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ABSTRACT 

The interplanet internet is a conceived computer network in space, 
consisting of a set of network nodes that can communicate with each 
other. These nodes are the planet’s orbiters (satellites) and landers (e.g. 
robots, autonomous machines, etc.) and the earth ground stations, and 
the data can be routed through Earth’s internal internet. As resource 
depletion on Earth becomes real, the idea of extracting valuable 
elements from asteroids or using space-based resources to build space 
habitats becomes more attractive, one of the key technologies for 
harvesting resources is robotic space mining ( minerals, metals, etc.,) or 
robotic building of space settlement. The metaverse is essentially a 
simulated digital environment mimicking the real world. The metaverse 
would be something very similar to real world planetary activities where 
users ( space colonies or internet users on Earth) interact with 
overlaying objects represented by robots, drones, etc. for real-world 
planetary activities like space mining, building space settlements, etc. in 
a completely virtual manner. Here we show how microcontroller on 
space robots may be designed for capturing robotic controls with 
different make-up for executing diverse space applications. For this, an 
AI agent is designed to learn to optimize the final control generation from 
the space operational requirement/environment. We designed an RL 
agent to add or to remove the controls to maintain a correct movement, 
actuators activation and high-performance space execution and to build 
through a series of steps ( adding or removing controls) for improving 
the execution performance &  efficiency of space related applications. 
For this we used fully convolutional neural network the Q-learning 
algorithm (an RL algorithm ) for space applications and the algorithm 
trained the microcontroller design agent using a matrix representation for 
operational requirement. Since we have learning models of robotic 
shapes along with a learning agent for microcontroller design, we show 
an implementation of combining shape patterns and device controls with 
space exploration activity by means of a small model in obscene of real-



world model of Metaverse for autonomous space operations.  In this 
way, the desired response or generator loss was defined, and new 
environmental conditions and robotic selection patterns were 
synergistically combined with automated controls in learning agent for 
diverse space related outcomes. The results of the study simulated on 
existing internet here on Earth show that the real individual  behaviour 
on a distant planet can be achieved  provided the interplanet internet is 
available as pathway communication and undertaking of space related 
activities with varied robotic make-up and microcontrollers using deep 
learning models could be of reality even in interplanet environment. 
 

INTRODUCTION 

Inter-planetary exploration, be it Lunar habitation, asteroid mining, Mars 

colonization or planetary science/mapping missions of the solar system, 

will increase demands for inter-planetary communications. The 

movement of people and material throughout the solar system will create 

the economic necessity for an information highway to move data 

throughout the solar system in support of inter-planetary exploration and 

exploitation. The communication capabilities of this interplanet 

information highway need to be designed to offer; 1) continuous data, 2) 

reliable communications, 3) high bandwidth and 4) accommodate data, 

voice and video.   

The interplanetary Internet is a conceived computer network in space, 

consisting of a set of network nodes that can communicate with each 

other. These nodes are the planet's orbiters (satellites) and landers (e.g., 

robots), and the earth ground stations. For example, the orbiters collect 

the scientific data from the Landers on Mars through near-Mars 

communication links, transmit the data to Earth through direct links from 

the Mars orbiters to the Earth ground stations, and finally the data can 

be routed through Earth's internal internet. Interplanetary communication 

is greatly delayed by interplanetary distances, so a new set of protocols 

and technology that are tolerant to large delays and errors are required. 

The interplanetary Internet is a store and forward network of internets 

that is often disconnected, has a wireless backbone fraught with error-

prone links and delays ranging from tens of minutes to even hours, even 

when there is a connection. In the core implementation of Interplanetary 

Internet, satellites orbiting a planet communicate to other planet's 

satellites. Simultaneously, these planets revolve around the Sun with 

long distances, and thus many challenges face the communications. The 



reasons and the resultant challenges are: The interplanetary 

communication is greatly delayed due to the interplanet distances and 

the motion of the planets. The interplanetary communication also 

suspends due to the solar conjunction, when the sun's radiation hinders 

the direct communication between the planets. As such, the 

communication characterizes lossy links and intermittent link 

connectivity. The graph of participating nodes in a specific planet to a 

specific planet communication, keeps changing over time, due to the 

constant motion and the Interplanetary Internet design must address 

these challenges.  

NETWORK ARCHITECTURE 

A Computer Network Architecture is a design in which all computers 

in a computer network are organized. An architecture defines how the 

computers should get connected to get the maximum advantages of a 

computer network such as better response time, security, scalability, etc. 

Network architecture refers to the way network devices and services are 
structured to serve the connectivity needs of client devices. 

 Network devices typically include switches and routers. 
 Types of services include DHCP and DNS. 
 Client devices comprise end-user devices, servers, and 

smart things. 

The network architecture for the planet Mars or the Moon is as shown in 

below figure:- 
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Computer networks are built to serve the needs of certain functionality 
and also their clients. Described below are three types of planetary 
networks: 

(Smartphones, VR Glasses) 

Orbiter(Satellites) 



 Access networks, for campuses and local areas, are built to bring 
machines and things onboard, such as connecting robots, drones, 
etc. within a location. 

 Networks for data center connect servers that host data and 
applications and make them available to smart devices. 

 Wide-area networks (WANs) connect robots and others to 
applications, sometimes over long distances, such as connecting 
robots to cloud applications related to space mining operations. 

We give below the architecture of network on the planet Mars or the 

Earth’s Moon is as shown in below figure:- 
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An Internet is a “network of networks” in which routers move data among 
a multiplicity of networks with multiple admin. domains.  

The main aim of networks is to connect remote endpoints with end-to-
end principle and network should provide only those services that cannot 
be provided effectively by endpoints. 

Since the networks are predominantly wireless, the fundamental impact 
of distance due to speed-of-light delays and impact on interactive 
applications – for both data and control is to be considered. Also power 
consumption of wireless links as a function of distance is to be 
examined. 

Smart Things 



The interplanetary internet is a conceived networks of nodes and these 
nodes are space station, planet’s orbiters ( satellites ), planet’s landers, 
robots ( drones, autonomous machines, etc. ), earth ground stations and 
earth’s internal internet. 

METHODOLOGY 

Outer space contains a vast amount of resources that offer virtually 
unlimited wealth to the humans that can access and use them for 
commercial purposes. One of the key technologies for harvesting these 
resources is robotic mining of  minerals, metals, etc. The harsh 
environment and vast distances create challenges that are handled best 
by robotic machines working in collaboration with human explorers. 
Humans will visit outposts and mining camps as required for exploration, 
and scientific research, but a continuous presence is most likely to be 
provided by robotic mining machines that are remotely controlled by 
humans either from Earth or from local space habitat. 

Future Moon( or Mars ) bases will likely be constructed using resources 
mined from the surface of the Moon/Mars. The difficulty of maintaining a 
human workforce on the Moon( or Mars ) and communications lag with 
Earth means that mining will need to be conducted using collaborative 
robots with a high degree of autonomy. Therefore, the utility of 
autonomous collaborative  robotics( with thousands of robots in operation 
) towards addressing several major challenges in autonomous mining in 
the lunar( Martian ) environment with navigation in hazardous terrain and 
delicate robot interactions to achieve effective collaboration between 
robots and long-lasting operation.  

Collaborative Robotics 

Robots can be shaped to perform specific tasks. Robots have been 
designed and shaped in such a way that they can walk, push pellets, 
carry payloads, and work together in a group or possibly, to build a 
space settlement. They can survive for long-time without recharge and 
heal themselves after any damage/confusion. The shape of a robot's 
body and its distribution of legs and structure are automatically designed 
in simulation to perform a specific task, using a process of trial and error. 

The methodology is essentially fundamental for getting the space robots 
as autonomous as possible and also as fast & optimized and the aim is 
to design processes involving machine learning to represent 
computations  and their structural patterns from learning agent in 



realizing the desired execution in space environment. Therefore, we use 
robotic extraction process from the lot of thousands of robots to speed 
up the synthesis generation and also desired robotic shapes required in 
execution of diverse space related applications. The machine learning 
systems are required to be trained separately using reinforcement 
learning algorithm to arrive at  the robotic designs that can easily be 
adopted and customized for the environment in space related 
applications and these are used to localize the requirement. 

The methodology primarily consists of following parts:- 

1. Designing neural networks on the exploration requirements of 
space related activities (Space mining, Building space settlements, 
etc.). 

2. Designing machine learning systems for Extracting structural 
patterns from robotic space at each exploration step. 

3. Introducing learning agent  in the processes( space related work & 
robotic shapes ) that uses deep neural network with learning 
algorithm  

4. Similarly, introducing learning agent  in the processor( CPU & GPU 
) and microcontroller that uses deep neural network with learning 
algorithm  

 
5. The neural network used by the learning agents including the  

neural network used by the learning agent(processor and 
microcontroller) will be trained with learning algorithm by using 
different methods 

6. Measuring the outcome with generator loss or optimization steps 
7. Based on generation requirements, get the device control 

requirements of  the microcontroller on the basis of process control 
and exploration synthesis data.  

8. Similarly get the device control parameters on the microcontroller 
on the basis of structural pattern in the exploration step 
 

9. Based on exploration requirements, get a series of robotic 
requirements that are regularly required in a particular exploration 
activity on the basis of computational data.  
 

10. Similarly get the robotic-batch required out of lot on the basis of 
structural pattern in the exploration step 

11. Carryout  computational data association with the sensors and 
device parameter data with the graphical data of the exploration 



step by matching with the desired data of completed exploration in 
the database. 

ARCHITECTURE 

1. Augmented Reality 

The word ‘augmented’ means to add. Augmented reality uses different 
tools to make the real and existing environment better and provides an 
improved version of reality.  

As Augmented Reality (AR) technologies improve, we are starting to see 
use cases and these include product visualization. There are AR apps 
that allow a customer to place virtual furniture in their house before 
buying and it is also a powerful tool for marketing as it allows users to try 
products before buying.  

At its core, AR is driven by advanced computer vision algorithms that 

compares visual features between camera frames in order to map and 

track the environment. But we can do more. By layering machine 

learning systems on top of the core AR tech, the range of possible use 

cases can be expanded greatly. 

Augmented Reality (AR ) can be defined as a system that incorporates 
three basic features: a combination of real and virtual worlds, real-time 
interaction, and accurate 3D registration of virtual and real objects 
      

     2. Camera Representation 

A camera is a device that converts the 3D world into a 2D image. A 
camera plays a very important role in capturing three-dimensional 
images and storing them in two-dimensional images. And the following 
equation can represent the camera. 
                                                x=PX 
Here x denotes 2-D image point, P denotes camera matrix and X 
denotes 3-D world point. 

 

 
 



The above is vector representation of x=PX [1]. 
  
The camera representation method is frequently used in image 
processing and is intended to identify the geometric characteristics of 
the image creation process. This is a vital step to perform in many 
computer vision applications, especially when metric information on the 
scene is needed.  

       3. Metaverse Algorithm 

1. Physical Reality Modeling - required information 

- The goal of the agent/robot 

- What the robot sees, Materials & location 

- Real Simulation for Task Execution 

2. Task Execution ( Simulation ) 

- Generating actual materials ( how materials arrive at the site) 

- Robots arrive in the environment (speed and goal ) 

- Task Execution ( Simulation Steps ), is updated as the work 

process progresses in line with the simulation 

- Task execution performance, as we have fully functional  

simulator and to make a realistic system, we would like to see 

how well it performs and mirrors real world execution( Artificial 

Intelligence ) 

- Implementation of Graphical Version of the Task Execution 

 

          Models for Metaverse & Algorithm 

 

Minimum amount of required information 

- The current state of the robot/agent and its environment 

- The goal of the agent/robot 

- What the agent sees, materials & it’s location 

Agents – Attributes 

We opt for the agents and they have the  attributes: the sight and the 
goal. While the goal is chosen randomly when an agent arrives on the 
location, the sight is always fixed to the some value. The other 
noticeable fact is that our learning agents do not have a desired speed. 
We define the autonomous robots as entities whose primary concern is 
to avoid failure; they should consequently not exhibit any preference for 
a certain speed as long as they are working safely. Furthermore, we add 



an attribute  to these learning agents; this is their probability of choosing 
a random action at each time step. 
 
Agents as workmen 

Given that we define learning agents the same way as the type of 
workers, we can seamlessly add them at the location. The only 
difference is how they will choose an action: by using their learning 
model, a neural network. We can therefore adapt the site’s time step’s 
algorithm  to take the learning agent into account for the observation 
step. To decide what action it should take, the learning agent uses a 
neural network to approximate the Q-function. Thus, at every time step t, 
the agent c observes its state sc,t; this state is then processed in some 
way so that it can be passed to a neural network whose outputs 
correspond to all the possible actions. The values of these outputs are 
the estimated Q-values, Q(sc,t, a ); as it is using a neural network θ, we 
denote the Q-function approximated with that network by Q(s,t;θ). The 
agent then uses an ϵ-greedy strategy to choose the action  ac,t. 
The neural network used by the learning agent will be trained with  
learning algorithm by using different methods. 
 
Neural Network Models 

Presently different neural network models are available that we will use 
to train our autonomous robots. These models define what information 
the learning agents use and how they are encoded as inputs to the 
neural networks. Before we start with our model, we need to define the 
building structure; how these neural networks are used by the learning 
agents. We use a feedforward neural network  whose outputs 
correspond to the possible actions. Our models define different ways of 
using information about the agent’s current state. Thus, they either 
encode different information or encode the same information differently 
to produce the inputs.  
 
Required Information 

We  start by defining the minimum amount of information that  an 
autonomous robot should have. Consequently, the model that we design 
will possess these pieces of information. They are: 

- The goal of the agent/robot 
- What the robot sees, Materials & location 
- The current location that the agent is in 
- The current speed of the agent 
- Real Simulation for Task Execution 

 
Task Execution ( Simulation )  



- Generating actual materials ( how materials arrive at the site) 
- Robots arrive in the environment ( speed and goal ) 
- Task Execution ( Simulation Steps ), is updated as the work 

process progresses in line with the simulation 
- Task execution performance and to make a realistic system, we 

would like to see how well it performs and mirrors real world 
execution ( Artificial Intelligence with learning algorithm) 
 

Robotic Design and Placement 

Robots are collections of task executors and have no brain system of 
their own. But they can be programmed to work autonomously and 
collaborate with other robots, or eventually to do other things tackling 
everything from space mining to deep space exploration. 

Robots can be programmed as specific  executor of an assigned task for 
a number of situations and also using artificial intelligence to figure out 
the best shape for the Robots to perform in group on a more consistent 
basis to have better control over performance of assigned work.  

Using a computational model that simulates the nature of work and 
everything of the Robot Capability, the process yields the robotic shape 
best suited to ensure the shape of the actual Robots into more efficient 
form suitable to a particular situation/task and accordingly enables 
robots to gather together in their environment forming them into groups 
with the same capability. 

The revolution of modern computing has been largely enabled by 
remarkable advances in computer systems and hardware, sensor 
technology and robotics. However, majority of today’s robots designed 
are not suitable for high-end space exploration, resulting in the need to 
speculate about how to optimize the next generation of robots for the 
machine learning (ML) models with high end space applications. Further, 
dramatically shortening the robot design/shape requirement would allow 
hardware to adapt to the rapidly advancing field of ML. The ML itself 
could provide the means to the robot design/shape requirement , 
creating a more integrated relationship between space exploration and 
ML, and a deep-learning approach that leverages existing data. 

Vast arrays of robots with different make are required for complex space 
applications thus, improving the selection of design patterns of these 
autonomous robots would be critical in improving the performance and 
efficiency of remote space applications and use of AI to achieve high-
performance execution and robotic performance relevant to the work. 



In order for the AI to design with an RL agent and the technique proved 
that AI can not only learn to design robotic patterns from scratch but that 
those structural patterns are accurate and faster than designed using 
any of the latest validation tools. Here an AI agent could design neural 
graphs and such a graph is converted into a class of robots with 
connection (relevant shapes) using a link generator. These generated 
circuits are then further optimized by a physical synthesis tool. 

Robotic types for task execution are built using logic and a lot of 
classifications/connections, should be easy, fast to reduce any delay that 
can be a drag on performance and consume as little power as possible. 

The robotic type design is represented as a reinforcement learning (RL) 
task, where we train an agent to optimize the design and delay 
properties of robotic batch selection and  for this  relations are 
represented using grid representation with each element in the grid 
mapping to a graph node, and design an environment where the RL 
agent can add or remove a node from the connected graph. 

We propose robot placement as a reinforcement learning (RL) problem, 
and unlike other methods, this approach has the ability to learn from 
past experience and improve over time. In particular, as we train over a 
greater number of robotic blocks, the method becomes better at rapidly 
generating optimized placements for previously unseen robotic blocks, 
and can rapidly generate optimized placements for space robots.  

A fleet of robots are divided into dozens of blocks, each of which is an 
individual robotic module, such as a memory subsystem, compute unit, 
or control logic system and these blocks can be described by a graph of 
class components consisting of node types and graph adjacency 
information. The graph of type components/robots representing the 
composition and structural patterns, are passed through an edge based 
graph neural networks to encode input state. This generates the 
embeddings of the placed graph and the candidate nodes.   

A graph neural network generates embeddings that are concatenated 
with the basic work meta data to form the input to the policy and value 
requirement of robotic design patterns for space exploration. The policy 
network generates a probability distribution overall possible grid cells. 

Robotic Microcontroller 

A microcontroller is a compact integrated circuit designed to govern a 
specific operation in an embedded system. A typical microcontroller 
includes a processor, memory and input/output (I/O) peripherals on a 



single chip. Microcontrollers can be used in various industrial products 
and the approximate components of the hardware are core, storage, 
peripheral interfaces, bus, interrupt module, clock module, etc. 
 

A robot microcontroller is basically the brain of the robot. It is used to 
collect the information from various input devices such as sensors, 
switches and others. Then it executes a program and in accordance with 
it controls the output devices such as motors, lights and others. 
 
Machine Learning on Microcontrollers 

Using today's advanced AI systems to run machine learning on smaller 
devices with processors like microcontrollers offers benefits – as 
enablers of AI. 

Microcontrollers preceded the development of CPUs and GPUs and are 
embedded in virtually every kind of modern device with sensors and 
actuators. They are a vital consideration for enterprises interested in 
weaving AI into physical devices, whether to improve the user 
experience or enable autonomous capabilities in devices. 

One exciting avenue in the world of AI research and development is 
finding ways to shrink AI algorithms to run on smaller devices closer to 
sensors, motors and people. Developing embedded AI applications that 
run machine learning on microcontrollers comes with different 
constraints around power, performance, connectivity and tools. The rise 
of new tools like TinyML deployed on microcontrollers enables 
intelligence to be distributed into more connected products, whether they 
be smart home gadgets, toys, industrial sensors or otherwise. 

The biggest difference between CPUs and microcontrollers is that 
microcontrollers are often directly connected to sensors and actuators. 
This reduces latency, which is essential in safety-critical applications like 
controlling brakes and industrial equipment. The big trend in the AI 
industry is moving machine learning inference to the edge, where the 
sensor data is generated i.e. making machine learning small enough to 
fit on edge devices. Further, the microcontrollers act as low-end CPUs 
with limited processing capability and they have two crucial advantages: 
low cost and low power consumption. 

One way of deploying AI on a low-power microcontroller – is a new way 
of creating microcontrollers with integrated neural processing units 
(NPUs), which are specialized units designed to run machine learning 
models on microcontrollers efficiently. These generally come with 



specialized SDKs that can transform neural networks prepared on a 
computer to fit onto an NPU. These tools generally support models 
created with frameworks like PyTorch, TensorFlow and others. 

Here we used small system configurations that can transform neural 
networks prepared on a computer and to fit efficiently onto a low-power 
microcontroller with integrated neural processing capability 

In order to fit an NPU, engineers often need to prune a model or adjust 
its architecture for the NPU, which requires a lot of expertise and 
extends the development time. Further, developers also need to weigh 
the tradeoffs between the lower cost of microcontrollers compared with 
CPUs or GPUs and their flexibility and also It's harder to reconfigure or 
retrain embedded systems quickly. 

Therefore, a pruned model solution using microprocessors will 
sometimes make more sense, with a use case of microcontrollers at the 
edge enabled with processor to combine information from a variety of 
sensors to determine when a complex piece of equipment such as  
Space Robot needs operating level and also to determine if some 
combination of  conditions is a likely fit to space exploration and also to 
monitor as well as activate  devices based on trigger. 

Alternatively, as the control requirements are limited in scope, we can 
even design a mathematical model for robotic controls to fit into low 
power microcontroller  to enable them to work in a limited or restricted 
environment with reduced complexity of the designed models with 
portable processing units. 
 
Microcontroller Design 
 
Here we look at the design aspects of microcontroller. This is nothing but 
designing a learning agent for improving the space exploration 
performance along with the desired robotic structural patterns for 
autonomous space execution in the form of Control Design. 

In order for the AI to design with a run at RL agent and the technique 
proved that AI can not only learn to design controls from scratch but that 
those controls are faster than controls designed using the latest 
validation tools. Here an AI agent could design neural graphs and such  
graph is converted into a controls with operating parameters using a 
control generator. These generated controls are then further optimized 



by a physical synthesis tool using  synthesis optimizations such as 
sensor sizing, actuator calibration, etc. 

The device control design is represented as a reinforcement learning 
(RL) task, where we train an agent to optimize the operations and delay 
properties of  controls and  for this device controls are represented using 
grid representation with each element in the grid mapping to a graph 
node, and design an environment where the RL agent can add or 
remove a node from the control graph. 
 
We propose device control placement as a reinforcement learning (RL) 
problem, where we train an agent (i.e, an RL policy) to optimize the 
quality of operating parameters. Unlike other methods, this approach 
has the ability to learn from past experience and improve over time. In 
particular, as we train over a greater number of control blocks, the 
method becomes better at rapidly generating optimized controls. 
 

The control logic system for the microcontroller is divided into two 
blocks, each of which is an individual module and these blocks can be 
described by a graph of control components consisting of node types 
and graph adjacency information. The graph of process control  
components requisite for the exploration( operational parameters ) with 
desired structural patterns, are passed through an edge based graph 
neural networks to encode input state. This generates the embeddings 
of the placed graph and the candidate nodes.   
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A graph neural network generates embeddings that are concatenated 
with the basic  meta data to form the input to the policy and  requirement 
of control design for space execution. The policy network generates a 
probability distribution overall possible grid cells onto which the current 
node/cells could be placed. 
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RESULTS 

In obscene of graph databases using graph representation for 
machine learning systems for managing robotic generation data, we 
build and store the graphs in a simple read format i.e. matrix 
representations ( stored as a node or record with edge list ) to perform 
link prediction. 

We have represented this model as matrix with encoded values with 
possible values for each of the nodes along with the link attributes. We 
populated the matrix data with randomly generated data and simulated 
to represent the real world robotic control elements/nodes as a link. Here 
we used small system configurations that can effectively transform 
neural networks prepared on a computer  to fit efficiently onto a low-
power microcontroller with integrated neural processing capability. 

 
Here, a simple neural network model to work on low power 
microcontroller is designed and the system with different configurations 
for the hidden structures of the networks: 
 

• 2 hidden layers: the first with 16 neurons and a tanh activation 
function; the second with 8 neurons and a linear activation 
function. No dropout. 

 

• 2 hidden layers: the first with 16 neurons and a tanh activation 
function; the second with 8 neurons and a linear activation 
function. Dropout rate of 0.5. 

 

The dropout rate of 0.5 has been chosen because it seems to be optimal 
for a wide range of networks. 
The results for our CNN based model – RL policy model –  The networks 
that do not use dropout seem to learn well.  The percentage of desired 
generation for the  networks (without dropout) is high. 
Although we only have partial results, we can make the following 
observations: the networks that do not use dropout  seem to learn well, 
while the network using dropout does not; it either learns very slowly or 
just converges to very low level of generation requirements. 
 

CONCLUSION 

The interplanetary computer network in space is a set of computer 
nodes that can communicate with each other. We proposed a network 
architecture with planet’s orbiters, landers (robots, etc.), as well as the 
earth ground stations and linked through Earth’s internal internet, and 



consisted of complex information routing through relay satellites. As we 
know, the metaverse will be very different from the internet of today due 
to massive parallelism, three-dimensional (3D) virtual space and multiple 
real-world spaces like space mining, building space habitats, etc. We 
presented a robotic shape synthesis equipped with AI-driven learning 
that can effectively explore unknown and complex phenomenon of 
applications in space environment and is also designed a microcontroller 
unit with RL agent (Q-learning) to add or to remove the controls  to 
maintain a correct movement and actuation, and to build through a 
series of steps( adding or removing controls) for improving the 
performance &  efficiency of space applications in an open-ended way. 
In this way, an automation assisted shape synthesizer with 
reconfigurable system that is part of Metaverse is feasible for automated 
execution of diverse space related outcomes depending on the 
applications and in that respect an implementation of Reinforcement 
Learning agent as a part of microcontroller unit based on small model is 
presented. Although the platform model with learning agents given us a 
method of optimizing space applications however, this need to be tested 
using natural allocation for real space applications. 
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