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1.  ABSTRACT 

        In this study, we present a numerical analysis of laminar and permanent thermal natural convection in 

a closed enclosure with different conditions using FORTRAN language. The resulting system of algebraic 

equations was then solved using the iterative method with the Gauss-Seidel algorithm and relaxation. The 

results are presented in the form of isotherms, velocity and stream lines as a function of the Rayleigh 

number, as well as the Nusselt number. The findings indicate that an increase in the Rayleigh number leads 

to a higher convective heat transfer within the enclosure. 

 

1. Introduction 
 

The study of natural convection in closed enclosures has been the subject of many theoretical and experimental studies. 

Many published works have been developed concerning natural convection in different shapes of enclosures (either 

experimental or numerical) with different calculation methods and with different data and boundary conditions. 

 

Sezai et al. [1] studied three-dimensional double diffusion natural convection in a cubic enclosure for thermal and solute 

gradients at opposite horizontals. They indicate that doubly diffusive flow in cavities with opposite volume forces is 

strictly three-dimensional for a certain range of parameters. 

Akrour et al. [2] made a numerical study of natural thermo solutal convection in a rectangular enclosure, the horizontal 

walls of the enclosure are heated and cooled and a vertical concentration gradient is imposed. The objective of their 

investigation is to identify the thermal or solutal-dominated flow regime. They found that it is possible to obtain several 

solutions which essentially depend on the initial conditions. Also, the results reveal that for a stratified fluid, a 

conductive heat transfer occurs at the expense of thermal convection. 

 

Aydin and Yang [3] numerically studied natural laminar air convection in a two-dimensional, rectangular enclusure 

with localized heating below and symmetrical cooling on the sides. Their analysis included the influence of the length 

of the heated part and Ra on heat transfer. They found that the flow and temperature fields are symmetric because of the 

symmetry of the boundary conditions. 
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Kuznetsov et al. [4] examined the natural double diffusive convection inside a cubic cavity where lower wall is 

isothermal and maintained at a uniform concentration and the other walls are adiabatic and impermeable. They 

examined the influence of the Rayleigh number on the flow and rate of heat and mass transfer, the influence of the 

conductivity ratio on the heat and mass transfer and the effect of the  of   sources size of heat and  mass on mass transfer 

regimes. 

Nikbakhti et al. [5] numerically analyzed the heat and mass transfer for air contained in a rectangular enclosure with 

partially thermally active walls. Teamah et al. [6] numerically studied a double diffusion flow of natural convection in 

an inclined rectangular enclosure in the presence of a magnetic field and a heat source. The authors concluded that: the 

inclination angle affects the buoyancy forces and the magnetic field reduces heat transfer and fluid circulation due to the 

delay effect of the electromagnetic body force. 

 

 

2. Mathematical model 

 
The physical problem considered is schematized in figure 1. It is a closed two-dimensional enclosure of height H. The 

flow in the enclosure is due to the temperature difference and therefore to the density difference which leads to 

convective flow.  

 

 

 
Fig. 1  Fig. 1 Model of closed enclosure with   boundary conditions 

   

2.1  General hypotheses 

 

The following hypotheses used are: 

• Fluid flow and heat transfer are permanent and the regime is laminar.  

• The flow is assumed to be two-dimensional (2D). 

• The fluid is Newtonian and incompressible  

• The physical properties of the fluids are assumed to be constant. 

• Heat transfer by radiation is negligible. 

  

 

2.2   Governing equations  

 

 

2.2.1    Dimensionless vorticity equation 

 

To eliminate the pressure terms in the motion eqaution, we use the dimensionless vorticity equation W defined by: 

 

 
  

  
  

  

  
 

  

  

  

  
  

   

    
   

                                                (1) 



UKHTC2024 

 

 

 

 

 

 

The vorticity equation the following dimensionless variables: 

 

  
 

   
        

 

 
 ,      

 

      
,       

 

      
     

    

     
     

 

    
 

 
   

                                            (2)          

 

   Using  Eq.2, the dimensinless continuity and energy equations can be written as:    

                                                                                            

2.2.2    Dimensionless continuity equation 
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2.2.3    Dimensionless energy equation 
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2.2.4    Stream function 

 

The dimensionless stream function is defined by: 

  
  

  
     

  

  
                                                             (5)                               

 
2.2.5    Boundary conditions  

 

By using the fig.2, the boundary conditions used are: 

 

0  ≤ X ≤ 1 , Y=0  , U=V=0 ,    θ = θ1 = 1 

X=0 ,     ,     U=V=0  ,  θ = θ2 = 0  

 0  ≤ X ≤ 1 , Y=1  , U=V=0  ,   θ = θ3 = 0 

X=1  ,      ,U=V=0 ,   θ = θ4 = 0  

 

 
Fig. 2 Model of closed enclosure with dimensionless boundary conditions 

 

 

2.2.6   Nusselt number  
 

The Nusselt number is used to characterize heat transfers between a fluid and a wall, called convective transfer. 

It is defined as follows: 
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3.  Numerical formulation 

 

To resolve numerically the above equations, various numerical methods are used. Among these methods, we can cite 

the method of finite differences, finite elements and finite volumes, in addition to a variety of software present on the 

market. To carry out our numerical simulations, we opted for a calculation program written in FORTRAN language 

based on the finite difference method. 

 

3.1  Mesh 

 

The method of discretizing of the partial differential equations requires the choice of a geometry mesh (Fig.3). If we 

take any function   and using Taylor series development and with the finite difference method in the vicinity of the 

point P(i, j) in the scheme presented in Fig. (4),   

We use this technique to transform the system of partial differential equations into a system of algebraic equations 

(discretization) which will be solved by the appropriate methods. 

 
Fig.4  Mech scheme 

 

3.1   Discretization of the general equation 

 

By using a general function Φ which can designate W and θ, equations (1) and (4) can be grouped into a single equation 

obeying the following expression:  
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For   Φ= W, A=1, S =      
  

  
 
  

  
   

 

For   Φ=  , A=1, 
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Using the finite difference, equations 7 can be discretized as follow: 
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3.2 Method of resolution  

 

 

To solve the previous equations, we use iterative methods and we choose the Gauss-Seidel method with relaxation. 

 

Applied this method on Eq. 8, we obtain, 
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The coefficients An,Ae,Aw,As, and Ap   are different from one equation to another. 

Their values are defined from equation (8) as follows: 
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Calculation of these parameters leads to calculate the stream function, the vorticity , and the velocity components U and 

V . The calculation converged if the following test is verified: 

 

 

                     (15) 

 

                                                                       

4. Results and discussion 

 

 

4.1 Choice of the mesh of the discritization grid 

 

A preliminary calculation of the temperature field for (Y=1/2) using three different meshes gave almost identical results 

(Fig.4).   
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Fig.4  temperature field for different meshes 

 

4.3 Stream lines  

 

Figure (5) shows the structure of the streamlines for different values of the Rayleigh number. We notice a formation of 

two counter-rotating cells, one rotates clockwise and the second rotates counterclockwise as shown in figure (5.e) for all 

cases. We also notice that the configuration presents a symmetrical flow characterized by two identical counter-rotating 

cells because the boundary conditions are symmetrical.This physical phenomenon can be translated as follows: The 

fluid which is heated by the lower wall moves towards the cold upper wall, where it divides into two flows, one goes 

towards the left vertical cold wall and the other moves towards the right vertical cold wall, the two cells are almost 

equal. It should be noted that for a given Rayleigh number,  the streamlines are almost identical when varied. The 

intensity of the flow therefore remains the same value for a fixed Rayleigh number. We notice that with the increase in 

the Rayleigh number, the intensity of the recirculation inside the enclosure increases and the centers of the current lines 

move upwards. 

 

       

       
(a)                                                                                  (b)  

         

(c)                                                                 (d) 

Figure 5.   Streamlines for different values of the Rayleigh number 

(a)  Ra= 10
3
,   (b)  Ra= 10

4
,   (c)  Ra= 10

5
,   (d)  Ra= 10

6 
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Figure 5.e  flow structure   

 

4.4  Temperature profile (isotherms) 

Figure (6) reflects the phenomenon of natural convection. The isotherms show that the heat recovered from the hot base 

of the enclosure is transformed by natural convection upwards to the middle of the enclosure by the pair of cells in the 

center. This explains the relatively high temperatures in the central part of the enclosure. Heat is dissipated equally 

through both side walls due to symmetry. For Ra =10
3
, the isotherms become almost concentric ellipses and have a 

symmetrical structure with respect to the passing vertical plane thus these isotherms show that heat transfer by 

conduction is predominant (absence of transfer by convection). When Ra=10
4
, the deformation of the isotherms 

increases. When Ra =10
6
, the thermal boundary layers become thinner and the isotherms become stratified. The 

increase in the Rayleigh number causes the isotherms to move closer to each other in the zone located near the heated 

lower wall, i.e. the temperature gradients become higher near the heated lower wall. This implies an increase in heat 

transfer through the bottom wall of the enclosure for a higher Rayleigh number. Therefore, the highest temperatures are 

those of the fluid flowing parallel to the heated wall, while the lowest temperatures are those of the fluid flowing 

parallel to the cold walls [43]. 
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Figure 6: Structure of isotherms for different values named Rayleigh. 

(a)  Ra= 10
3
,   (b)  Ra= 10

4
,   (c)  Ra= 10

5
,   (d)  Ra= 10

6 

4.5 Velocity profile 

Figure (7) illustrates the vertical velocity structure of fluid flow for different Rayleigh numbers. We notice a 

descent of the fluid at the level of the cold side walls and an increase at the level of the heated wall as also 

shown in figure (7.e). This elevation increases with the increase in the Rayleigh number and reaches its 

maximum at the center of the heated wall, where the temperature is higher. This is due to the increase in the 

intensity of thermal thrust forces and therefore to the predominance of heat transfer by convection. 

 

              

                                                   (a)                                                                (b) 

          
(c)                                                             (d) 

Figure 7: Structure of vertical velocity for different values of the Rayleigh number. 

(a) Ra= 103, (b) Ra= 104, (c) Ra= 105, (d) Ra= 106 

 

Figure 7.e : vertical speed profiles for Ra=10
5
 

4.6. Local Nusselt number 

Figure (8) illustrates the variation of the local Nusselt number on the active (hot) wall whatever the value of the 

Rayleigh number.  We notice in this figure, zero values of the Nusselt number in the middle of the hot part that this is 
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where the temperature gradient is the lowest and the heat transfer between the hot wall and the fluid takes place only by 

conduction, on the other hand, its maximum value at the terminals of the heated source given that this corresponds to 

the contact of the cold fluid coming from the side walls with the ends of the heated source, which will give rise to the 

strongest temperature gradients. 

 
  

Figure 8: variation of the Nusselt number as a function of X 

 

Conclusion  

 

 

In this work, we presented a numerical study of heat transfer by natural convection in closed enclosure filled by air. The 

lower base of this cavity is kept hot (as a heat source) at a constant temperature and the other walls are cold at a 

constant temperature.  

Numerical simulation using FORTRAN are carried out for different Rayleigh numbers. The resolution of the equations 

governing flow and heat transfer was approached by the finite difference method with the relaxation method. 

The results obtained show that: 

• Increasing the Rayleigh number favors heat transfer in the cavity given the increase in convection currents and 

therefore the speed.  

• For a low Rayleigh number, of the order of 10
3
, we notice  dominance of the mode of heat transfer by conduction. 

Beyond this value, convection dominates and appears more clearly for Ra=10
5
. 

• The flow regime always remains laminar for the range of the Rayleigh number considered. 

• The Nusselt number increases with increasing Rayleigh number. 
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