
EasyChair Preprint
№ 15690

Multi-Criteria Analysis of Concept Drift
Detection Algorithms: a Decision-Making
Approach

Osama A. Mahdi, Savitri Bevinakoppa and Sarabjot Singh

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

January 8, 2025

Multi-Criteria Analysis of Concept Drift Detection

979-8-3503-6314-2 /24/$31.00 ©2024 IEEE

Algorithms: A Decision-Making Approach

Osama Mahdi

School of IT and Engineering

Melbourne Institute of Technology

Melbourne, Australia

omahdi@mit.edu.au

Savitri Bevinakoppa

School of IT and Engineering

Melbourne Institute of Technology

Melbourne, Australia

sbevinakoppa@mit.edu.au

Sarabjot Singh

School of IT and Engineering

Melbourne Institute of Technology

Melbourne, Australia

sarabjotsingh@academic.mit.edu.au

Abstract— Concept Drift is a challenging problem in data

streaming, where the underlying data distribution changes over

time. Numerous algorithms have been proposed to address this

issue, each evaluated using various metrics such as accuracy,

runtime, and false alarms. However, a comprehensive

evaluation that simultaneously considers all these metrics is

lacking. Motivated by this gap, our paper systematically

benchmarks eleven leading concept drift detection algorithms

using a Multi-Criteria Decision-Making (MCDM) approach to

identify the best-performing methods. We employ four datasets

and seven performance measures: Average Delay Detection

(ADD), Average True Detection (ATD), Average False Alarm

(AFA), Average False Negative (AFN), Average Detection

Runtime in milliseconds (ARMS), Average Memory Usage in

bytes (MUB), and Average Accuracy. Our experimental

evaluation and comparison are conducted against eleven

existing detectors. The results show that our approach provides

a balanced and comprehensive assessment, offering a significant

advancement in the evaluation of concept drift detection

methods. This paper provides a holistic strategy that integrates

multiple performance metrics to enhance timely and efficient

detection in various applications.

Keywords— Concept drift, data stream, non-stationary

environments, multi-criteria Decision-Making (MCDM), big data

applications

I. INTRODUCTION

time point (Di) to differ from another (Dj). As a result, the
concepts associated with these points become unstable, and
the model struggles to accurately predict the most recent data
distribution. Consequently, a key task in streaming data
analytics is detecting significant changes in the incoming data
[2], [4].

A real-world example of concept drift can be observed in
customer behaviour within an online shop, where customer
preferences evolve over time. For instance, a predictive model
designed to forecast weekly sales might initially perform well.
However, factors such as promotional activities and
advertising expenditure, which influence sales, could lead to a
gradual decrease in the model's accuracy—signalling the
occurrence of concept drift. Additionally, seasonal variations
in sales can contribute to concept drift, as shopping patterns
shift, for example, with higher sales during the winter holidays

compared to the summer. Moreover, any predictive model
created before the COVID-19 pandemic that assumes a fixed
relationship between inputs and outputs would likely perform
poorly due to changes in underlying data patterns.

In the context of mining data streams affected by concept
drift, approaches are generally classified as either active
(trigger-based) or passive (evolving) [1], [5]. Active
approaches focus on detecting concept drift using various
detectors and updating the model when drift is detected. In
contrast, passive approaches continuously update the model as
new data arrives, regardless of whether drift is occurring.
Despite their different methods, both approaches aim to keep
the model current and accurate.

Current drift detection methods [6], [7], [8], [9], [10], [11]
employ various performance metrics to evaluate and compare
the effectiveness of different detectors, including accuracy,
runtime, and false alarm rate [2], [5]. For example, certain
detectors may achieve high accuracy but require substantial
memory, while others may detect drift effectively but have
long execution times. This scenario raises a critical question:
which performance metric should be prioritized to determine
the superiority of one detector over another? Should the
evaluation be based on accuracy, runtime, false alarm rate, or
another metric? Thus, this study aims to address the following
research question:

Classifying data streams is a complex task due to three •
primary characteristics: speed, size, and variability [1]. Speed
and size are particularly challenging because they impose
constraints on memory and processing time, requiring
learning algorithms to temporarily store incoming data and
process it only once. The most critical challenge, however, is
variability, which refers to the dynamic nature of data streams.
This variability often leads to what is known as concept drift
[2], [3]. Concept drift occurs when the class labels of a dataset
change over time, causing the underlying distribution at one

Research Question: How can the performance of concept
drift detection algorithms be comprehensively evaluated
using multiple performance metrics to identify the most
effective methods for timely and efficient detection in
online data streams?

To address the research question, this study proposes an
approach that comprehensively considers all performance
metrics simultaneously to evaluate the performance of drift
detectors. A rigorous empirical evaluation will be undertaken,
comparing eleven of the existing drift detectors using four
synthetic data streams and seven performance metrics,
namely: Average Delay Detection (ADD), Average True
Detection (ATD), Average False Alarm (AFA), Average
False Negative (AFN), Average Detection Runtime in
milliseconds (ARMS), Average Memory Usage in bytes
(MUB), and Average Accuracy. Each metric will be
transformed and weighted, then summed to create a single
score for each method. This score will represent the balance
among all metrics. We can then visualize this score for each
approach using a simple bar chart.

The structure of this paper is as follows: Section 2
provides a review of relevant literature. Section 3 details the
proposed framework for multi-label classification. The results
of our experimental evaluation, along with comparisons to
existing studies, are discussed in Section 4. Lastly, Section 5

2024 IEEE 9th International Conference on Engineering Technologies and Applied Sciences (ICETAS)

Osama A Mahdi
Text Box

presents our conclusions and suggests avenues for future
research.

II. LITERATURE REVIEW

Concept drift detection has been a pivotal area of research
in the field of data stream mining. Numerous algorithms have
been developed to tackle the challenges posed by evolving
data streams. This section reviews prominent drift detectors
from past studies, highlighting their methodologies and
effectiveness.

A. Drift Detection Method (DDM)

The Drift Detection Method (DDM) [6] is a widely
recognized technique that relies on monitoring the error rate
of a classifier. DDM sets a cautionary threshold based on
classifier error; if this threshold is exceeded, the method
isolates incoming samples in a specific window. Should the
error rate reach a predetermined drift threshold, the classifier
is reconfigured using the samples from this window. This
method effectively detects sudden drifts by focusing on abrupt
changes in error rates.

B. Diversity Measure as a New Drift Detection Method

(DMDDM)

The Diversity Measure as a New Drift Detection Method
(DMDDM) [12] is a novel approach designed to detect
concept drift in data streams efficiently. Unlike traditional
methods that monitor error rates, DMDDM uses the
disagreement measure between pairs of classifiers combined
with the Page-Hinkley test to detect drifts quickly, with
minimal memory and processing time. The method is
particularly effective in handling sudden or abrupt drifts in
binary classification problems. Experimental results
demonstrate that DMDDM outperforms several existing
methods in terms of detection speed, runtime efficiency, and
memory usage.

C. Adaptive Sliding Window (ADWIN)

The ADWIN, or Adaptive Sliding Window approach [13],
uses two sub-windows within a shifting window to detect
concept drift. If a significant difference in the averages of
these sub-windows is observed, ADWIN flags a concept drift
and removes elements from the window's end until the
significant difference disappears. This method is notable for
its ability to adjust the window size dynamically, making it
sensitive to changes in the data distribution.

D. Fast Hoeffding Drift Detection Method (FHDDM)

FHDDM leverages Hoeffding’s inequality to detect drifts
within a specified window size[8]. It identifies drift by
monitoring significant changes between current probabilities
and the peak of accurate forecasts. FHDDM is effective in
identifying drifts by statistically bounding the probability of
changes, making it reliable for quick detection.

E. McDiarmid Drift Detection Methods (MDDM)

MDDM-A, MDDM-G, and MDDM-E [10] utilize
McDiarmid’s inequality to detect drifts. These methods apply
a fixed-size window over predictive outcomes, assigning a
value of 1 for accurate predictions and 0 otherwise. The
weighted average and peak weighted average within this
window are calculated, with significant discrepancies
indicating drift. These variations of MDDM are adept at
capturing different types of drift, from abrupt to gradual.

F. PH Test

The PH Test, often used in signal processing, calculates
the cumulative discrepancy between observed values and their
average up to the present [14]. It identifies drift by noting
significant discrepancies between cumulative discrepancies
and their minimum values over time. This method is versatile
and effective in various applications, particularly in detecting
both abrupt and gradual drifts.

G. Hoeffding’s Bounds Drift Detection (HDDM)

HDDM_A and HDDM_W test [15] use Hoeffding’s
bounds for drift detection, with HDDM_A comparing moving
averages and HDDM_W examining weighted averages. The
weighting process uses an Exponentially Weighted Moving
Average (EWMA) forgetting scheme [16] , which adapts to
immediate and gradual shifts respectively. These methods
provide flexibility in handling different drift rates and types.

H. Segmented Drift Detection (SegDrift2)

SegDrift2[11]utilizes two storage mechanisms for
incoming data, one combining new and old data, and the other
exclusively housing new entries. By comparing the mean
values of these repositories, SegDrift2 detects drift when a
predefined threshold is exceeded. This method is effective in
distinguishing between short-term fluctuations and long-term
drifts.

III. METHODOLOGY

The primary goal of this study is to benchmark eleven
leading concept drift detection algorithms using a Multi-
Criteria Decision-Making (MCDM) approach [17], [18], [19].
This section outlines the methodology used for the evaluation,
including the datasets, performance metrics, and the MCDM
framework.

In general, consider an MCDA problem involving 𝑚
alternatives and 𝑛 decision criteria. Assume that all criteria are
benefit criteria, meaning that higher values are preferable. Let
𝑤𝑗 represent the relative importance weight of criterion 𝐶𝑗 and
let aij indicate the performance value of alternative Ai with
respect to criterion 𝐶𝑗. The overall importance of alternative
𝐴𝑖, referred to as the Ai

WSM-score, when all criteria are
considered simultaneously, is defined as follows:

A𝑖
WSM−score = ∑ 𝜔𝑗𝑎𝑖,𝑗 , 𝑓𝑜𝑟 𝑖 = 1,2,3, … , 𝑚.

𝑛

𝑗=1

Consider a straightforward numerical example where a
decision problem involves three alternative options, A, B, and
C, each evaluated based on four criteria: C1, C2, C3, C4. The
corresponding numerical data for this problem is presented in
the following decision matrix:

Table1: Decision Matrix

 Criteria WSM
SCORE C1 C2 C3 C4

Weighting 0.40 0.30 0.20 0.10 -

Supplier A: 8 7 9 6 7.7

Supplier B: 7 8 8 7 7.5

Supplier C: 6 9 7 8 7.3

An organization needs to select a supplier based on four

criteria: cost, quality, delivery time, and service. The weights
assigned to these criteria, based on their relative importance,
are 0.40, 0.30, 0.20, and 0.10, respectively. The organization

evaluates three suppliers (A, B, and C) and assigns scores to
each based on the criteria (on a scale of 1 to 10):

The weighted scores are calculated as follows:

• Supplier A: (80.40) + (70.30) + (90.20) + (60.10) = 3.2

+ 2.1 + 1.8 + 0.6 = 7.7

• Supplier B: (70.40) + (80.30) + (80.20) + (70.10) = 2.8

+ 2.4 + 1.6 + 0.7 = 7.5

• Supplier C: (60.40) + (90.30) + (70.20) + (80.10) = 2.4

+ 2.7 + 1.4 + 0.8 = 7.3

Based on the WSM, Supplier A, with the highest total
score of 7.7, is deemed the most suitable choice for the
organization. This example elucidates the practical
application of the Weighted Sum Model, demonstrating its
simplicity and effectiveness in facilitating well-informed and
objective decision-making.

A. Multi-Criteria Decision-Making (MCDM) Framework

To identify the best-performing algorithm, we utilized a
Multi-Criteria Decision-Making (MCDM) framework.
MCDM is a powerful tool for evaluating multiple competing
criteria, providing a balanced assessment across different
performance aspects.

The overall process consists of the following steps:

1. Criteria Identification: Identify all relevant criteria

that influence the decision-making process.

2. Weight Assignment: Assign a weight to each

criterion to reflect its significance in the overall

decision.

3. Scoring Alternatives: Evaluate each alternative by

scoring them against all identified criteria based on

their performance.

4. Weighted Sum Calculation: Calculate the total

score for each alternative by multiplying each

criterion’s score by its assigned weight and summing

the results.

5. Decision Making: The alternative with the highest

total score is selected as the optimal choice.
The weighting process is also a crucial element of the

WSM, as it directly impacts the decision outcome. The steps
involved in this process are as follows:

• Determining Importance: Establish the relative

importance of each criterion. This can be achieved

using methods such as expert judgment, surveys, or

statistical techniques.

• Normalization: Normalize the weights so that they

sum to one, ensuring consistency and comparability

across criteria.

• Assigning Weights: Based on their determined

importance, assign a numerical weight to each

criterion. For example, if the relative importance of

four criteria is assessed as 30%, 25%, 20%, and 25%,

the corresponding weights would be 0.30, 0.25, 0.20,

and 0.25, respectively.

• Consistency Check: Conduct a consistency check

on the assigned weights to avoid biases or errors that

could distort the final decision.

A. Datasets

Four synthetic datasets were selected and used to evaluate
the eleven drift detection methods. These datasets SEA, Sine1,
Mixed, and AGRAWAL were created using the MOA
(Massive Online Analysis) tool [20]. The primary benefit of
using synthetic datasets is their ability to accurately identify
the true location of drifts within a data stream. The
specifications of these datasets are:

1. Mixed (with abrupt concept drift): this dataset includes

two numerical variables, x and y, ranging from 0 to 1, and

two boolean attributes, v and w. A data point is labeled

positive if at least two of these conditions are met: v, w,

or y < 0.5 + 0.3 * sin(3πx). When drift occurs, the

classification rules are reversed.

2. Sine1 (with abrupt concept drift): This dataset includes

two features, x and y, evenly distributed between 0 and 1.

Classification is based on y = sin(x), with points below

the curve labeled positive and those above negative.

When drift happens, class labels are reversed.

3. AGRAWAL Generator (AGR): we use the AGR

generator to generate 100,000 instances with multiple

sudden drifts. We use the AGR generator to generate

three drifts every 25,000 instances.

4. SEA: was used to create 100,000 data instances,

simulating an abrupt concept drift. The

ConceptDriftStream class manages the drift, with

SEAGenerator -f 3 representing the current concept and

SEAGenerator -f 2 representing the new concept. The

drift occurs at position 10k within the data, with a

specified width.

B. Performance Metrics

We employed Seven performance metrics to provide a
comprehensive evaluation of the concept drift detection
algorithms:

Average Delay Detection (ADD): Measures the time taken

by the algorithm to detect a concept drift after it occurs.

Average True Detection (ATD): Quantifies the rate at which

true drifts are correctly identified by the algorithm.

Average False Alarm (AFA): Counts the number of false

alarms raised by the algorithm when no drift has occurred.

Average False Negative (AFN): Measures the rate at which

the algorithm fails to detect actual drifts.

Average Detection Runtime in milliseconds (ARMS):

Evaluates the computational efficiency of the algorithm in

terms of detection time.

Average Memory Usage in bytes (MUB): Assesses the

memory consumption of the algorithm during the detection

process.

Average Accuracy: Measures the percentage of correct

predictions overall.

C. Experimental Setup

All algorithms were implemented in Java using the MOA
framework [20]. The experiments were run on a machine
equipped with an Intel Core i7 processor @ 3.4 GHz, 16 GB
of RAM, and Windows 10. To ensure a fair and meaningful
comparison, identical parameter values were used for all
algorithms.

IV. RESULTS AND ANALYSIS

This section presents the results of the evaluation of the
eleven concept drift detection algorithms across the four
datasets (Mixed, Sine1, AGR, and SEA). The results are
analysed based on the evaluation metrics discussed in the
Methodology section, and the implications of these findings
are discussed in detail. The evaluation metrics, including
Average Delay Detection (ADD), Average True Detection
(ATD), Average False Alarm (AFA), Average False Negative
(AFN), Average Detection Runtime in milliseconds (ARMS),
Average Memory Usage in bytes (MUB), and average
accuracy, provide a comprehensive view of the performance
of each algorithm. The scores for each algorithm across all
datasets are summarized in Figures 1-4.

Figures 1-4 illustrate the balanced score of each drift
detection method based on seven key metrics. The
performance variations among the detection methods across
the datasets are clearly visible. The length of each bar
represents the score, with longer bars indicating a more
balanced performance across all metrics. Methods at the top
of the chart exhibit the best-balanced scores. This
visualization allows us to easily determine which method
achieves the most optimal balance across the four metrics,
with the method having the longest bar demonstrating the best
overall balance.

A. Performance Overview

The Weighted Sum Model results for the Mixed and Sine1
datasets provide insightful evaluations of various drift
detection methods across critical performance metrics. In the
Mixed Dataset, DMDMM and SeqDrift emerge as the leading
methods, demonstrating their ability to effectively balance
rapid drift detection, efficient processing time, and accuracy.
These methods' consistent top scores make them strong
candidates for scenarios requiring a well-rounded approach to
concept drift management. In contrast, the Sine1 Dataset
presents a slightly more competitive environment. While
DMDMM and SeqDrift maintain their high performance,
ADWIN also displays notable effectiveness, resulting in a
more diverse distribution of scores. Nevertheless, DMDMM’s
and SeqDrift’s consistent superiority across both datasets
highlights their versatility and reliability. These methods'
ability to consistently perform well, regardless of the dataset's
characteristics, underscores their robustness and suitability for
a wide range of drift detection applications.

Similarly, the AGR and SEA datasets showcase the
adaptability of different drift detection methods under varying
data conditions. In the AGR Dataset, ADWIN takes the lead,
demonstrating its proficiency in balancing detection speed,
memory usage, and accuracy, making it particularly suited for

data scenarios with similar characteristics. SeqDrift and
DMDMM follow closely, reaffirming their strong
performance in different contexts. Meanwhile, in the SEA
Dataset, DMDMM and SeqDrift once again dominate,
reinforcing their status as top-tier methods. ADWIN also
remains a strong contender, underscoring its consistency
across datasets. This analysis reveals that while certain
methods excel in specific datasets, DMDMM and SeqDrift
consistently prove to be reliable choices across various
scenarios, offering a robust solution for diverse drift detection
challenges. Their balanced performance across the AGR and
SEA datasets exemplifies their capability to adapt to different
data dynamics effectively.

Fig. 1. Balanced scores for each drift detection method based on seven

metrics using the Mixed dataset.

Fig. 3. Balanced scores for each drift detection method based on five

metrics using the AGR dataset.

Fig. 4. Balanced scores for each drift detection method based on seven

metrics using the SEA dataset.

Fig. 2. Balanced scores for each drift detection method based on seven

metrics using the Sine1 dataset.

B. Detailed Analysis

Figures 5-8 illustrate the performance of eleven concept
drift detection algorithms across three different datasets. Each
figure compares the algorithms based on key metrics,
including ADD, ATD, AFA, AFN, DRMS, MUB, and
Average Accuracy.

1) Average Delay Detection (ADD)
 DMDDM demonstrates consistently low ADD across all

datasets, making it one of the fastest detectors. In contrast, PH
Test and SeqDrift have significantly higher ADD, particularly
in the SEA and Mixed datasets, which implies slower response
times. DDM also shows high ADD in some datasets,
indicating delayed detection, especially in the SEA and AGR
datasets.

2) Average True Detection (ATD)
 ATD is generally consistent across all detectors, with

most showing stable performance. DDM tends to have lower
ATD in the Sine1 and SEA datasets, suggesting it may
struggle with certain data types. DMDDM and FHDDM
maintain high ATD across all datasets, indicating reliable
detection accuracy, while SeqDrift and PH Test show
variability.

3) Average False Alarm (AFA)
AFA is low across most detectors, indicating a minimal

occurrence of false alarms. SeqDrift consistently shows zero
false alarms, which is ideal. However, DDM and PH Test
exhibit slightly higher AFA in some datasets, particularly in
Sine1 and SEA, indicating more frequent false positives,
which could affect overall accuracy and reliability.

4) and Average False Negative (AFN)
 AFN is generally low across all detectors, suggesting

effective detection capabilities. However, DDM and PH Test
show higher AFN in the Sine1 and SEA datasets, indicating a
higher rate of missed detections. DMDDM and Wtest
maintain low AFN across all datasets, highlighting their
reliability in detecting true positives with minimal false
negatives.

5) Average Detection Runtime (DRMS)
SeqDrift exhibits the highest DRMS across all datasets,

indicating it is less efficient and has a longer detection
runtime. DMDDM and Wtest consistently show lower
DRMS, reflecting their efficiency in processing data quickly.
ADWIN struggles with higher DRMS in the Mixed and AGR
datasets, while PH Test also shows elevated DRMS in most
datasets.

6) Average Memory Usage (MUB)
SeqDrift has the highest average memory usage across all

datasets, particularly in the AGR and SEA datasets, indicating
heavy resource consumption. ADWIN also shows significant
memory usage, especially in the Mixed and SEA datasets.
DMDDM, FHDDM, and DDM consistently have the lowest
memory usage, indicating they are more resource-efficient
across various datasets.

7) Average Accuracy
DMDDM, FHDDM, and MDDM-G achieve consistently

high accuracy across all datasets, particularly in the SEA
dataset, where they peak at around 89%. PH Test and DDM
exhibit lower accuracy, especially in the AGR dataset.
SeqDrift shows varying accuracy, with lower performance in

the AGR dataset, indicating inconsistent detection reliability
across different datasets.

DMD
DM

FHDD
M

DDM
ADWI

N
Atest Wtest

PH
Test

SeqDr
ift

MDD
M-A

MDD
M-E

MDD
M-G

ADD 39.05 175.28 175.28 63.84 57.04 35.69 238.37 200 43.03 41.02 40.99

ATD 9.01 0.35 0.35 0.26 0.01 0 0 0 0 0 0

AFA 9.01 0.35 0.35 0.26 0.01 0 0 0 0 0 0

AFN 0.58 8.26 2.5 50.24 11.59 6.93 1.19 3.71 38.49 28.65 20.31

DRMS 0.58 8.26 2.5 50.24 11.59 6.93 1.19 3.71 38.49 28.65 20.31

0
10
20
30
40
50
60
70
80
90

100

Detection Measurements- Using Sine1 Dataset

Fig. 6. Comparison of Detection Measurements across Multiple Methods

using Sine1 Dataset

DMDD
M

FHDD
M

DDM ADWIN Atest Wtest PH
Test

SeqDrif
t

MDDM
-A

MDDM
-E

MDDM
-G

ADD 81.38 219.28 248.05 244.82 241.56 235.03 250 229.29 209.29 209.76 209.76

ATD 1 0.26 0.01 0.16 0.12 0.11 0 0.41 0.33 0.32 0.32

AFA 1.92 0 0 0.07 0 0 0 0 0 0 0

AFN 0 0.73 0.98 0.83 0.87 0.88 1 0.58 0.66 0.67 0.67

DRMS 0.48 8.93 2.46 58.55 12.53 7.18 1.4 4.12 34.49 28.05 21.26

0
10
20
30
40
50
60
70
80
90

100

Detection Measurements -Using SEA Dataset

Fig. 7. Comparison of Detection Measurements across Multiple Methods

using SEA Dataset

DMDD
M

FHDD
M DDM

ADWI
N Atest Wtest

PH
Test

SeqDri
ft

MDDM
-A

MDDM
-E

MDDM
-G

ADD 27.12 67.79 233.99 91.09 70.8 63.34 250 200 57.82 56.81 56.81

ATD 3 3 1 3 3 2.79 0 3 3 3 3

AFA 8.54 0 0 5 0 0 0 0 0 0 0

AFN 0 0 2 0 0 0.21 3 0 0 0 0

DRMS 1.8 8.06 2.39 52.12 12.38 6.67 1.61 4.13 40.63 27.5 21.8

0
10
20
30
40
50
60
70
80
90

100

Detection Measurements - Using AGR Dataset

Fig. 8. Comparison of Detection Measurements across Multiple Methods

using AGR Dataset

DMDDM FHDDM DDM ADWIN Atest Wtest PH Test SeqDrift MDDM-A MDDM-E MDDM-G

ADD 35.81 48.52 214.65 64.56 71.54 36.2 240.97 200 43.81 41.45 41.86

ATD 4 4 1.85 4 4 3.99 1.04 4 3.99 3.99 3.99

AFA 7.62 0 0.18 0.84 0 0 0 0 0 0 0

AFN 0 0.01 2.16 0 0 0.01 2.96 0 0.01 0.01 0.01

DRMS 0.68 7.4 1.95 50.91 12 6.77 1.17 4.2 40.55 28.49 21.25

0
10
20
30
40
50
60
70
80
90

100

Detection Measurements - Using Mixed Dataset

Fig. 5. Comparison of Detection Measurements across Multiple Methods

using Mixed Dataset

C. Discussion

The results indicate that DMDDM is the best-performing
algorithm overall, excelling in both detection accuracy and
computational efficiency. Its strong performance across most
datasets and metrics highlights its robustness and suitability
for a wide range of applications.

However, the study also reveals that no single algorithm
dominates all criteria. For example, while DMDDM is highly
efficient, SeqDrift's high memory usage might be a concern in
resource-limited environments. Similarly, PH Test's reliability
in minimizing false alarms makes it an excellent choice for
applications where accuracy is paramount, despite its slower
detection speed.

These findings underscore the importance of selecting an
algorithm based on the specific requirements of the
application context. The Weighted Sum Model (WSM) proves
to be an effective tool for balancing multiple criteria and
guiding the selection of the most appropriate algorithm.

V. CONCLUSION

 In this study, we performed a comprehensive evaluation
of eleven leading concept drift detection algorithms using a
Multi-Criteria Decision-Making approach. By leveraging
synthetic datasets, we provided an in-depth analysis of each
algorithm's performance under varying conditions of concept
drift. The results of our study demonstrate that no single
algorithm excels in all criteria, highlighting the importance of
selecting drift detection methods based on the specific
requirements of a given application. For instance, some
algorithms showed superior performance in terms of detection
accuracy but at the cost of higher computational overhead,

while others were more efficient but less accurate in detecting
true drifts.

Our proposed MCDM framework allows for a balanced
assessment of drift detection algorithms, offering a nuanced
understanding of their strengths and weaknesses. This
approach is particularly beneficial for applications in which
multiple performance criteria are critical, ensuring that the
chosen algorithm aligns well with the overall system
requirements. Future work could expand upon this research by
incorporating additional datasets, exploring the impact of
different weighting schemes in the MCDM process, and
developing more sophisticated techniques for handling
diverse types of concept drift. Moreover, integrating adaptive
mechanisms into the MCDM framework could further
enhance its applicability in real-time data stream
environments.

References

[1] J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, and A. Bouchachia, “A
survey on concept drift adaptation,” ACM computing surveys
(CSUR), vol. 46, no. 4, pp. 1–37, 2014.

[2] O. A. Mahdi, N. Ali, E. Pardede, A. Alazab, T. Al-Quraishi, and B.
Das, “Roadmap of Concept Drift Adaptation in Data Stream Mining,
Years Later,” IEEE Access, vol. 12, pp. 21129–21146, 2024, doi:
10.1109/ACCESS.2024.3358817.

[3] O. A. Mahdi, “Diversity Measures as New Concept Drift Detection
Methods in Data Stream Mining,” La Trobe University Melbourne,
Australia 9, 2020.

[4] I. Žliobaitė, A. Bifet, J. Read, B. Pfahringer, and G. Holmes,
“Evaluation methods and decision theory for classification of
streaming data with temporal dependence,” Mach Learn, vol. 98, pp.
455–482, 2015.

[5] G. Ditzler, M. Roveri, C. Alippi, and R. Polikar, “Learning in
nonstationary environments: A survey,” IEEE Comput Intell Mag, vol.
10, no. 4, pp. 12–25, 2015.

[6] J. Gama, P. Medas, G. Castillo, and P. Rodrigues, “Learning with drift
detection,” in Advances in Artificial Intelligence–SBIA 2004: 17th
Brazilian Symposium on Artificial Intelligence, Sao Luis, Maranhao,
Brazil, September 29-Ocotber 1, 2004. Proceedings 17, 2004, pp.
286–295.

[7] O. A. Mahdi, E. Pardede, and N. Ali, “A hybrid block-based ensemble
framework for the multi-class problem to react to different types of
drifts,” Cluster Comput, vol. 24, pp. 2327–2340, 2021.

[8] A. Pesaranghader and H. L. Viktor, “Fast hoeffding drift detection
method for evolving data streams,” in Machine Learning and
Knowledge Discovery in Databases: European Conference, ECML
PKDD 2016, Riva del Garda, Italy, September 19-23, 2016,
Proceedings, Part II 16, 2016, pp. 96–111.

[9] O. A. Mahdi, N. Ali, E. Pardede, and T. Al-Quraishi, “Online Concept
Drift Detector: Optimally Balancing Delay Detection, Runtime,
Memory, and Accuracy.,” Procedia Comput Sci, vol. 237, pp. 559–
567, 2024.

[10] A. Pesaranghader, H. L. Viktor, and E. Paquet, “McDiarmid drift
detection methods for evolving data streams,” in 2018 International
joint conference on neural networks (IJCNN), 2018, pp. 1–9.

[11] R. Pears, S. Sakthithasan, and Y. S. Koh, “Detecting concept change in
dynamic data streams: A sequential approach based on reservoir
sampling,” Mach Learn, vol. 97, pp. 259–293, 2014.

[12] O. A. Mahdi, E. Pardede, N. Ali, and J. Cao, “Diversity measure as a
new drift detection method in data streaming,” Knowl Based Syst, vol.
191, p. 105227, 2020.

[13] A. Bifet and R. Gavalda, “Learning from time-changing data with
adaptive windowing,” in Proceedings of the 2007 SIAM international
conference on data mining, 2007, pp. 443–448.

[14] J. Gama, R. Sebastiao, and P. P. Rodrigues, “On evaluating stream
learning algorithms,” Mach Learn, vol. 90, pp. 317–346, 2013.

[15] I. Frias-Blanco, J. del Campo-Ávila, G. Ramos-Jimenez, R. Morales-
Bueno, A. Ortiz-D\’\iaz, and Y. Caballero-Mota, “Online and non-
parametric drift detection methods based on Hoeffding’s bounds,”
IEEE Trans Knowl Data Eng, vol. 27, no. 3, pp. 810–823, 2014.

DMDD
M

FHDD
M

DDM ADWI
N

Atest Wtest PH
Test

SeqDri
ft

MDDM
-A

MDDM
-E

MDDM
-G

Mixed 168 1048 472 2280.5 1176 1624 1240 80824 1336 1288 1344

Sine1 168 1048 472 2316.8 1176 1624 1240 82747 1336 1288 1344

AGR 168 1048 472 2288.2 1176 1624 1240 97568 1336 1288 1344

SEA 168 1048 472 2576.4 1176 1624 1240 341248 1336 1288 1344

0

500

1000

1500

2000

2500

3000

Average Memory Usage (Byte)

Fig. 9. Comparison of Memory Usage across Multiple Methods

using all datasets.

DMDD
M

FHDDM DDM ADWIN Atest Wtest PH Test
SeqDrif

t
MDDM

-A
MDDM

-E
MDDM

-G

Mixed 84.16 84.06 81.58 82.31 84.04 84 80.44 83.46 84.06 84.05 84.05

Sine1 87.99 87.92 86.348 87.89 87.92 87.92 83.64 87.89 87.9 87.87 87.86

AGR 87 87.09 76.35 88.99 89.2 83.75 71.4 89.3 87.1 87.1 87.1

SEA 89.2 89.13 89.11 89.08 89.14 89.12 89.08 89.09 88.34 89.13 89.13

0

10

20

30

40

50

60

70

80

90

100

Average Accuracy

Fig. 10. Comparison of Average Accuracy across Multiple Methods

using all datasets.

[16] G. J. Ross, N. M. Adams, D. K. Tasoulis, and D. J. Hand,
“Exponentially weighted moving average charts for detecting concept
drift,” Pattern Recognit Lett, vol. 33, no. 2, pp. 191–198, 2012.

[17] A. M. Alshamsi, H. El-Kassabi, M. A. Serhani, and C. Bouhaddioui,
“A multi-criteria decision-making (MCDM) approach for data-driven
distance learning recommendations,” Educ Inf Technol (Dordr), pp.
1–38, 2023.

[18] W. Ma, Y. Du, X. Liu, and Y. Shen, “Literature review: Multi-criteria
decision-making method application for sustainable deep-sea mining
transport plans,” Ecol Indic, vol. 140, p. 109049, 2022.

[19] S. Chakraborty, R. D. Raut, T. M. Rofin, and S. Chakraborty, “A
comprehensive and systematic review of multi-criteria decision-
making methods and applications in healthcare,” Healthcare
Analytics, p. 100232, 2023.

[20] A. Bifet et al., “Moa: Massive online analysis, a framework for stream
classification and clustering,” in Proceedings of the first workshop on
applications of pattern analysis, 2010, pp. 44–50.

