ﬁ EasyChair Preprint

Ne 13471

A 1.25(1+¢€)-Approximation Algorithm for
Scheduling with Rejection Costs Proportional to
Processing Times

Olivier Beaumont, Rémi Bouzel, Lionel Eyraud-Dubois,
Esragul Korkmaz, Laercio Pilla and Alexandre Van Kempen

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

May 29, 2024

A 1.25(1 4 €)-Approximation Algorithm for
Scheduling with Rejection Costs
Proportional to Processing Times

Olivier BeaumontLQ [0000—0003—2741—6228]

Lionel Eyraud-Dubois!»2[0000—0003—2475-3309]
Laercio Pilla2:1[0000—0003—0997—586X]

, Rémi Bouzel?,
, Esragul Korkmaz'+2,
, and Alexandre Van Kempen?®

! Inria Center of the University of Bordeaux, France firstname.lastname@inria.fr
2 LaBRI, UMR 5800, Talence, France
3 Qarnot Computing, Montrouge, France
firstname.lastname@garnot-computing.com

Abstract. We address an offline job scheduling problem where jobs can
either be processed on a limited supply of energy-efficient machines, or
offloaded to energy-inefficient machines (with an unlimited supply), and
the goal is to minimize the total energy consumed in processing all tasks.
This scheduling problem can be formulated as a problem of scheduling
with rejection, where rejecting a job corresponds to process it on an
energy-inefficient machine and has a cost directly proportional to the
processing time of the job. To solve this scheduling problem, we introduce
a novel (1 + €) approximation algorithm BEKP by associating it to a
Multiple Subset Sum problem. Our algorithm is an improvement over
the existing literature, which provides a (% - %) approximation for
scheduling with arbitrary rejection costs. We evaluate and discuss the
effectiveness of our approach through a series of experiments, comparing
it to existing algorithms.

Keywords: Scheduling with rejection - Approximation algorithm - En-
ergy minimization.

1 Introduction

In this paper, we consider a scheduling problem with the possibility of job rejec-
tion, where the cost of rejecting a job is proportional to its processing time. The
inspiration for this problem comes from the recent existence of cloud providers
that recycle the heat produced by computation to heat buildings or other facil-
ities. For example, Qarnot Computinﬂ [3] installs its computing units in water
boilers that are used in swimming pools or large apartment buildings to provide
hot water. As computing jobs run on these boilers, the energy used for comput-
ing is reused to heat the water, eliminating the need for costly air conditioning
to cool the machine and reducing the overall carbon footprint.

4 https://qarnot.com/

https://qarnot.com/

2 0. Beaumont et al.

However, there may not be enough of these energy-efficient machines available
to run all of the required jobs in a reasonable amount of time. In this case, it may
be necessary to offload some of this workload to other less efficient compute units,
either within the cloud provider or to another conventional public provider. From
the point of view of scheduling jobs on the boiler, this corresponds to rejecting
some jobs, and the goal is to minimize the additional energy required to process
these jobs on the less efficient machines. As a first approximation, it is reasonable
to assume that the energy required to run a job is proportional to its processing
time.

Scheduling with rejection is a valuable concept applicable in various real-life
scenarios [I2]. For instance, it has been used to model the context of make-
to-order production with a limited amount of resources [5], where the cost of
rejection corresponds to a lack of income from not producing the item. When
modeling our problem, we introduce several additional assumptions to formal-
ize the job scheduling problem in a more interesting and simple way. These
assumptions, while extending beyond the initial scope, result in a potentially
practical model in other contexts. For example, as minimizing the makespan of
the accepted jobs plus the total penalty for rejected jobs is a common objec-
tive function in the works for scheduling with rejection, we consider the same
objective function. This assumption corresponds for example to the case where
a customer rents a boiler to process their jobs and wants to minimize the total
energy (or financial cost), which is equal to the total usage of the boiler plus the
additional cost of outsourcing some of the jobs to other less efficient machines.
Another example is the case where a maintenance operation needs to be sched-
uled on a boiler. Similarly, to simplify our problem, as a first step, we assume
an offline setting and no deadline constraints on the jobs.

The best-known approximation algorithm for scheduling with rejection is
reported in a paper by Liu and Lu [§], with an approximation factor of % The
main contribution of our paper is to exploit the assumption that the rejection
cost is proportional to the processing time to obtain a polynomial-time practical
approximation algorithm with an improved approximation factor of %(1 +¢) for
any positive e. Our algorithm is based on techniques adapted from an algorithm
for the Multiple Subset Sum problem [4], together with ad hoc bounds on the
makespan of an optimal solution.

The rest of the paper is organized as follows. We discuss related work and our
problem formulation in Sections [2 and [3] respectively. In Section [@] we present a
scheduling algorithm for the case where we are given a target makespan 7T'. This
algorithm provides a solution with a makespan of at most %T with a guarantee
on the cost of rejected jobs. In Section [5} we use bounds on the makespan of an
optimal solution to approximate it within a factor of 1+ € in reasonable time. In
Section [6] we perform an experimental study to assess the practical behavior of
our algorithm compared to prior solutions. Finally, we present conclusions and
perspectives in Section [7}

A 1.25(1 + €)-Approximation Algorithm for Scheduling with Rejection 3

2 Related Works

For a comprehensive overview of scheduling with rejection, we refer the reader
to the surveys by Slotnick [I3] and Shabtay et al. [12].

Bartal et al. [I] introduced the problem of scheduling with job rejection.
Their objective is to minimize the makespan of accepted jobs plus the sum
of penalties associated with rejected jobs. For the online setting, they present
a (1 4 ¢)-competitive algorithm, where ¢ represents the golden ratio. For the
offline setting, they introduce a fully polynomial approximation algorithm for
fixed m and a polynomial approximation algorithm for arbitrary m. In addition,
they propose a (2 — %) approximation algorithm for the offline problem with
O(nlogn) complexity.

Ou et al. [IT] improve the approximation of Bartal et al. with a heuristic that
achieves a worst-case bound of % + ¢ and O(nlogn +) complexity. Liu and
Lu [§] provide a (2 — ;) approximation algorithm with O(n3logn) complexity,
improving on the work of Ou et al. [1I]. In addition to this solution for the
identical release date problem, Liu and Lu also present solutions for both the
single machine and the parallel machine problems in presence of release dates.

The problem of scheduling with rejection has also been investigated, with
the goal of optimizing the sum of weighted completion times of scheduled jobs
plus the sum of penalties for rejected jobs. Engels et al. [6] propose general tech-
niques to address offline scheduling with rejection problems with this objective.
Epstein et al. [7] focus on the single-machine online problem, where jobs have
unit processing times and the weight of each job’s completion time is equal to 1.
Liu [9] considers the single-machine problem with partial rejection and devises
both polynomial-time optimal and pseudopolynomial-time optimal algorithms.

In their work, Mor and Shabtay [I0] explore two objectives in scheduling with
rejection for single-machine problems. One approach aims to minimize the sum
of total late work and rejection cost, while another focuses solely on minimizing
total rejection cost, providing an upper bound on total late work.

In our paper, we present a new heuristic to improve on the (2 — 7-) ap-
proximation provided by Liu and Lu [§]. In our setting, the rejection costs are
proportional to the processing times of the jobs. We then relate the problem to
a Multiple Subset Sum Problem (MSSP).

MSSP consists in allocating a set of n items into m identical bins, each
with a positive capacity c. Each item ¢ has a positive weight w;. The goal is to
distribute the items among the bins so as to maximize the total sum of weights
of the items in the bins. This problem is known to be strongly NP-hard, and
finding an optimal solution is challenging. However, solving MSSP is of practical
importance in various domains such as logistics, cutting and packing, where
efficient resource allocation is essential to optimize operations.

Caprara et al. [4] propose an algorithm for MSSP that guarantees to obtain
at least a fraction % of the maximum possible weight sum. The complexity of
this approximation algorithm is O(m? + n). In their work, they introduce two
basic ideas that are relevant in our context. These ideas are explained below.

4 0. Beaumont et al.

First, they divide the set of items into five subsets based on their weights
relative to the capacity of the bin. In the first step, the subset containing the
smallest items is excluded (all other items are considered large). The bounds on
the weights of all subsets are used to identify all possible valid combinations of
large item subsets that can be simultaneously allocated to any bin. This limited
set of combinations is then explicitly used to build the approximation algorithm.
In the second step, they greedily allocate small items, once other large items have
been allocated. They prove that any polynomial-time algorithm that achieves a
ratio % of the maximum weight sum for MSSP without considering small items
can be transformed into one that achieves % for the general MSSP (with small
items) with the same time complexity. In our work, we adapt these ideas to build
the approximation algorithm.

3 Problem Formulation

We consider a scheduling problem where a set of non-preemptive jobs J are to be
scheduled on m identical machines. Each job i is characterized by its processing
time p; and can either be processed on one of the energy-efficient machines
(corresponding to boilers in the context of Qarnot) or rejected at a cost p - p;.
This rejection cost represents the cost of offloading the job to other machines
(e.g., a public cloud), which are assumed to be in unlimited supply.

A solution S specifies (i) whether each job is accepted or rejected and (ii)
assigns each accepted job i to a machine j < m. The makespan C® of a solution is
the maximum load on any energy-efficient machine, C¢ = maxj<m »; assigned to j Di-
We denote as RS the total processing time (or area) of the rejected jobs in S:
RS = Do rejected Pi- The objective of our problem is to minimize the cost Z9,
defined as the sum of the occupation of all the machines plus the rejection cost:

Z%=m-C%+p-R°. (1)

Given a target makespan T, we denote with R*(7T") the smallest possible area
of rejected jobs among the solutions of makespan at most 7. More formally,
R*(T) = ming cs<p RS. This definition leads to the following result:

Lemma 1. For two values Ty and Ty such that Ty < Ty, then R*(Ty) < R*(T1).

Table[l| provides a summary of the main notations used in this paper. In the
following sections, we present an approximation algorithm for this scheduling
problem. We start in Section [4] with finding a good solution when a bound on
the makespan is given, and then use this bound in Section [5| to build the overall
approximation algorithm.

4 Scheduling with a Bound on Makespan

In this section, we assume that we are given a bound 7" on the makespan. We
present an algorithm called F'ill M ax Area which, given a set of jobs J, a number
of machines m and the bound T, outputs a solution S with C° < %T and
RS < R¥(T).

A 1.25(1 + €)-Approximation Algorithm for Scheduling with Rejection 5

Table 1: Notation employed throughout this paper
Number of machines
Number of jobs
Set of jobs
Processing time of job ¢ for i € {1,2,...,n}
Area of all jobs in J (W =3",cr15 ,yPi)
Rejection cost coefficient

SN EIE

ZhS)

C° |Makespan of the accepted jobs in schedule S
AS[Area of the accepted jobs in schedule S
R
Z

STArea of the rejected jobs in schedule S
S]Cost of the schedule S: Z° = mC® + pR®
OPT|An optimal schedule which minimizes the cost
R*(T)|Minimum possible area of rejected jobs within makespan T (ming cs<pR°)

4.1 Job Types

From a given makespan bound 7T, we can group jobs from J according to their
processing time. This idea is similar to Caprara et al. [4], using different cutoff
values adapted to the context of scheduling with rejection costs.

3 1 3

A

Na = {i | §T<pi§1T} N3 ={i| 1T<Pz‘ §T} P:{HpiSlT}

8 2 4 8 4
where jobs in G, N1, Ny, and N3 are called long jobs, while jobs in P are called
short jobs. We define a combination (Sety, Sets,...) as a mapping of jobs to a
machine, where exactly one job from each set (a set can occur multiple times) is
scheduled on the same machine. For example, (N3, N3, N3) represents two jobs
from N3 and one job from N, assigned to a machine in any order.

Lemma 2. In a schedule with maximum makespan of T, only the following
combinations of long jobs are valid:

(G)7 (Nl)a (N2)7 (NS)
(N2, N1), (N3, N1), (N2, N2), (N3, N2), (N3, N3)
(N37 N3v N2)7 (N37N37 NS)

Proof. Consider one machine in a schedule, with makespan at most 7. We split
the proof depending on the number [of long jobs this machine processes.

For [= 1, any long job guarantees that the makespan bound T is respected.
Thus, singleton possibilities are (G), (N1), (N2) and (N3).

For [= 2, the combination (N7, N7) can not be assigned to that machine:
indeed, jobs in Ny are such that p; > %T, so that processing any two of them
is not feasible within makespan T'. All other combinations of length 2 are valid.
Thus, the possible pairs are (Ng,Nl), (N3,N1), (NQ,NQ), (N3,N2), (N3,N3).

6 0. Beaumont et al.

For [= 3, if two jobs from N, are assigned to a machine, even assigning one
extra N3 job is not feasible since the total processing time exceeds (% + % + %)T =
T. Thus, set combinations with longer jobs are not valid either. Therefore, the
only possible triplets are (N3, N3, N2) and (N3, N3, N3).

Finally, I > 4 is not feasible, since any long job has p; > %T. a

In addition, it is possible to bound the maximum total processing time of
any of these combinations.

Lemma 3. For any of the combinations provided in Lemmal[3, the overall pro-
cessing time of any valid combination is at most %T.

Proof. The proof is trivial, by enumerating all valid combinations and summing
the upper bounds of its subset for each element.

4.2 Algorithm

FillMaxArea algorithm is based on these two lemmas. By guaranteeing that the
long jobs assigned to each machine obey one of the combinations in Lemma [2]
we can guarantee that the resulting solution S satisfies C° < %T .

Our long job assignment algorithm is based on the AssignFrom routine,
whose pseudocode is given in Algorithm [I} Given the list of combinations and
the number [of machines, AssignF'rom creates [machine assignments by succes-
sively picking the jobs with the largest processing times from the first combina-
tion of available jobs. For example, AssignFrom({(Na, N1), (N3, N1), (N2, N2)}, 1)
selects the largest job from Ny and the largest job from N; until one of them is
empty, and then proceeds with the combination (N3, N7), and so on.

Algorithm 1 AssignFrom(combs,!)

1: Result + 0
2: Remove all combinations from combs where at least one set within the combination
is empty
while |Result| <1 and combs is not empty do

Denote by (K1, Ka, ..., Ki) the first combination in combs

j1 + the largest job from K3

jo2 < the largest remaining job from Ko

Continue until ji < the largest remaining job from Kj

Result = Result U (j1, j2, ..., k)

Remove all combinations from combs where at least one set within the combi-
nation is empty

10: return Result

The FillMaxArea algorithm, whose pseudocode is given in Algorithm
starts by scheduling the long jobs first, and completes the schedule with a greedy
assignment of the short jobs without exceeding the makespan bound %T. To

A 1.25(1 + €)-Approximation Algorithm for Scheduling with Rejection 7

decide which long jobs to accept, we set values for lg, l1, l2, and I3 that represent
the number of machines running no long job, one long job, two long jobs, and
three long jobs, respectively. For each of these cases, we use the AssignFrom
routine with a careful ordering of the combinations identified in Lemma[2] If we
run out of jobs in this process, we discard the current solution with quadruplet
Jj = (lo,11,12,13) and move on to the next possible quadruplet solution. Once
an assignment has been computed for all possible quadruplets, the result of
FillMaxArea is the one that maximizes the total processing time of all assigned
jobs.

Algorithm 2 FillMaxArea(J,m,T)

1: Generate G, N1, N2, N3 and P subsets of J
2: for each j = (lo,l1,12,13) such that lo + 11 +l2 + I3 = m and 1 + 2l2 + 3ls < n do
3: Xj «~0
X; + X; U AssignFrom({(G), (N1), (N2), (N3)},11)
Xj <~ Xj U ASSigTLFT‘OTn({(NQ, Nl), (N3, Nl), (NQ, NQ), (N3, NQ), (N3,]\73)}7 l2)
X;+— X;U AssignFrom({(N3, N3, N3), (N3, N3, JV:;)}7 l3)
if lo + |X;| < m then
Discard X; and continue

9: Add jobs from P greedily (in any order) to X, keeping makespan < gT
10: X* = {X;| max A%}

j
11: return X~

4.3 Proof

We now prove a guarantee on the solution produced by FillMazxArea: its
makespan is at most %T, and it rejects not more work (in terms of total pro-
cessing time) than any solution with makespan at most 7'

Lemma 4. For any T, let S be the solution obtained by FillMaxArea(J,m,T).
Then, C° < gT and RS < R*(T).

Proof. C% < %T is a direct consequence of Lemma |3 We focus on proving
RS < R*(T). Let us denote by Sy any solution with makespan at most 7': we
aim to prove that RS < RS, or equivalently A5 > A%,

Lemma [2] defines the list of valid combinations for long jobs in Sy. Let j =
(lo,l1,12,13) denote the number of machines with zero, one, two, and three long
jobs in Sy, respectively, and consider the solution X; constructed by F'ill M axArea
for this particular quadruplet. By construction, AS > A%Xi. Let us now prove
that AXi > Ao,

Let us consider the small jobs first, and distinguish between two possibilities:

Case 1: At least one small job in P is rejected in X;. Since a small job is only
rejected if it cannot be scheduled to finish before gT, and since the processing

8 0. Beaumont et al.

time of any short job is at most iT, this ensures that all machines have a
workload of at least T. Thus, the total number of accepted jobs satisfies
AXi >m T > A%, since Sy has a makespan of at most 7.

Case 2: All small jobs are accepted in X;. In this case we can ignore the small
jobs and we will prove that AXi > A% when restricted to long jobs. Indeed,
since Sy cannot accept more small jobs than X, this will imply A%/ > ASo
for all jobs.

In the following, we will denote singleton a machine that processes a single
long job, pair a machine that processes two long jobs, and triplet a machine
that processes three long jobs. Both X; and Sy have I, singletons, [pairs, and
I3 triplets. In the rest of the proof, we show that Sy can be transformed into a
solution that uses the same number of each type of jobs as X;, without decreasing
the total accepted area, where the type of a job refers to the specific long job
subset to which it belongs. We will use two possible transformations: replace,
where an accepted job is exchanged for a rejected job with a longer processing
time, and swap, where two accepted jobs assigned to different machines are
swapped. The first operation increases the total accepted area, while the second
does not modify it. Along with the transformations, we will make sure to use
only valid combinations from the list of Lemma [2]

We start the transformation by considering the /; singletons. In X, the jobs
assigned to these machines are the [; longest jobs from J. We build &7 from Sy
by applying a transformation for each of these longest jobs:

1. If it is rejected in Sy, we replace it with the smallest job in a singleton of Sy.
This increases the total accepted area of S.

2. If it is scheduled either in a pair or triplet in Sy, we swap this large job with
the smallest job in a singleton of Sy.

The resulting schedule is denoted S;, and satisfies (P;): its singletons process
the same set of jobs as the singletons of X;. In particular, the number of each
type of job processed by the singletons is the same.

Based on (P1), and given that FillMaxArea schedules as many N; jobs as
possible in the pairs, the number of N7 jobs present in a pair is not greater in
Sp than in Xj. If the number of IV; jobs processed on a pair is greater in X},
then S§; must contain more (N2, N2), (N3, Na), or (N3, N3) combinations than
C;, and therefore rejects more Ny jobs (since Np jobs cannot be processed on
a triplet). We can replace any job in such a combination with a rejected Ny
job until the number of N; jobs in pairs is the same as in Xj;. This results in
either (N2, N1) or (N3, N1) combinations, both of which are valid. The resulting
solution is denoted Sy and satisfies (P1) and (Ps): it processes the same number
of N; jobs on pairs as X.

X, cannot use less Ny jobs than Sy for the pairs, because FillMaxArea
prioritizes Ny jobs over N3 jobs. Let us assume that the number of N, jobs
processed on a pair is greater in X; than in Sp. Then the missing N2 jobs in S»
can either be rejected or scheduled in a (N3, N3, Na) triplet. We can swap all
N, jobs in a (N3, N3, N3) combination with N3 jobs from (N3, No) or (N3, N3).

A 1.25(1 + €)-Approximation Algorithm for Scheduling with Rejection 9

Here, the possible set combinations we get are either (N2, No) or (N3, N3) and
(N3, N3, N3), which are all valid. If X still uses more Ny jobs in pairs, then
there are rejected Ny jobs in So. We can replace one N3 job from a (N3, No)
or (N3, N3) combination with each of these rejected N jobs. This results in
(N3, N3) or (N3, N3) valid combinations. The resulting solution is denoted Ss
and satisfies (Py), (P2) and (P3): it processes the same number of Ny and N3
jobs on pairs as X;.

Finally, if X; schedules more N, jobs on triplets than Ss, this implies that
there are rejected Na jobs in S3. We can replace one N3 job from a (N3, N3, N3)
combination of S with each of these rejected Ny jobs. This results in a valid
(N3, N3, N3) combination. This solution is denoted Sy, and since it satisfies (Py),
(P2), (P3) in addition to having the same number of N, jobs in triplets, we have
shown that 84 uses the same number of G, Ny, Na, and N3 jobs as X;.

Finally, we use the fact that when choosing a job from a long job set,
FillMaxArea always chooses the largest available job. This implies that A%s >
ASs_ Since all transformations either increase or do not change the accepted
area, we know that A5+ > A% which concludes the proof. ad

From this lemma, we can deduce the following bound on the cost of S:

Lemma 5. For any T, let S be the solution obtained by FillMaxArea(J,m,T).
We can bound its cost by: Z8 < 3Tm + pR*(T).

Proof. This follows directly from Z° = mC<® + pR® and Lemma O

5 BEKP Approximation Algorithm

If we have an optimal solution OPT with respect to the objective function Z,
we can compute the solution FillMaxArea(J,m, COPT). From Lemmal] we get
a %—approximation. In this section, we show how to obtain an approximation
of COPT (with € as the precision coefficient) with controlled complexity. In the
end, we obtain the BEXP algorithm, which is a g(l + €) approximation for any
positive number e.

The idea behind BEKP is to first compute an upper bound U and a lower
bound L on the optimal makespan TOFT and then build different schedules
with the FillMaxArea algorithm for each makespan value C; such that

Ci e {L,(1+€L,...(1+e"L}. (2)

The number of iterations & is the smallest value that satisfies (1 + ¢)*L > U,
and can be computed as k = [log;, . (¥)]. We will now show how to compute U

and L so that % is bounded, which provides a bound for k.

5.1 Computing Bounds on the Optimal Makespan

Let us define the following function:

f(C)=Cm+ pR*(C), (3)

10 0. Beaumont et al.

which represents the minimum possible cost for a schedule with a makespan of
C, since R*(C) is the minimum possible area of rejected jobs for any schedule
with that makespan.

We start by providing two lower bounds on f(C'). The first one is:

f(C) = Cm. (4)

For the second one, given the total workload W =)" p;, we know that Cm +

R*(C) > W, which implies that R*(C) > W — Cm. Together with (3], this
yields the second lower bound:

f(C) =z pW = (p—1)Cm. (5)

4pW

Let us also define a target value H as H = 5

Cost Z

pW
/\ / Cm
H

pW — (p—1)d'm

L U Makespan C

Fig. 1: Sketch of the graph of f(C) (in red), highlighting how the bounds U and
L are computed

Let us sketch the possible graph of the cost function f(C') and the two bounds
in Fig. [I} The function f(C) is shown in red, the first bound (4)) is shown with a
blue line, and the second bound is shown in brown. Finally, the target value
H is displayed as a green horizontal line.

We define U and L as the values of C' such that the first and second bounds
are equal to H. This is shown in Fig. |1} and we get U = %. Similarly, given the
second bound (|5) and the target, we can compute their intersection: L = WZV_U.

These values for U and L yield a ratio % = 4(p — 1), which gives a bound on
the number of iterations k. For example, if we assume a rejection cost coefficient

A 1.25(1 + €)-Approximation Algorithm for Scheduling with Rejection 11

of p <10, then 4(p — 1) < 36. If the precision is set to 1+ ¢ = 1.05, Equation
specifies at most 74 different makespan values, which leads to a practical number
of iterations. With these values, BEXP is a g x 1.05 = 1.3125 approximation
algorithm. The tradeoff between number of iterations and performance guarantee
can be adjusted when considering different values for e.

5.2 BEKP Algorithm

Algorithm 3 BEKP(J,m)

1: Xo = the solution where all jobs are rejected
:U:%andL: and k = [log,, . ¥

2

5m(p—1)
3: for each C; € {L,(1+¢)L,(1+€)?L,...,(1+€e)*L} do
4: X; = FillMaxArea(J,m,C;)
5

: return schedule with the lowest cost among X, and all X;

BEKP is specified in Algorithm [3] where € is a fixed parameter. The algorithm
considers several possible schedules: the solution where all jobs are rejected, de-
noted by Xy, whose cost is ZX0 = pW, and the result of Fill M ax Area(J, m, C;)
for each value C; between L and U as in Equation . The result of BEXP is
the lowest cost schedule among all these candidates.

Theorem 1. For any positive e, BEKP is a %(1 +¢€) approximation algorithm.

Proof. Consider an arbitrary set of jobs J to be scheduled on m machines. Let
OPT be a schedule for this instance with optimal cost: we will compare ZOFT
with the cost of one of the X; schedules considered in BEKXP. We consider two
cases, depending on the value of COFT relative to L and U:

If COPT < L or COPT > U, we know from ZOFT > f(COPT) and our lower
bounds and that ZOPT > H = %. On Fig. |1| this can be interpreted
as f(COPT) being located in one of the red triangle areas. Since ZX° = pW, we
get ZXo < 570PT,

If L < COPT < U, then there exists an index ¢ such that CcorT < ¢; <
(1 + €)COPT. Let us denote this solution as X;. By Lemma |5| we know that
ZXi < 3mCi+pR*(C;). Since COPT < C, we obtain by Lemmathat R*(C;) <
R*(COFT). Finally, since C; < (1 +€)C9FT, we can derive:

ZXi, S (1+€)mCOPT+pR*(COPT) S §(1+€>ZOPT

= | Ot

In both cases, we identify a schedule X considered by BEKXP that satisfies ZX <
2(14 €)Z9PT. Since the result of BEKP has a cost not greater than X, this
concludes the proof. O

12 0. Beaumont et al.

5.3 Complexity

As discussed in Section and the ratio % = 4(p — 1), the number of calls to
FillMaxArea in Algorithm [3[is O(log, . p). In FillMaxArea (Algorithm ,
the number of quadruplets to test is O(m?), and for each of them we call
AssignFrom and greedily schedule the jobs in P. For a quadruplet, the com-
plexity of all AssignF'rom calls is O(m) in total. We can assume that the jobs
are sorted by increasing processing time at the beginning of BEXP, incurring
a one-time O(nlogn) complexity. Scheduling the jobs greedily can be done in
O(n).

In total, the complexity of BEKP is O(m?(m + n)log,, . p). This can be
compared to the algorithm proposed by Liu and Lu [8], whose complexity is
O(n®logn): we expect our approach to be significantly faster in scenarios with
fewer machines and a larger number of jobs.

6 Experiments

In this section, we evaluate BEXP in terms of total solution cost (computed as
in Equation . To provide reference points, we compare our approach to two
existing solutions: a naive solution LPT that accepts all jobs and schedules them
using the Longest Processing Time-first method, and the algorithm proposed
by Liu et al. [8], denoted LZULU. Each method has been implemented in a
straightforward manner without deep emphasis on performance optimization. In
addition, we also compute a lower bound on the solution cost, with an Integer
Linear Programming formulation that estimates the makespan of a set of jobs

with the standard lower bounds max; p; and Em Pi and optimally decides which
jobs to accept. This can be formulated as minimizing Cm + .. ; p(1 — x;)ps,
subject to the constraints Vi € J,C' > z;p; and C' > Zielj(xipi)/m, where z;
is a boolean decision variable equal to 1 if the job is accepted and 0 otherwise.
Our simulation code is available as free software in [2]. All experiments were
performed sequentially on the Miriel nodes (each consisting of two INTEL Xeon
E5-2680v3 12-core 2.50 GHz processors with 128 GB of memory) of the Plafrim
supercomputerﬂ

We generated random instances in which job processing times follow a lognor-
mal distribution with a mean of 3. We use three different values for the standard
deviation o: 0.5, 0.7, and 1.0. As o increases from smaller to larger values, the
variance in processing times between jobs also increases. We set the number of
machines m to 20. We present results for two values of p: 1.5 and 4. For each
case, we generate 30 different random sets of jobs.

In Fig. [2] each grid column corresponds to a different rejection coefficient,
while each row corresponds to a different number of jobs. The x axis represents
the different standard deviations used to generate the processing times, and the
y axis represents the relative cost of each method compared to the lower bound
(where a limit is set for better visualization). The results for each method over

5 https://www.plafrim.fr

https://www.plafrim.fr

A 1.25(1 + €)-Approximation Algorithm for Scheduling with Rejection 13

p=15 -4

2
31.10
8 R : 3
5 : = —
21.05 j . =3 %
o 1
t ﬁ)
£ 1.00 kb A8 -
=
@ ®1.015
g s 8 :
o — o1.010 e
21.05 & 2 S
kS f + * @ §1.005 #ﬁ #** g
(0] (0]
100 s “ 5 - 1.000 T T

0N 9 0N o woN o . N Q

o o - o o ~— o o - o o ~—

o o
& LPT & LIULU ® BEKP & LPT & LIULU ® BEKP

Fig.2: Comparison of LIULU, LPT and BEKXP using m = 20 for different
number of jobs, different values for p and o

the 30 random instances are shown with a boxplot showing the median, first and
third quartiles, with whiskers extending to the lowest and highest values. Small
black dots represent outliers.

In Fig. [2] we observe that LPT can yield significantly higher cost solutions
compared to the other two methods, especially when there is a small number of
jobs and a large variance in the processing times of the jobs. In our experiments,
this high cost reached up to 4 times the value of the lower bound. On the
other hand, both BEXP and LZU LU provide low-cost solutions thanks to their
rejection capabilities, with neither exceeding the lower bound by more than a
factor of 1.2. BEXP consistently achieves results close to LZULU, and in most
cases provides improved solutions at reasonable cost.

7 Conclusion and Perspectives

We address an offline job scheduling problem where jobs are assigned to a limited
set of energy-efficient machines, with the option of offloading them to less energy-
efficient machines when necessary. This problem can be viewed as a scheduling
problem with rejection, where rejection means using less energy-efficient ma-
chines, with an energy overhead proportional to the job processing time. We
introduce BEKXP, a novel %(1 + ¢€) approximation algorithm with a time com-
plexity of O(m3(m + nlogn)). In comparison, the state-of-the-art algorithm of
Liu and Lu [8] provides a (% - ﬁ)—approxima‘cion ratio with a time complexity
of O(n?logn) for scheduling tasks with arbitrary rejection costs. Therefore, our
proposed algorithm improves both the approximation ratio and the algorithmic
complexity with respect to the total number of jobs. Our experimental evalua-

tion shows that our algorithm also produces good quality solutions in practice, in

14 0. Beaumont et al.

most cases with similar or better cost compared to Liu and Lu’s approach. This
work opens up interesting perspectives. Improving the algorithmic complexity
of the algorithm could help open it up to more practical cases. The assumption
that the rejection cost is proportional to the processing time can be extended
to other contexts, such as jobs with quality of service requirements, where this
realistic assumption could also lead to improved performance guarantees.

Acknowledgments. Our work is done in the context of the Inria — Qarnot Pulse
project: https://www.inria.fr/en/pulsel

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

References

1. Bartal, Y., Leonardi, S., Marchetti-Spaccamela, A., Sgall, J., Stougie, L.: Multi-
processor scheduling with rejection. STAM Journal on Discrete Mathematics 13(1),
64-78 (2000)

2. Beaumont, O., Eyraud-Dubois, L., Korkmaz, E., Pilla, L.L.: Experimen-
tal codes and results for the paper “a 5/4(1+¢)-approximation algo-
rithm for scheduling with rejection costs proportional to processing times”.
https://inria.hal.science/hal-04517532, accessed: March 25, 2024

3. Bouzel, R., Ngoko, Y., Benoit, P., Sainthérant, N.: Distributed grid computing
manager covering waste heat reuse constraints. In: 2021 Design, Automation &
Test in Europe Conference & Exhibition (DATE). pp. 294-299. IEEE (2021)

4. Caprara, A., Kellerer, H., Pferschy, U.: A 3/4-approximation algorithm for multiple
subset sum. Journal of Heuristics 9(2), 99-111 (03 2003)

5. Cesaret, B., Oguz, C., Sibel Salman, F.: A tabu search algorithm for order accep-
tance and scheduling. Computers & Operations Research 39(6), 1197-1205 (2012),
special Issue on Scheduling in Manufacturing Systems

6. Engels, D.W., Karger, D.R., Kolliopoulos, S.G., Sengupta, S., Uma, R.N., Wein,
J.: Techniques for scheduling with rejection. In: Bilardi, G., Italiano, G.F., Pietra-
caprina, A., Pucci, G. (eds.) Algorithms — ESA’ 98. pp. 490-501. Springer Berlin
Heidelberg, Berlin, Heidelberg (1998)

7. Epstein, L., Noga, J., Woeginger, G.J.: On-line scheduling of unit time jobs with re-
jection: minimizing the total completion time. Operations Research Letters 30(6),
415-420 (2002)

8. Liu, P., Lu, X.: New approximation algorithms for machine scheduling with rejec-
tion on single and parallel machine. Journal of Combinatorial Optimization 40(4),
929-952 (2020)

9. Liu, Z.: Scheduling with partial rejection. Operations Research Letters 48(4), 524—
529 (2020)

10. Mor, B., Shabtay, D.: Single-machine scheduling with total late work and job re-
jection. Computers & Industrial Engineering 169, 108168 (2022)

11. Ou, J., Zhong, X., Wang, G.: An improved heuristic for parallel machine scheduling
with rejection. European Journal of Operational Research 241(3), 653661 (2015)

12. Shabtay, D., Gaspar, N., Kaspi, M.: A survey on offline scheduling with rejection.
Journal of scheduling 16, 3-28 (2013)

13. Slotnick, S.A.: Order acceptance and scheduling: A taxonomy and review. Euro-
pean Journal of Operational Research 212(1), 1-11 (2011)

https://www.inria.fr/en/pulse

	A 1.25(1+)-Approximation Algorithm for Scheduling with Rejection Costs Proportional to Processing Times

