GICP (0.893 m and 0.045 deg). The VGICP algorithm has
almost the same accuracy as our GICP implementation (0.852 m and 0.049 deg)
when the voxel resolution is set to 0.5 m. Although the accuracy of VGICP
slightly drops (1.177 m and 0.048 deg) when the voxel resolution is changed
to 1.0 m, the result is still comparable to that of GICP. Our VGICP algorithm
leverages CPU multi-threading, which results in the best processing speed (about
30 fps). Furthermore, it becomes extremely fast on the GPU (about 120 fps).
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5 Conclusion and Future Work

In this study, we proposed the voxelized GICP algorithm. The proposed VGICP
is as accurate as GICP because it utilizes the voxel-based association approach.
The evaluation results in the simulated and real environments show that the
proposed method shows a superior processing speed (30fps on a CPU and 120
fps on a GPU) and is robust to voxel resolution changes.

We plan to evaluate and improve the convergence of the propose VGICP
algorithm because it employs the voxelization approach which may affect the
registration result when the initial guess is not close to the true pose. We also
plan to develop an IMU-LIDAR, joint optimization-based localization method
with VGICP, which requires an extremely fast evaluation of the relative poses
between keyframes.
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