
EasyChair Preprint
№ 10783

Metaverse in InterPlanet Internet: Design of
Robotic Microcontroller in Space Robots for
Diverse Space Applications Using an Automated
AI Learning Agent

Poondru Prithvinath Reddy

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

August 27, 2023

Metaverse in InterPlanet Internet: Design

of Robotic Microcontroller in Space

Robots for Diverse Space Applications

Using an Automated AI Learning Agent

 Poondru Prithvinath Reddy

ABSTRACT

The interplanet internet is a conceived computer network in space,
consisting of a set of network nodes that can communicate with each
other. These nodes are the planet’s orbiters (satellites) and landers (e.g.
robots, autonomous machines, etc.) and the earth ground stations, and
the data can be routed through Earth’s internal internet. As resource
depletion on Earth becomes real, the idea of extracting valuable
elements from asteroids or using space-based resources to build space
habitats becomes more attractive, one of the key technologies for
harvesting resources is robotic space mining (minerals, metals, etc.,) or
robotic building of space settlement. The metaverse is essentially a
simulated digital environment mimicking the real world. The metaverse
would be something very similar to real world planetary activities where
users (space colonies or internet users on Earth) interact with
overlaying objects represented by robots, drones, etc. for real-world
planetary activities like space mining, building space settlements, etc. in
a completely virtual manner. Here we show how microcontroller on
space robots may be designed for capturing robotic controls with
different make-up for executing diverse space applications. For this, an
AI agent is designed to learn to optimize the final control generation from
the space operational requirement/environment. We designed an RL
agent to add or to remove the controls to maintain a correct movement,
actuators activation and high-performance space execution and to build
through a series of steps (adding or removing controls) for improving
the execution performance & efficiency of space related applications.
For this we used fully convolutional neural network the Q-learning
algorithm (an RL algorithm) for space applications and the algorithm
trained the microcontroller design agent using a matrix representation for
operational requirement. Since we have learning models of robotic
shapes along with a learning agent for microcontroller design, we show
an implementation of combining shape patterns and device controls with
space exploration activity by means of a small model in obscene of real-

world model of Metaverse for autonomous space operations. In this
way, the desired response or generator loss was defined, and new
environmental conditions and robotic selection patterns were
synergistically combined with automated controls in learning agent for
diverse space related outcomes. The results of the study simulated on
existing internet here on Earth show that the real individual behaviour
on a distant planet can be achieved provided the interplanet internet is
available as pathway communication and undertaking of space related
activities with varied robotic make-up and microcontrollers using deep
learning models could be of reality even in interplanet environment.

INTRODUCTION

Inter-planetary exploration, be it Lunar habitation, asteroid mining, Mars

colonization or planetary science/mapping missions of the solar system,

will increase demands for inter-planetary communications. The

movement of people and material throughout the solar system will create

the economic necessity for an information highway to move data

throughout the solar system in support of inter-planetary exploration and

exploitation. The communication capabilities of this interplanet

information highway need to be designed to offer; 1) continuous data, 2)

reliable communications, 3) high bandwidth and 4) accommodate data,

voice and video.

The interplanetary Internet is a conceived computer network in space,

consisting of a set of network nodes that can communicate with each

other. These nodes are the planet's orbiters (satellites) and landers (e.g.,

robots), and the earth ground stations. For example, the orbiters collect

the scientific data from the Landers on Mars through near-Mars

communication links, transmit the data to Earth through direct links from

the Mars orbiters to the Earth ground stations, and finally the data can

be routed through Earth's internal internet. Interplanetary communication

is greatly delayed by interplanetary distances, so a new set of protocols

and technology that are tolerant to large delays and errors are required.

The interplanetary Internet is a store and forward network of internets

that is often disconnected, has a wireless backbone fraught with error-

prone links and delays ranging from tens of minutes to even hours, even

when there is a connection. In the core implementation of Interplanetary

Internet, satellites orbiting a planet communicate to other planet's

satellites. Simultaneously, these planets revolve around the Sun with

long distances, and thus many challenges face the communications. The

reasons and the resultant challenges are: The interplanetary

communication is greatly delayed due to the interplanet distances and

the motion of the planets. The interplanetary communication also

suspends due to the solar conjunction, when the sun's radiation hinders

the direct communication between the planets. As such, the

communication characterizes lossy links and intermittent link

connectivity. The graph of participating nodes in a specific planet to a

specific planet communication, keeps changing over time, due to the

constant motion and the Interplanetary Internet design must address

these challenges.

NETWORK ARCHITECTURE

A Computer Network Architecture is a design in which all computers

in a computer network are organized. An architecture defines how the

computers should get connected to get the maximum advantages of a

computer network such as better response time, security, scalability, etc.

Network architecture refers to the way network devices and services are
structured to serve the connectivity needs of client devices.

 Network devices typically include switches and routers.
 Types of services include DHCP and DNS.
 Client devices comprise end-user devices, servers, and

smart things.

The network architecture for the planet Mars or the Moon is as shown in

below figure:-

Web-Internet (Earth) Space

 Station

Public Cloud

 Lander

Data Centre InterPlanet Network

Smart Devices Smart

Things (Robots,

Drones)

Computer networks are built to serve the needs of certain functionality
and also their clients. Described below are three types of planetary
networks:

(Smartphones, VR Glasses)

Orbiter(Satellites)

 Access networks, for campuses and local areas, are built to bring
machines and things onboard, such as connecting robots, drones,
etc. within a location.

 Networks for data center connect servers that host data and
applications and make them available to smart devices.

 Wide-area networks (WANs) connect robots and others to
applications, sometimes over long distances, such as connecting
robots to cloud applications related to space mining operations.

We give below the architecture of network on the planet Mars or the

Earth’s Moon is as shown in below figure:-

 Orbiter

 Lander

 Gateway Router

Planet Web Services Cloud Services

 Applications Server Data Centre

 LAN

 LAN

 Local Area Network

An Internet is a “network of networks” in which routers move data among
a multiplicity of networks with multiple admin. domains.

The main aim of networks is to connect remote endpoints with end-to-
end principle and network should provide only those services that cannot
be provided effectively by endpoints.

Since the networks are predominantly wireless, the fundamental impact
of distance due to speed-of-light delays and impact on interactive
applications – for both data and control is to be considered. Also power
consumption of wireless links as a function of distance is to be
examined.

Smart Things

The interplanetary internet is a conceived networks of nodes and these
nodes are space station, planet’s orbiters (satellites), planet’s landers,
robots (drones, autonomous machines, etc.), earth ground stations and
earth’s internal internet.

METHODOLOGY

Outer space contains a vast amount of resources that offer virtually
unlimited wealth to the humans that can access and use them for
commercial purposes. One of the key technologies for harvesting these
resources is robotic mining of minerals, metals, etc. The harsh
environment and vast distances create challenges that are handled best
by robotic machines working in collaboration with human explorers.
Humans will visit outposts and mining camps as required for exploration,
and scientific research, but a continuous presence is most likely to be
provided by robotic mining machines that are remotely controlled by
humans either from Earth or from local space habitat.

Future Moon(or Mars) bases will likely be constructed using resources
mined from the surface of the Moon/Mars. The difficulty of maintaining a
human workforce on the Moon(or Mars) and communications lag with
Earth means that mining will need to be conducted using collaborative
robots with a high degree of autonomy. Therefore, the utility of
autonomous collaborative robotics(with thousands of robots in operation
) towards addressing several major challenges in autonomous mining in
the lunar(Martian) environment with navigation in hazardous terrain and
delicate robot interactions to achieve effective collaboration between
robots and long-lasting operation.

Collaborative Robotics

Robots can be shaped to perform specific tasks. Robots have been
designed and shaped in such a way that they can walk, push pellets,
carry payloads, and work together in a group or possibly, to build a
space settlement. They can survive for long-time without recharge and
heal themselves after any damage/confusion. The shape of a robot's
body and its distribution of legs and structure are automatically designed
in simulation to perform a specific task, using a process of trial and error.

The methodology is essentially fundamental for getting the space robots
as autonomous as possible and also as fast & optimized and the aim is
to design processes involving machine learning to represent
computations and their structural patterns from learning agent in

realizing the desired execution in space environment. Therefore, we use
robotic extraction process from the lot of thousands of robots to speed
up the synthesis generation and also desired robotic shapes required in
execution of diverse space related applications. The machine learning
systems are required to be trained separately using reinforcement
learning algorithm to arrive at the robotic designs that can easily be
adopted and customized for the environment in space related
applications and these are used to localize the requirement.

The methodology primarily consists of following parts:-

1. Designing neural networks on the exploration requirements of
space related activities (Space mining, Building space settlements,
etc.).

2. Designing machine learning systems for Extracting structural
patterns from robotic space at each exploration step.

3. Introducing learning agent in the processes(space related work &
robotic shapes) that uses deep neural network with learning
algorithm

4. Similarly, introducing learning agent in the processor(CPU & GPU
) and microcontroller that uses deep neural network with learning
algorithm

5. The neural network used by the learning agents including the

neural network used by the learning agent(processor and
microcontroller) will be trained with learning algorithm by using
different methods

6. Measuring the outcome with generator loss or optimization steps
7. Based on generation requirements, get the device control

requirements of the microcontroller on the basis of process control
and exploration synthesis data.

8. Similarly get the device control parameters on the microcontroller
on the basis of structural pattern in the exploration step

9. Based on exploration requirements, get a series of robotic
requirements that are regularly required in a particular exploration
activity on the basis of computational data.

10. Similarly get the robotic-batch required out of lot on the basis of
structural pattern in the exploration step

11. Carryout computational data association with the sensors and
device parameter data with the graphical data of the exploration

step by matching with the desired data of completed exploration in
the database.

ARCHITECTURE

1. Augmented Reality

The word ‘augmented’ means to add. Augmented reality uses different
tools to make the real and existing environment better and provides an
improved version of reality.

As Augmented Reality (AR) technologies improve, we are starting to see
use cases and these include product visualization. There are AR apps
that allow a customer to place virtual furniture in their house before
buying and it is also a powerful tool for marketing as it allows users to try
products before buying.

At its core, AR is driven by advanced computer vision algorithms that

compares visual features between camera frames in order to map and

track the environment. But we can do more. By layering machine

learning systems on top of the core AR tech, the range of possible use

cases can be expanded greatly.

Augmented Reality (AR) can be defined as a system that incorporates
three basic features: a combination of real and virtual worlds, real-time
interaction, and accurate 3D registration of virtual and real objects

 2. Camera Representation

A camera is a device that converts the 3D world into a 2D image. A
camera plays a very important role in capturing three-dimensional
images and storing them in two-dimensional images. And the following
equation can represent the camera.
 x=PX
Here x denotes 2-D image point, P denotes camera matrix and X
denotes 3-D world point.

The above is vector representation of x=PX [1].

The camera representation method is frequently used in image
processing and is intended to identify the geometric characteristics of
the image creation process. This is a vital step to perform in many
computer vision applications, especially when metric information on the
scene is needed.

 3. Metaverse Algorithm

1. Physical Reality Modeling - required information

- The goal of the agent/robot

- What the robot sees, Materials & location

- Real Simulation for Task Execution

2. Task Execution (Simulation)

- Generating actual materials (how materials arrive at the site)

- Robots arrive in the environment (speed and goal)

- Task Execution (Simulation Steps), is updated as the work

process progresses in line with the simulation

- Task execution performance, as we have fully functional

simulator and to make a realistic system, we would like to see

how well it performs and mirrors real world execution(Artificial

Intelligence)

- Implementation of Graphical Version of the Task Execution

 Models for Metaverse & Algorithm

Minimum amount of required information

- The current state of the robot/agent and its environment

- The goal of the agent/robot

- What the agent sees, materials & it’s location

Agents – Attributes

We opt for the agents and they have the attributes: the sight and the
goal. While the goal is chosen randomly when an agent arrives on the
location, the sight is always fixed to the some value. The other
noticeable fact is that our learning agents do not have a desired speed.
We define the autonomous robots as entities whose primary concern is
to avoid failure; they should consequently not exhibit any preference for
a certain speed as long as they are working safely. Furthermore, we add

an attribute to these learning agents; this is their probability of choosing
a random action at each time step.

Agents as workmen

Given that we define learning agents the same way as the type of
workers, we can seamlessly add them at the location. The only
difference is how they will choose an action: by using their learning
model, a neural network. We can therefore adapt the site’s time step’s
algorithm to take the learning agent into account for the observation
step. To decide what action it should take, the learning agent uses a
neural network to approximate the Q-function. Thus, at every time step t,
the agent c observes its state sc,t; this state is then processed in some
way so that it can be passed to a neural network whose outputs
correspond to all the possible actions. The values of these outputs are
the estimated Q-values, Q(sc,t, a); as it is using a neural network θ, we
denote the Q-function approximated with that network by Q(s,t;θ). The
agent then uses an ϵ-greedy strategy to choose the action ac,t.
The neural network used by the learning agent will be trained with
learning algorithm by using different methods.

Neural Network Models

Presently different neural network models are available that we will use
to train our autonomous robots. These models define what information
the learning agents use and how they are encoded as inputs to the
neural networks. Before we start with our model, we need to define the
building structure; how these neural networks are used by the learning
agents. We use a feedforward neural network whose outputs
correspond to the possible actions. Our models define different ways of
using information about the agent’s current state. Thus, they either
encode different information or encode the same information differently
to produce the inputs.

Required Information

We start by defining the minimum amount of information that an
autonomous robot should have. Consequently, the model that we design
will possess these pieces of information. They are:

- The goal of the agent/robot
- What the robot sees, Materials & location
- The current location that the agent is in
- The current speed of the agent
- Real Simulation for Task Execution

Task Execution (Simulation)

- Generating actual materials (how materials arrive at the site)
- Robots arrive in the environment (speed and goal)
- Task Execution (Simulation Steps), is updated as the work

process progresses in line with the simulation
- Task execution performance and to make a realistic system, we

would like to see how well it performs and mirrors real world
execution (Artificial Intelligence with learning algorithm)

Robotic Design and Placement

Robots are collections of task executors and have no brain system of
their own. But they can be programmed to work autonomously and
collaborate with other robots, or eventually to do other things tackling
everything from space mining to deep space exploration.

Robots can be programmed as specific executor of an assigned task for
a number of situations and also using artificial intelligence to figure out
the best shape for the Robots to perform in group on a more consistent
basis to have better control over performance of assigned work.

Using a computational model that simulates the nature of work and
everything of the Robot Capability, the process yields the robotic shape
best suited to ensure the shape of the actual Robots into more efficient
form suitable to a particular situation/task and accordingly enables
robots to gather together in their environment forming them into groups
with the same capability.

The revolution of modern computing has been largely enabled by
remarkable advances in computer systems and hardware, sensor
technology and robotics. However, majority of today’s robots designed
are not suitable for high-end space exploration, resulting in the need to
speculate about how to optimize the next generation of robots for the
machine learning (ML) models with high end space applications. Further,
dramatically shortening the robot design/shape requirement would allow
hardware to adapt to the rapidly advancing field of ML. The ML itself
could provide the means to the robot design/shape requirement ,
creating a more integrated relationship between space exploration and
ML, and a deep-learning approach that leverages existing data.

Vast arrays of robots with different make are required for complex space
applications thus, improving the selection of design patterns of these
autonomous robots would be critical in improving the performance and
efficiency of remote space applications and use of AI to achieve high-
performance execution and robotic performance relevant to the work.

In order for the AI to design with an RL agent and the technique proved
that AI can not only learn to design robotic patterns from scratch but that
those structural patterns are accurate and faster than designed using
any of the latest validation tools. Here an AI agent could design neural
graphs and such a graph is converted into a class of robots with
connection (relevant shapes) using a link generator. These generated
circuits are then further optimized by a physical synthesis tool.

Robotic types for task execution are built using logic and a lot of
classifications/connections, should be easy, fast to reduce any delay that
can be a drag on performance and consume as little power as possible.

The robotic type design is represented as a reinforcement learning (RL)
task, where we train an agent to optimize the design and delay
properties of robotic batch selection and for this relations are
represented using grid representation with each element in the grid
mapping to a graph node, and design an environment where the RL
agent can add or remove a node from the connected graph.

We propose robot placement as a reinforcement learning (RL) problem,
and unlike other methods, this approach has the ability to learn from
past experience and improve over time. In particular, as we train over a
greater number of robotic blocks, the method becomes better at rapidly
generating optimized placements for previously unseen robotic blocks,
and can rapidly generate optimized placements for space robots.

A fleet of robots are divided into dozens of blocks, each of which is an
individual robotic module, such as a memory subsystem, compute unit,
or control logic system and these blocks can be described by a graph of
class components consisting of node types and graph adjacency
information. The graph of type components/robots representing the
composition and structural patterns, are passed through an edge based
graph neural networks to encode input state. This generates the
embeddings of the placed graph and the candidate nodes.

A graph neural network generates embeddings that are concatenated
with the basic work meta data to form the input to the policy and value
requirement of robotic design patterns for space exploration. The policy
network generates a probability distribution overall possible grid cells.

Robotic Microcontroller

A microcontroller is a compact integrated circuit designed to govern a
specific operation in an embedded system. A typical microcontroller
includes a processor, memory and input/output (I/O) peripherals on a

single chip. Microcontrollers can be used in various industrial products
and the approximate components of the hardware are core, storage,
peripheral interfaces, bus, interrupt module, clock module, etc.

A robot microcontroller is basically the brain of the robot. It is used to
collect the information from various input devices such as sensors,
switches and others. Then it executes a program and in accordance with
it controls the output devices such as motors, lights and others.

Machine Learning on Microcontrollers

Using today's advanced AI systems to run machine learning on smaller
devices with processors like microcontrollers offers benefits – as
enablers of AI.

Microcontrollers preceded the development of CPUs and GPUs and are
embedded in virtually every kind of modern device with sensors and
actuators. They are a vital consideration for enterprises interested in
weaving AI into physical devices, whether to improve the user
experience or enable autonomous capabilities in devices.

One exciting avenue in the world of AI research and development is
finding ways to shrink AI algorithms to run on smaller devices closer to
sensors, motors and people. Developing embedded AI applications that
run machine learning on microcontrollers comes with different
constraints around power, performance, connectivity and tools. The rise
of new tools like TinyML deployed on microcontrollers enables
intelligence to be distributed into more connected products, whether they
be smart home gadgets, toys, industrial sensors or otherwise.

The biggest difference between CPUs and microcontrollers is that
microcontrollers are often directly connected to sensors and actuators.
This reduces latency, which is essential in safety-critical applications like
controlling brakes and industrial equipment. The big trend in the AI
industry is moving machine learning inference to the edge, where the
sensor data is generated i.e. making machine learning small enough to
fit on edge devices. Further, the microcontrollers act as low-end CPUs
with limited processing capability and they have two crucial advantages:
low cost and low power consumption.

One way of deploying AI on a low-power microcontroller – is a new way
of creating microcontrollers with integrated neural processing units
(NPUs), which are specialized units designed to run machine learning
models on microcontrollers efficiently. These generally come with

specialized SDKs that can transform neural networks prepared on a
computer to fit onto an NPU. These tools generally support models
created with frameworks like PyTorch, TensorFlow and others.

Here we used small system configurations that can transform neural
networks prepared on a computer and to fit efficiently onto a low-power
microcontroller with integrated neural processing capability

In order to fit an NPU, engineers often need to prune a model or adjust
its architecture for the NPU, which requires a lot of expertise and
extends the development time. Further, developers also need to weigh
the tradeoffs between the lower cost of microcontrollers compared with
CPUs or GPUs and their flexibility and also It's harder to reconfigure or
retrain embedded systems quickly.

Therefore, a pruned model solution using microprocessors will
sometimes make more sense, with a use case of microcontrollers at the
edge enabled with processor to combine information from a variety of
sensors to determine when a complex piece of equipment such as
Space Robot needs operating level and also to determine if some
combination of conditions is a likely fit to space exploration and also to
monitor as well as activate devices based on trigger.

Alternatively, as the control requirements are limited in scope, we can
even design a mathematical model for robotic controls to fit into low
power microcontroller to enable them to work in a limited or restricted
environment with reduced complexity of the designed models with
portable processing units.

Microcontroller Design

Here we look at the design aspects of microcontroller. This is nothing but
designing a learning agent for improving the space exploration
performance along with the desired robotic structural patterns for
autonomous space execution in the form of Control Design.

In order for the AI to design with a run at RL agent and the technique
proved that AI can not only learn to design controls from scratch but that
those controls are faster than controls designed using the latest
validation tools. Here an AI agent could design neural graphs and such
graph is converted into a controls with operating parameters using a
control generator. These generated controls are then further optimized

by a physical synthesis tool using synthesis optimizations such as
sensor sizing, actuator calibration, etc.

The device control design is represented as a reinforcement learning
(RL) task, where we train an agent to optimize the operations and delay
properties of controls and for this device controls are represented using
grid representation with each element in the grid mapping to a graph
node, and design an environment where the RL agent can add or
remove a node from the control graph.

We propose device control placement as a reinforcement learning (RL)
problem, where we train an agent (i.e, an RL policy) to optimize the
quality of operating parameters. Unlike other methods, this approach
has the ability to learn from past experience and improve over time. In
particular, as we train over a greater number of control blocks, the
method becomes better at rapidly generating optimized controls.

The control logic system for the microcontroller is divided into two
blocks, each of which is an individual module and these blocks can be
described by a graph of control components consisting of node types
and graph adjacency information. The graph of process control
components requisite for the exploration(operational parameters) with
desired structural patterns, are passed through an edge based graph
neural networks to encode input state. This generates the embeddings
of the placed graph and the candidate nodes.

Operational Parameters Edges

Process Controls

A graph neural network generates embeddings that are concatenated
with the basic meta data to form the input to the policy and requirement
of control design for space execution. The policy network generates a
probability distribution overall possible grid cells onto which the current
node/cells could be placed.

Graph

Convolution

Edge

Embeddings

Macro/Cell

Embeddings

Current

Cells

RESULTS

In obscene of graph databases using graph representation for
machine learning systems for managing robotic generation data, we
build and store the graphs in a simple read format i.e. matrix
representations (stored as a node or record with edge list) to perform
link prediction.

We have represented this model as matrix with encoded values with
possible values for each of the nodes along with the link attributes. We
populated the matrix data with randomly generated data and simulated
to represent the real world robotic control elements/nodes as a link. Here
we used small system configurations that can effectively transform
neural networks prepared on a computer to fit efficiently onto a low-
power microcontroller with integrated neural processing capability.

Here, a simple neural network model to work on low power
microcontroller is designed and the system with different configurations
for the hidden structures of the networks:

• 2 hidden layers: the first with 16 neurons and a tanh activation
function; the second with 8 neurons and a linear activation
function. No dropout.

• 2 hidden layers: the first with 16 neurons and a tanh activation
function; the second with 8 neurons and a linear activation
function. Dropout rate of 0.5.

The dropout rate of 0.5 has been chosen because it seems to be optimal
for a wide range of networks.
The results for our CNN based model – RL policy model – The networks
that do not use dropout seem to learn well. The percentage of desired
generation for the networks (without dropout) is high.
Although we only have partial results, we can make the following
observations: the networks that do not use dropout seem to learn well,
while the network using dropout does not; it either learns very slowly or
just converges to very low level of generation requirements.

CONCLUSION

The interplanetary computer network in space is a set of computer
nodes that can communicate with each other. We proposed a network
architecture with planet’s orbiters, landers (robots, etc.), as well as the
earth ground stations and linked through Earth’s internal internet, and

consisted of complex information routing through relay satellites. As we
know, the metaverse will be very different from the internet of today due
to massive parallelism, three-dimensional (3D) virtual space and multiple
real-world spaces like space mining, building space habitats, etc. We
presented a robotic shape synthesis equipped with AI-driven learning
that can effectively explore unknown and complex phenomenon of
applications in space environment and is also designed a microcontroller
unit with RL agent (Q-learning) to add or to remove the controls to
maintain a correct movement and actuation, and to build through a
series of steps(adding or removing controls) for improving the
performance & efficiency of space applications in an open-ended way.
In this way, an automation assisted shape synthesizer with
reconfigurable system that is part of Metaverse is feasible for automated
execution of diverse space related outcomes depending on the
applications and in that respect an implementation of Reinforcement
Learning agent as a part of microcontroller unit based on small model is
presented. Although the platform model with learning agents given us a
method of optimizing space applications however, this need to be tested
using natural allocation for real space applications.

REFERENCE

1. Poondru Prithvinath Reddy: “Metaverse in InterPlanet

Internet: Modeling, Validation, and Experimental

Implementation”, Google Scholar

