ﬁ EasyChair Preprint

Ne 12130

Embedding Layout in Text for Document
Understanding Using Large Language Models

Mohammad Minouei, Mohammad Reza Soheili and Didier Stricker

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

February 15, 2024



Embedding Layout in Text for Document
Understanding Using Large Language Models

Mohammad Minouej'2[0000-0001-7476-6533] '\[ohammad Reza
Soheili?:3[0000-0002—-5974=3939] "4 Didier Stricker!:?

! Department of Computer Science, RPTU Kaiserslautern-Landau, Germany
2 German Research Institute for Artificial Intelligence (DFKI), 67663 Kaiserslautern,
Germany
{firstname.lastname}@dfki.de
3 Department of Electrical and Computer Engineering, Kharazmi University, Iran
{lastname}@khu.ac.ir

Abstract. In this paper, we address the challenge of effectively utiliz-
ing Large Language Models (LLMs) for Visually Rich Document Under-
standing (VRDU), a key part of intelligent document processing systems.
While LLMs excel in various Natural Language Processing (NLP) tasks,
their application for extracting information from complex structured doc-
uments like invoices and forms is limited. This limitation arises from the
difficulty in contextually understanding these documents, largely due to
the lack of layout information. Our research is dedicated to unlocking
the full potential of LLMs for VRDU by integrating OCR data into an
HTML format, which preserves the essential spatial layout for accurate
information extraction. The empirical results show a notable improve-
ment, with a more than 20 percent increase over baseline performances.
This research highlights the promising potential of LLMs in VRDU and
sets the stage for further innovations in automated document processing.

Keywords: Document Understanding - Large Language Model - Infor-
mation Extraction

1 Introduction

Document understanding aims at interpreting and extracting meaningful in-
formation from documents. Being an active area of research, a wide range of
approaches have been studied in the literature that utilize document images,
text, or a combination of both [24]. The field has evolved from initial heuristic
methods [10], to the modern specialized deep neural network techniques [I3].
The complexity of this task lies in the endless variations in document layouts,
such as invoices, tax forms, and many more. These structured documents often
feature elements such as tables and key-value pairs, needing advanced methods
for information extraction.

The advent of LLMs has brought about a significant transformation in the
field of natural language processing, surpassing previous state-of-the-art (SOTA)
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methods [20]. Models like Chat-GPT [3] and Llama [25] have gained significant
recognition for their remarkable text understanding and generation capabilities.
These models are trained on large datasets, allowing them to recognize complex
patterns and subtleties in natural language. With their substantial size, often
comprising hundreds of billions of parameters, LLMs can handle a diverse range
of tasks without the need for task specific data, also known as zero-shot ability.

LLMs are not limited to just generating text; they have the potential to trans-
form how we understand documents. Their applications are diverse, including
tasks such as extracting information, conducting semantic searches, and summa-
rizing documents [20]. This understanding can be further refined with a limited
number of examples to adapt to specific document related tasks. The few-shot
learning ability of LLMs is especially useful in processing documents from fields
where labeled data is rare or costly to gather [5].

This has inspired researchers to explore new ways to effectively leverage LLMs
for document understanding tasks. Despite their impressive capabilities, using
LLMs to interpret visually dense, structured documents is still understudied. A
major difficulty is the absence of layout information in the text, which is vital
for effective information extraction. To make the most of LLMs, it is crucial to
prepare the input data carefully. How well these models perform largely depends
on how the input prompts are structured. If the preparation is not done properly,
it can result in responses that are either irrelevant or incorrect [12].

Recently, researchers introduced the Visually-Rich Document Understand-
ing (VRDU) benchmark dataset [26] to evaluate how well models perform in
this area. VRDU includes two kinds of documents of purchases and registration
forms. The VRDU benchmark provides challenging tasks to assess the capabili-
ties of models in various scenarios, including test sets with mixed templates or
templates that have not been seen before. It also evaluates the performance of
models in situations with limited data (few-shot settings) and their ability to
identify nested or repeated entities. This benchmark offers an excellent opportu-
nity to showcase the potential of language models in understanding documents
[26].

The significance of the VRDU benchmark is especially apparent when eval-
uating advanced document Al systems like LayoutLM [28] and FormNet [15].
These models demonstrate substantial progress on document understanding, yet
struggle with VRDU’s complex dataset. The LayoutLM series, represents a ma-
jor step forward in understanding document images. They combine language
models’ capabilities with spatial and visual contexts. The LayoutLM model im-
proved upon BERT by adding 2-D positional and image embedding for tokens.
It showed skill in tasks like extracting information and classifying documents.
LayoutLMv2 [27] went further, improving how it integrates visual data during
pre-training and using a multi-modal transformer architecture. This development
included a spatial-aware self-attention mechanism, enhanced through tasks like
masked visual-language modeling and text-image matching, improving its un-
derstanding of visually complex documents. LayoutLMv3 [I3], an improvement
over LayoutLMv2, adopts patch embedding along with Vision Transformers [0]
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instead of using a CNN backbone. It simplifies the structure and pre-training
process, focusing on masked language modeling (MLM), masked image modeling
(MIM), and word-patch alignment (WPA), boosting its document understanding
capabilities.

FormNet [I5], another innovative system, combines sequence and convolu-
tional approaches for impressive results. It introduces rich attention and super-
tokens. Rich attention calculates attention scores by considering the spatial re-
lationships between tokens, capturing the document’s structural details. Super-
tokens are created for each word in a form, incorporating embeddings from neigh-
boring tokens using graph convolutions.

Incorporating layout with text in the network has been studied in vari-
ous works [I8IT7IT6I7IR]. However, Donut [14] proposed an end-to-end encoder-
decoder model that leverages transformer architecture to directly map raw input
images to desired outputs, bypassing the need for OCR.

In [22], the authors introduce a novel method called LMDX for extracting
information from semi-structured documents using LLMs. The LMDX approach
addresses the challenges of information extraction by incorporating text position
encoding and a grounding mechanism along with their LLM. It uses a five-stage
process: OCR, chunking, generating prompts, LLM inference, and decoding. This
pipeline is designed to efficiently identify and locate entities in the documents.

Facing the challenge of using LLMs for understanding documents, we propose
using a machine-friendly data representation. HTML stands out for its adapt-
ability and proves to be highly effective in this context. In [9], authors extensively
analyze the application of LLMs in tasks related to understanding HTML. The
study highlights that, when appropriately fine-tuned, LLMs demonstrate out-
standing performance on benchmark tests assessing HTML comprehension. In
our specific use-case, the conversion of raw text into HTML allows us to retain
both the textual content and spatial layout of the documents, which plays a
key role in achieving accurate and precise analysis. This approach is particularly
useful for documents with standard layouts, such as forms with key-value pairs.

In summary, our research aims to bridge the gap between the capabilities of
LLMs and the practical requirements of visually-rich document understanding.
We make the following contributions:

— We present a new method for transforming OCR document outputs into
structured HTML representations that preserve spatial relationships and
layout context.

— Through extensive experiments, we show that instruction-based prompting,
which includes HTML representations, improves LLMs’ capacity to compre-
hend complex visual layouts.

Overall, our research contributes to the ongoing efforts to leverage LLMs in
real-world VRDU applications.
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2 Approach

The field of large language models is rapidly evolving, with new models being
introduced regularly. However, for our specific task, we require a LLM that can
handle large contexts, understand HTML and JSON, and follow instructions
precisely. We have identified a variant of Llama 2 [25], known as CodeLlama
[23], which meets these requirements. Codellama is fine-tuned with massive
datasets containing code, markup languages, and natural language text related
to coding. It is specifically designed to handle extensive input contexts, allowing
it to process longer sequences of up to 16,384 tokens. Moreover, CodeLlama
excels at following detailed instructions, making it ideal for tasks related to
programming and data manipulation.

Our method uses tailored instruction prompts to fine-tune and test the LLM
for understanding documents. We begin by preparing the data, converting the
document’s OCR output into an HTML representation. This HTML format
serves as the input for the LLM along with an instruction prompt that contains
task-specific details and the desired output. The LLM is then fine-tuned using
these instruction prompts. The following sections will explain these steps in more
detail.

2.1 HTML Representation

HTML is an ideal format for representing complex layout structures of docu-
ments. In the past, OCR engines such as Tesseract [2] have offered a specialized
HTML representation in hOCR format [4]. Unlike plain text, HTML elements
can capture how textual components spatially relate to one another within a
rich formatting structure, which is particularly useful in scenarios that involve
key-value inputs and require maintaining the relationships between words. As
studied in [9], HTML serves as an interpretable structured medium for LLM.

The conversion process from a document’s OCR output to HTML is outlined
in Algorithm [I] We use bounding box coordinates to arrange the text elements
into a <table> layout, with <tr> rows and <td> cells, based on their relative
positions. The algorithm then sorts and organizes these elements to create a
coherent HTML structure that retains original spatial positioning relationships.
Figure[I]shows a sample document and corresponding HTML encoding generated
by this process.

2.2 Prompt Generation

LLMs can be effectively directed to perform specific tasks by providing an in-
structive prompt that clearly defines the desired behavior. The Llama LLM uses
two types of prompts: a system prompt and an instruction prompt. The sys-
tem prompt sets the general tone and expectations for the interaction and is
prepended to the prompt. The instruction prompt, on the other hand, clearly
specifies the expected response.

We have designed the system prompt as follows:
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Algorithm 1: Convert OCR results to HTML Table
Data: List of texts and bounding boxes
Result: HTML table
1 foreach bounding box do
2 L Calculate row and column based on bounding box coordinates;

3 Append (row, column, text) to data list;

4 Sort data_list by row and then by column;

5 Initialize table_html;

6 foreach (row, column, text) in sorted_data do

7 if row # current_row then

8 if current_-row # 0 then

9 | Add "</tr>" to table_html;

10 Add "<tr>" to table_html;

11 Update current_row and reset last_col;
12 Calculate colspan based on column and last_col;
13 Add <td></td> with text content to table_html;
14 | Update last_col with current column;

15 Add "</tr> </table>" to table_html;

TELEVISIO

(a) | (b)

Fig. 1. Comparison between the original document (a) and its corresponding HTML
representation (b). Sample from VRDU benchmark.
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“Below is an instruction that describes a task, paired with an input that
provides further context. Your response is a JSON object that appro-
priately completes the request. The JSON must be between [JSON] and
[/JSON] tags.

This prompt sets the format and expectations for the model’s response.
Following this, the instruction prompt offers specific directives for the task,
guiding the LLM to precisely extract and organize the required information:

“Given the following HTML table, extract key details and organize them
into a single JSON object. Please provide values for the fields including
‘advertiser, ¢ ‘property,‘ ‘agency,‘ ‘tv_address,‘ ‘contract_num,‘ ‘product,‘
‘gross_amount,‘ ‘flight_from, * ‘flight_to,* and ‘line_item*is an array (with
‘channel,‘ ‘program_desc,‘ ‘program_end_date,‘ ‘program_start_date,‘ and
‘sub_amount‘). Ensure that the extracted information accurately reflects
the content of the html. Output must be JSON. “

Figure [2 illustrates the process of forming the prompt for our application.
Initially, an HTML table is generated from the OCR data, capturing the lay-
out and textual content of the document. Subsequently, a JSON object is de-
rived from the ground truth, which includes only the key values relevant to the
current page. The combination of these elements results in the creation of a
well-formatted prompt.

OCR HTML

Prompt

“instruction”: "Given the following HTML table,
extract key details and organize them into a
single JSON object. Please provide values for
the fields including 'advertiser,'‘property.’
‘agency, 'tv_address,' ‘contract_num,' ‘product,’

‘gross_amount," ‘flight_from," flight_to, and
‘line_item' is an array (with 'channel,’
‘program_desc,‘program_end_date,
‘program_start_date,’ and 'sub_amount’).
Ground Truth JSON Ensure that the extracted information accurately
reflects the content of the html. output must be
JSON.", "input”: "<table>

Output: json

{‘advertiser”: “Jon Francis Campaign", "property
KTAB", “agency™: "DAVIS LENZ MEDIA'
tv_address": *125 Wes! 55th StinNew York, NY
10019, "coniract_num" *26790171", "prodict
"POLITICAL", "gross _amount": '$5,135.00",
fight_from”: *2/17/20", "fight_to" “2/23/2(
line_fiem": [("program’desc™ "KTAB Daybreak
Sub_amount™: "$725.00°), {"program _desc: “CBS
This Morning", "sub_amount": "$220.00°),
{lprogram_desc™: "The Price is Right", "sub_amount"
*$560.00"F, {"program_desc": "KTAB Noon News’
Sub_amount’ "$230.00°), {’program_desc’: "Lets
Make A Deal", “sub_amount": *$210.00°).
{lprogram_desc™: “Jeopardy”, "sub_amount
*$115.00°, {program_desc™: "KTAB 5P News'
'sub_amount": "$570.00"), (Dfﬂgram desc™: "KTAB 6
i6ws”, "sub_amount” *$1,500.00°

{'program_desc": "Wheel of Fortune”, “sub_amount

900.00°F, {'program desc”: "Face the Nafion"
"sub_amount": "$105.00Y])

Fig.2. An HTML table reflecting the document’s layout and content is combined
with a JSON object containing key-value pairs from the ground truth annotations to
construct the final prompt.
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2.3 Implementation Details

For fine-tuning we used parameter-efficient fine-tuning (PEFT) [19] method with
Low-Rank Adaptation (LoRA) [II] configuration. LoRA provides an efficient
method for fine-tuning LLM by introducing smaller low-rank matrices to each
layer instead of modifying the original weight matrices. For our implementation,
we chose an alpha value of 64, which scales the low-rank updates applied to the
model weights. The rank of the low-rank matrices was set to 16, determining the
size of the trainable matrices. Additionally, we integrated a dropout rate of 0.05
in our LoRA layers. Training was conducted for 1K iterations on an A100 GPU.
We used a baseline learning rate of le-4 with a cosine learning rate scheduler.
The scheduler decreases the rate following a cosine curve over the training span.
During inference for each sample, we combine the predicted outcomes of all pages
into a single JSON object. To ensure accurate evaluation, we sort the key values
in both the JSON object and the ground truth. Our code is available at: https://
github.com /minouei-kl/llm4vrdu.

3 Experiments and Results

In this section, we review the experiments and their results. First, we evaluate the
Ad-buy dataset from VRDU under various settings defined by the benchmark.
Next, we focus on a specific subset of the Ad-buy dataset, comprising 100 training
samples and a test set with unseen templates. This subset serves as challenging
testing ground to conduct additional experiments. Using this subset, we assess
the model’s performance using a different input encoding, evaluate how the LLM
performs without any training, and compare the results with another LLM.
Lastly, we test the Consolidated Receipt Dataset (CORD) [21] to determine the
versatility of our encoding approach.

3.1 Datasets

The VRDU benchmark is composed of two distinct datasets: Ad-buy Forms and
Registration Forms. The Ad-buy Forms dataset, which is the more challenging
of the two, consists of 641 documents. These documents are mainly invoices or
receipts related to political advertisements, featuring details like product names,
flight dates, and total prices, which are typically found in invoices. These docu-
ments contain complex elements such as tables, multi-column layouts, and key-
value pairs. They contain diverse data types, including prices, dates, addresses,
and nested entities. The dataset provides high quality OCR extraction results
for the text and their corresponding positions in the documents.

The benchmark includes two tasks: Mixed Template Learning (MTL) and
Unseen Template Learning (UTL). MTL evaluate the models’ ability to handle
various templates by incorporating multiple templates across training and testing
sets. UTL evaluates the models’ capacity to adapt to templates not seen during
training. Each task in the VRDU dataset consists of 300 documents in the testing
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set, with four different training sets of 10, 50, 100, and 200 samples, respectively.
This structure allows for assessing models on their efficiency with data and their
performance with limited training data. Additionally, the authors implement a
type-aware matching algorithm to accurately assess performance, taking into
account different data types and formats.

Additionally, the CORD [21] contains a thousand of Indonesian receipt im-
ages receipts. It comes with rich annotations for OCR and multi-level semantic
labels for each word. The dataset is divided into training (800 receipts), valida-
tion (100 receipts), and test sets (100 receipts).

3.2 Evaluation on VRDU benchmark

Table [1| compares our proposed model with others, including LMDX, FormNet,
and different versions of LayoutLM, evaluated on the Ad-buy dataset. It shows
the performance of these models with varying data sizes and whether the tem-
plates in training/testing was mixed or unseen. The performance metrics include
Micro-F1 and Line-Item F1 scores as defined in [26].

Our model shows significant improvement over basic methods such as Form-
Net and the LayoutLM family in all settings. As the size of the training set
increases, there is a consistent improvement in performance. The extraction of
line items, which contain nested or itemized information, is particularly chal-
lenging because the evaluation is strict, even a single missing item in a group is
marked completely as incorrect.

Although the proposed method performs well, it has not reached the top
performance achieved by LMDX due to several factors. First, LMDX has a larger
architecture with greater processing capabilities. Additionally, LMDX benefits
from pre-training on a private dataset, enhancing its performance. LMDX also
utilizes multiple inferencing techniques, leading to higher accuracy at a higher
computational cost. Lastly, LMDX undergoes more training with 4,000 iterations
compared to our 1,000 iterations. These factors, considering the computational
cost and limitations in our experiments, explain the superior performance of the
LMDX model in this context.

Figure [3] shows a sample document, ground truth, and model predictions.
While most details are accurately extracted, there are instances where parts
of the program description are missed. Such mistakes lead to a decline in the
performance of the line-item.

Table [2| shows the detailed performance of our model on the Ad-buy dataset
for different fields, under different template sizes (10, 50, 100, 200). For both
mized and unseen templates, as the size increases, there is an improvement in F1
scores across most fields. Some fields such as ‘gross amount’, ‘product,* ‘agency®,
and ‘advertiser® consistently show higher F1 scores across both template types
and all sizes, indicating that the model is particularly effective in these areas.
Conversely, fields like ‘tv address‘, ‘line item‘, have lower F1 scores, especially in
smaller template sizes, which means the model struggles more with these fields.
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plate setting in train/test (mixed, unseen).
. Mixed Template Unseen
Stze| - Model o Pl Tine Ttom Fi|Micro-F1
FormNet 20.47 5.72 20.28
LayoutLM 20.20 6.95 19.92
10 LayoutLMv2 25.36 9.96 25.17
LayoutLMv3 10.16 5.92 10.01
LMDX parm 2-s | 54.35 39.35 54.82
Proposed 38.06 19.66 37.76
FormNet 40.68 19.06 39.52
LayoutLM 39.76 19.50 38.42
50 LayoutLMv2 42.23 20.98 41.59
LayoutLMv3 39.49 19.53 38.43
LMDX parm 2-s | 75.08 65.42 75.70
Proposed 58.16 42.72 56.87
FormNet 40.38 18.80 39.88
LayoutLM 42.38 21.26 41.46
100 LayoutLMv2 44.97 23.52 44.35
LayoutLMv3 42.63 22.08 41.54
LMDX parMm 2-s | 78.05 69.77 75.99
Proposed 65.9 52.51 63.71
FormNet 43.23 21.86 42.87
LayoutLM 44.66 23.90 44.18
200 LayoutLMv2 46.54 25.46 46.31
LayoutLMv3 45.16 24.51 44.43
LMDX parm 2-s | 79.82 72.09 78.42
Proposed 74.74 64.24 71.82

{
"advertiser": "POL/ Martha McSally / R/
US SEN/AZ",
"property": "KMSB",
"agency": "FP1 Strategies, LLC/POL",
"tv_address": null,
"contract_num": "1996189",
"product"”: "FP1",
"gross_amount": "$700.00",
"flight_from": "05/08/20",
"flight_to": "05/14/20",
"line_item": [

{

"channel": "KMSB",

"program_start_date": "05/08/20",

"program_end_date": "05/13/20",

"program_desc": "Local News @ 7-9a
M-FCM DAYBREAK - RATE",

"sub_amount": "$120.00"

{

"advertiser": "POL/ Martha McSally / R/
US SEN/AZ",

“property": "KMSB",

"tv_address": null,
"contract_num": "1996189",
"product": "FP1",
"gross_amount": "$700.00",
"flight_from": "05/08/20",
"flight_to": "05/14/20",
"line_item": [
{
"sub_amount": "$120.00",
"channel": "KMSB",
"program_start_date": "05/08/20",
"program_end_date": "05/13/20",
"program_desc": "Local News @ 7-9a
M-FCM"
}
1
}

(a)

(b)

Fig. 3. (a) Document image. (b) Ground truth. (c) Predicted sequence.
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Table 2. F1-Scores per field on the Ad-Buy dataset across various train sizes and
template setting in train/test (mixed, unseen).

Template|Size

= > |Q = () T H s = =
a2 | S = = | = 2 = = =
3 £ ?; & B % g o g 3 5 e =] g
= o =% =+ =1 @ = [} = Q0
g < B 0 o9 B R B S =3
@ = |z |9 kB = I = 58
1 =] @ <+
Z |5 S % Y g
g = =
Mixed 10 [82.19(76.18|76.75|71.09(|72.55|88.57|84.64|44.7767.85|19.66(68.43|74.21|38.06
Mixed 50 194.32(85.01]93.18|88.81(86.76(94.92]90.15|75.96|82.84|42.72|83.47|88.46|58.16

Mixed  |100 [94.14|88.05|95.17(91.41{92.08|96.63|93.2 |79.17|86.98|52.51|86.94(91.15|65.9

Mixed  |200 |97.58/93.16{96.69(94.43|94.66(97.21]95.13|84.77|93.18|64.24(91.11|94.32|74.74
Unseen |10 |78.48|71.95(77.64|73.48|73.55(90.85|83  |42.77|68.33|19.33|67.94|73.9 |37.76
Unseen |50 [93.86|87.53|93.73(88.53|87.19|94.15(92.37|76.6 |83.69|40.66|83.83|88.94|56.87
Unseen [100 [94.24]|91.81|93.78(89.29(90.42|96.02|93.32|78.99|86.58|49.26|86.37(90.63|63.71
Unseen [200 [96.21]95.16/96.56(90.49(91.15|95.94|94.62(85.53|93.44(60.14|89.92(93.32|71.82

3.3 Evaluation with Coordinate Embedding

As presented in [22], one encoding approach is to directly embed the normalized
x—y coordinate pair of each word into the text input. As the authors state,
this spatial context helps language models infer document layout relationships.
For comparison, we train the LLM with this “coordinate-in-text” representation
on a subset of dataset. As table [3] shows, our model generally outperforms the
”coordinate” model in most fields, as indicated by higher F1 scores.

Table 3. Evaluation coordinate in text on unseen template 100 subset (F1-Scores).

Model > > Q & &2 Q s = o c < =
= 5 g E E B E I K E E &F
@ =] = = = I o > ke 1] 25 |3
= o =+ o+ o @ — o = @
= < 2 Q 2 2 = =0
& s 2 2 B F B OE B £ 2
@ o =] = =4 [CR
@ ~ S 15 @ n oo
I<] = = A 8—
g 2
Coordinate|91.05 (85.65 {96.04(87.95 (90.54(96.51(89.53 |75 85.28 [45.4 (84.29 [89.05 (60.52
Proposed |94.24(91.81(93.78 [89.29(90.42 [96.02 [93.32|78.99|86.58(49.26|86.37|90.63|63.71

3.4 Zero-Shot Evaluation

In this experiment, we pass the input prompt to our LLM to evaluate its perfor-
mance without tuning. Table [ compares the proposed fine-tuned model against
this zero-shot baseline on the subset of VRDU with unseen templates. We ob-
serve that certain information, such as advertiser and product names, can be
extracted even without fine-tuning. However, fine-tuning provides substantial
gains, more than doubling scores across all categories by tailoring the model to
the specific domain.
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Table 4. Evaluation zero-shot on unseen template 100 subset (F1-Scores).

Model

I9STHIPADY
KouoSy

NN JORIJUO))
oL WS
unowy SSO.I{)
oNpoIg
Lyrpdoig
o) oul'|
OIDRTN

SOTITUD

poyeadorun)
ODIN

| wor s
o

42.81 |2.48 |46.33 |51.66 (21.99
86.58(|49.26|86.37|90.63|63.71

—
w
Do
w

CodeLlama|72.5 [44.03 57.75 |50.39 |84.32
Proposed [94.24(91.81(93.78|89.29|90.42|96.02|93.32

=
=)
=)
=

3 5| PPV AL
Vo)
V=)

3.5 Evaluation DeciLM-7B

To showcase the effectiveness of our encoding approach in combination with
another LLM, we conducted a comparison with DeciLM-7B [I], a recently intro-
duced instruction-following LLM that can handle long input context up to 8k.
To ensure a fair comparison, we fine-tuned DeciLM-7B on Ad-buy dataset using
the same steps as our proposed model. Table [5| presents the comparison between
our proposed model and DeciLM-7B. The results show that both models per-
form similarly, but in our specific application, CodeLlama generally outperforms

DeciLM-7B.

Table 5. Evaluation DeciLM-7B on unseen template 100 subset (F1-Scores).

Model e s s 2 o B B v | = =
(o o) [e] = = — [} =) = - =
2 E E EE B EE B B kBEE
S 5 B OB B e E B | F ESZ
% a e 3 = & < e S
I 3 © = z =4 5 =
Z B ° 4 " g
g = =~
DeciLM-7B|90.79 |86.13 |95.61(85.56 |90.8 |96.04]90.35 [78.3 |82.83 |46.35 |84.28 |88.85 [61.11
Proposed [94.24(91.81(93.78 (89.29(|90.42(96.02 |93.32|78.99/86.58(49.26|86.37|90.63|63.71

3.6 Evaluation on CORD Dataset

We expanded our evaluation to include the CORD receipt dataset in two different
settings: using only the first 50 samples to assess the model’s few-shot learning
capabilities, and using the complete dataset of 800 samples, in line with [22]. We
followed the same procedure for prompt creation, training, and testing as applied
to the VRDU dataset. Table[6|compares the n-TED accuracy [14] of various mod-
els on the CORD dataset, as reported in [22]. The results indicate that our model
performs competitively in both training scenarios. With 50 samples, it achieves a
higher n-TED accuracy compared to Donut and LayoutLMv3LARGE, but lower
than LMDXPaLM 2-S. With 800 samples, the model’s accuracy increases and

remains higher than Donut.
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Table 6. Evaluation on CORD Dataset.

Size Model n-TED accuracy
Donut 75.44
50 LayoutLMv3LARGE 87.29
LMDX parm 2-s 93.80
proposed 89.9
Donut 90.23
800 LayoutLMv3LARGE 96.21
LMDX parm 2-s 96.3
proposed 91.4

4 Conclusion

In conclusion, we introduced a new approach for leveraging LLMs to extract in-
formation from documents with complex layouts. Our approach, which converts
OCR outputs into HTML formats, effectively preserves the spatial layout and
textual content, allowing LLMs to accurately extract information into a struc-
tured JSON format. Our experiments on the VRDU benchmark show significant
improvement compared to baseline models and are comparable to SOTA results
within computational limits. We have verified the effectiveness and flexibility
of our method through testing on different inputs and models. Our findings
highlight the importance of input formatting and the choice of LLM in the per-
formance of information extraction. Future efforts can focus on improving text
encoding and employing grounding techniques.
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