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Abstract. This work uses the finite element method for the first time to simulate the dynamic 

response of nanoplates resting on a two-parameter elastic foundation under the flexoelectric effect. 

The calculation formulas are derived from the new type of the shear deformation theory, which is a 

simple shear deformation theory. In which, the displacement component in the direction 

perpendicular to the plane of the plate is subdivided into the bending strain component and shear 
strain component. Therefore, this approach also does not need any shear correction factor. The 

finite element equations are developed on a four-node quadrilateral, where each node has six 

degrees of freedom. The comparison with published results shows the reliability of this theory. 

The numerical data clearly shows the influence of the flexoelectric effect, elastic foundation, and 

thickness on the dynamic response of nanoplates. These results can be referenced in the design, 

fabrication, and use of nanostructures in practice. 
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1. Introduction 

Piezoelectric nanostructures are employed in sensors, actuators, energy harvesters, and more as 

science and technology advance. Flexoelectricity-especially strain gradient-induced electric 
polarization-is ubiquitous in these formations. Several investigations have shown that nanoplate 
mechanical behavior accounts for the flexoelectric effect. Yan [1] studied static bending and free 

vibration of piezoelectric nanoplates using classical plate theory and flexoelectricity. Yang et al. [2] 
used Kirchoff's plate theory (classical plate theory-CPT) to provide explicit solutions for nanoplates' 
static bending and free vibration response. The theory incorporated piezoelectric and flexoelectricity. 
Li et al. [3] analyzed static bending and free vibration of the circular microplate. The equations were 
formed from the CPT, the solution was calculated analytically, and the findings showed the influence 
of flexoelectric effect on mechanical response. 

There has also been research done on the buckling, vibration, and static bending responses of 

nanostructures while taking into consideration the flexoelectricity effect [4-10]. In which the 
aforementioned studies are founded on the traditional plate theory as well as the first-order shear 
deformation theory. 

As can be observed from the works that have come before, there has not been any research done 
to examine the dynamics of nanoplates resting on an elastic foundation that includes the flexoelectric 

effect. This body of work is a scientific effort that contributes to the design, production, and practical 
use of nanostructures. 

2. Forced oscillation equation of the nanoplate taking into account the flexoelectric effect 

This work focuses on the forced oscillation of nanoplates modeled as shown in Figure 1. The 
plate has geometric parameters including length a, width b, and thickness h. The whole mechanical 
system is supported on an elastic foundation with two coefficients kw and ks. 
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Figure 1. The model of nanoplate resting on a two-parameter elastic foundation subjected to dynamic 
loads  

In order to study the mechanical response of plate structures, there are different sheet theories to 

apply. This work uses the theory of shear deformation hyperbolic sine functions [11], therefore, the 
displacement field at any point of the plate is written as follows:  

, , , ,( ) ; ( ) ;x b x s x y b y s y z b su zu f z u u zu f z u u u u          (1) 

in which z zl z   , 
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.sin .cosh ;
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h
    ux, vy, and uz are the displacements in the x-, y-, 

and z-directions at one point within the plate. The comma is the derivative of the variable immediately 

following it. Moreover, this study disregards the size effect. To account for the impact of the 
flexoelectricity effect on the nanoplates, this study employs strain gradient theory, as demonstrated in 
Equation (3) below, which has already been confirmed in the literature [14]. 

Taking the displacement derivative with respect to the coordinates, one gets the deformation 

components: 
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This study assumes that the strain gradient in the thickness direction is much smaller than the 

strain gradients in the x- and y-directions, and that the strain gradient in the z-axis is neglected. The 
components of strain gradient include: 
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The nanoplate is divided into four-node elements, each node has six degrees of freedom: 
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So, one gets: 
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(5) 

in which, Hj is the Hermit interpolation function.  

The displacement vector at any point inside the element is then interpolated using the nodal 

displacement vector. 
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(6) 

According to this formulation, strain vectors are generated as follows using the nodal 
displacement vector: 

1 2 0 3 4 5; ; ; ;b e s e e b e s e   ε B q  ε B q  γ B q  η =B q  η B q

 

(7) 

When the flexoelectric effect is taken into consideration, the stress components and electric 

displacement vector for a nanoscale dielectric material are expressed as follows:  

; ;ij ijkl kl kij k ijm kijm k i ijk jk ij k ijkl jklc e E f E P c E f              (8) 

in which ijklc , kije , kijmf  and ij are the components of elastic, piezoelectric, flexoelectric and 

permittivity constant tensor; they are the material parameters. ijT  is the stress tensor, which is similar 

to that of the traditional elastic foundation. iP  is the electric displacement vector, and ijm  is the 

moment stress tensor or the higher-order stress tensor.  

From the equations of the strain components, we can derive the following formulae for the 
stress and electric displacement vector: 
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(10) 

where f14 = f3113 and f14 = f3223 [12]. 

The electrical field is computed as follows using the partial derivative of electrical potential: 
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(11) 

The expression of the deformation potential energy of the plate element is shown as follows: 
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(12) 

where kw and ks are the two coefficients of the elastic foundation, and Ke is the element stiffness 

matrix. 

The expression for the kinetic energy of the plate element is shown as follows: 

     
1 1

, , , ,
2 2

T
T T T

x y z x y z e e

V V

T u v w u v w dV dV   q H G GH q

 

(13) 

where   is the density of the material. 

Following is the formula for the external force exerted on the plate: 
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(14) 

After using Hamilton's principle, one gets the forced oscillation equation of the plate as 

follows: 
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In case the internal frictional resistance of the structure is taken into account, the equation of 

forced vibration with resistance is in the form: 

  Mq Cq Kq F         

 

(16) 

where   C M K , ,  and   are two coefficients calculated from the first two natural 

frequencies of the nanoplate. 

For the problem of free oscillation without resistance, the equation has the following form:  

 2

0 K M q 0         

 

(17) 

Solving equation (17), one gets the eigenfrequency and corresponding eigenforms. Solving 

Equation (16) will find the motion characteristics of the plate such as displacement, velocity, and 

acceleration of the plate's oscillation under the action of dynamic loads. For a plate subjected to the 

fully simply supported boundary condition (SSSS), the constraint condition is 0bw   and 

0sw  . To solve equation (16), this work uses the Newmark method of direct integration.      

3. Verification study 

In this section, a number of comparison issues will be performed to validate the suggested 

theory and mathematical model. In this study, the numerical findings of deflection and stress are 
compared to accurate published data. 
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Example 1: Consider an SSSS square plate with geometry parameters a/b=1, the plate 

thickness h=a/10, and a/20, material parameters E=380 Gpa, 3800   kg/m3 and  = 0.3. Two 

elastic foundation parameters are normalized as follows: 

4 2
* *

0 0

;w s
w s

k a k a
K K

D D
  ; 

 

3

0
0 212 1

E h
D





;  

0E =70 GPa (18) 

The parameter to be compared is the first natural frequency, which is calculated by the 

dimensionless formula as follows.: 
1 0 0 0/ ; 2707h E      (kg/m3). 

The comparative non-dimensional fundamental frequencies of the plate generated by this work 

and the analytical solution [13] are shown in Table 1, where various mesh sizes are introduced by this 
study. It can be observed that the results converge with the 64-element mesh. 

Table 1. The comparative nondimensional fundamental frequency   of the plate supported by a two-

parameter elastic base. 

*

wK  
*

sK  a/h 
Analytical 
solution  

[13] 

This work 

16 
elements 

64 
elements 

100  
elements 

256 
 elements 

100 

0 
10 

0.1162 0.1129 0.1154 0.1157 0.1160 

100 0.1619 0.1591 0.1612 0.1614 0.1617 

0 
20 

0.0298 0.0289 0.0296 0.0296 0.0297 

100 0.0411 0.0404 0.0409 0.0410 0.0411 

4. Numerical results 
The nanoplate is subjected to the SSSS boundary; geometry parameters are h=20 nm, a=b=50h, 

and the material properties are c11=102 GPa; c12=31 GPa; c33=35.50 GPa; e31=-17.05 C/m2; 
k33=1.76.10-8

 C/(Vm). The plate is rested on the two-parameter elastic foundation with with kw and ks.   
The uniformly applied load on the plate has the expression: 
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(19) 

where, the load amplitude is  P0=5.104 N/m2 , and  t=0.8t1. 
Non-dimensional parameters are calculated as follows: 
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(20) 

with  
0

14f  = 10-7 C/m and h0  = a/50.                        

4.1. Influence of the flexoelectric effect 

Consider an SSSS nanoplate resting on a two-parameter foundation (
*

wK =100, 
*

sK =10). To 

clearly see the influence of parameter f14 on the dynamic response of the plate, this coefficient is 

changed so that 
*

14f  varies from 0 to 5 (When 
*

14f =0 corresponds to the case of ignoring the 

flexoelectric effect. ). Numerical results of displacement response w* and stress 
*

x  over time are 

shown in Figures 3 and 4, and the data show that: 
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- When taking into account the effect of flexoelectric effect (i.e. f14 is non-zero), the maximum 
displacement of the plate is reduced. When the external force stops acting on the plate, the plate 
oscillates gradually. 

- Although the coefficient f14 increases, the maximum displacement of the plate decreases. 

However, the transformation law of the maximum shear stress *

xz  of the plate is different from the 

transformation law of displacement w and normal stress *

x . This is because the parameter f14 affects 

the stiffness of the plate. This is a special phenomenon, which is quite different from conventional 
structures, regardless of the flexoelectric effect. 

 

 
Figure 3. Variation of displacement w* depends on time and f14, t* = t/t1 

     
Figure 4. Variation of stresses 

* *,x xz   depends on time and f14
 

4.2. Influence of the plate thickness h 
The plate thickness h is changed so that the ratio a/h varies from 50-100; the results of the 

dynamic response of the plate are shown in Figures 5 and 6. One can see that as the thickness of the 
plate is decreased, the maximum displacement and maximum normal stress of the plate increase. 
However, the increase in the maximum displacement is not uniform. As the plate thickness decreases, 
it is clear that when the plate thickness varies between a/50 and a/80, the maximum displacement and 
maximum stress change more when the plate thickness varies from a/80 to a/150. 
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Figure 5. Variation of displacement w* depends on time and ratio a/h 

   

Figure 6. Variation of stresses 
* *,x xz  depends on time and ratio a/h 

4.3. Influence of elastic foundation 
The elastic foundation coefficients are changed so that the first elastic foundation coefficient 

varies from 10 to 200, while the second one varies from 1 to 20. The numerical results of displacement 
response w* and normal and shear stresses of nanoplatets are given as shown in Figures 7 and 8. The 
outcomes show that the higher the elastic foundation coefficient, the greater the energy of the plate, 
and the harder the plate becomes. Therefore, the maximum displacement and maximum stress of the 
nanoplate are also reduced. 

 
Figure 7. Variation of displacement w* depends on time and elastic foundation coefficients 
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Figure 8. Variation of stresses 

* *,x xz  depends on time and elastic foundation coefficients 

5. Conclusions 

This paper examines the dynamic response of nanoplates, including the flexoelectic effect, by 
combining the novel shear deformation theory with the finite element approach. This theory has 
numerous benefits, including simplicity, computation convenience, and no requirement for a shear 

correction factor, however it still describes exactly the mechanical reaction of the structure. The 
veracity of computational theory is determined by comparing it to published findings. This study also 
analyzes the effect of several material characteristics, geometric parameters, and elastic substrates on 
the dynamic response of nanoplates. 
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