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Abstract: 

Utility-related ignitions have historically been correlated with catastrophic wildfire. First noted 
in Australia and Southern California, as climate-change related drought has increased 
catastrophic wildfires from utility ignitions now plague the western US. Regulatory changes now 
require California utilities to analyze and mitigate wildfire risk. This analysis reviews recent data 
and risk assessments from Pacific Gas and Electric Company (PG&E), Southern California 
Edison Company (SCE), and San Diego Gas and Electric Company (SDG&E), California’s 
largest electrical utilities. While utilities have adopted data science methodology, covariates 
capturing extreme weather effects are missing and tools lack mechanisms to incorporate causal 
linkage between likelihood and consequence models. Consequently, risk models incorrectly 
prioritize risk drivers. Additionally, match-drop wildfire spread calculations fail to represent 
large fires due to limited run time. Risk models also fail to incorporate the health effects of 
wildfire smoke. Power shutoff is an effective mitigation during extreme weather events, but 
causes significant public harm. “Hardening” programs, especially undergrounding lines, are 
effective but their expense threatens public health for the poorest.  Accurate balancing of wildfire 
risks, risk of power loss, and financial impacts on vulnerable populations, in conjunction with 
application of new technology is required to address the utility wildfire problem. 
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1. Introduction 

While ignition of fire by electrical lines has been a problem that has existed as long as the 
electrical grid itself, the threat of catastrophic wildfire in general has increased dramatically over 
the last two decades and has primarily been associated with climate trends and extreme weather 
events[1,2] Two climactic components related wildfire likelihood and severity are fuel aridity [3] 
and foehn (Santa Ana, Sundowner, Diablo) winds [4]. Current research does not suggest the 
intensification of extreme winds in climate change scenarios, but rather suggests possible 
suppression of wind events, though overall wildfire risk will not be reduced due to the longer 
wildfire seasons [5, 6]. 

Extreme winds are a driver of wildfire spread but in the context of electrical distribution and 
transmission systems they play an additional causal role by initiating a damage event that 
produces the electrical arc that is the source of wildfire ignition. The common driving 
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mechanism linking the ignition event and conditions favoring explosive wildfire spread create a 
multiplicative effect that causes electrical wildfires to be overrepresented in lists of the most 
deadly, destructive, and expensive wildfires in comparison to other ignition sources. Miller et. al. 
[7] demonstrate that electrically caused fires in Victoria, Australia are over-represented when fire 
danger is high, and that these fires also are larger and more destructive. Data from the California 
Department of Forestry and Fire Protection (CAL FIRE) shows the following statistics as of 
November 2022 for “Top 20” deadliest, most destructive, and largest fires [10, Folder: 
CALFIRE/].  

Table 1 - CAL FIRE “Top 20” deadliest (by fatalities), most destructive (by structures), and 
largest (by acres burned) as of November 2022 showing relative contribution of electrically 
ignited wildfires to total numbers and total losses. 

Wildfires Number of Electrical Caused 
(out of 20) 

Fraction of Losses Due to 
Electrically Caused Wildfires 

Deadliest  4 39% 
Most Destructive 8 66% 
Largest  3 21% 

 

Mitchell 2009 [8] gave the fraction of California wildfires started by power lines as 1% based on 
CAL FIRE statistics available at that time.  CAL FIRE has gone through several iterations of its 
wildfire data collection process, and currently the fraction of power line fires is considered to be 
approximately 10% ([10]CPUC/MGRA-R1812005-PD-Cmt]). 

In the aftermath of the 2007 Southern California power line firestorm, the California Public 
Utilities Commission (CPUC) initiated regulatory changes requiring that utilities gather wildfire 
data, prepare wildfire protection plans, and use CAL FIRE utility wildfire threat maps for 
mitigation planning. After the power line ignitions during the disastrous 2017-2018 wildfire 
seasons, which led to over 100 fatalities and led to PG&E’s bankruptcy, additional regulatory 
requirements were put into place including Wildfire Mitigation Plans (WMPs), overseen by the 
newly constituted California Office of Energy Infrastructure Safety (OEIS). An overview and 
comparison of the methodology of these plans is given by Zuzinga Vazquez, et. al. [9]. 

Since 2018, the CPUC has required utilities to develop quantitative risk-based decision making 
frameworks for evaluating enterprise risk, identifying and prioritizing mitigations, and for 
operational purposes. Utilities have been required to use a Multi-Attribute Value Function 
(MAVF) to quantify risks, including safety, economic, and reliability attributes. The risk value 
assigned to a specific risk event is defined as the product of a “Likelihood of a Risk Event” 
(LoRE) and “Consequence of a Risk Event” (CoRE) ([10]CPUC/D.18-12-014-Settlement). 

The major California utilities have adopted similar models for implementing these requirements. 
Likelihood of wildfire risk events is determined by analysis of ignition or outage data, while 
consequence is determined by “match-drop” wildfire spread modeling. This methodology allows 
risk scores to be calculated for the utility system as a whole as well as for individual components, 
and allows for the effects of different mitigations to be modelled.  
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While conceptually sound, there are and have been a number of shortcomings in both the 
framework and implementation of utility risk models that create biases and lead to both over and 
underestimations of utility risk. Most seriously, utility risk models underestimate the role of 
extreme weather events in utility wildfire ignition. Errors in risk estimates can lead to incorrect 
mitigation and prioritization choices. This paper will discuss shortcomings in electrical utility 
wildfire risk models and possible remedies. 

Using risk based planning allows for cost/benefit optimization. Recent proposals by California 
utilities have de-emphasized risk-spend efficiencies in favor of undergrounding solutions, which 
maximize risk reduction but at an extreme cost to ratepayers, which potentially outweigh benefits 
from improved wildfire safety, with particular impact to low-income populations. 

 

2. Material and Methods 

The regulatory process in California enables stakeholders or “intervenors” to participate in 
regulatory proceedings.  Parties to proceedings are obliged to provide data to support their filings 
and applications.  Over time, the data provided in utility submissions to regulators has expanded 
to include infrastructure, outage, damage, maintenance and ignition data. The data and 
documentation used in this paper were obtained during work on behalf of a party (Mussey Grade 
Road Alliance of Ramona, California) in wildfire mitigation plan, rate case, and other wildfire 
safety proceedings. Referenced proceedings include the 2021 and 2022 Wildfire Mitigation Plans 
filed with the California Office of Energy Infrastructure Safety (OEIS) and General Rate Cases 
and Rulemakings filed with the CPUC.  None of this data was provided under non-disclosure 
agreement and it is therefore suitable for public dissemination.  Results of this paper are based on 
analysis of PG&E, SCE, and SDG&E data only. 

Data and non-academic references in this paper have been made publicly available through 
Mendeley [10] This data will be referenced by its folder (CPUC, OEIS, CALFIRE, or Data) and 
identifier (i.e. CPUC/SPD-1). All files and data have full descriptions in the INDEX.xlsx file in 
the Mendeley site top level folder, including a brief description of analysis performed in the 
various data files. 

Analysis of utility geospatial data was performed with ArcGIS desktop.  

 

3. Results 

Analysis was performed on utility wildfire risk models used in the 2021 and 2022 Wildfire 
Mitigation Plans filed with OEIS (prior to July 1, 2021 the CPUC Wildfire Safety Division) and 
in CPUC filings supporting SCE, PG&E and SDG&E general rate case proceedings. The utility 
wildfire risk models are used to inform choice of mitigation and priority of areas for mitigation 
hence any errors or biases may lead to non-optimal reduction of utility wildfire risk. Analysis 
performed for MGRA has determined that there are a number of factors contributing to 
significant inaccuracies in utility wildfire risk analysis. Many MGRA conclusions were validated 
by regulatory review (CPUC/WSD-019,WSD-020,WSD-021,SPD-1,SPD-2,SPD-9).  

Processes or practices developed by the California utilities are either electric utility best practices 
or have been developed to address the novel challenges posed by California’s wildfire crisis. 
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Therefore, any shortcomings in these models are of general interest wherever utility 
infrastructure is exposed to extreme weather under conditions conducive to the ignition and 
propagation of wildfire. 

 

3.1 Limitations of Utility Risk Models 

The utility risk models used in 2021-2022 employ a Multi-Attribute Value function to create a 
unitless representation of risk and use this to compare alternative mitigations. For wildfire risk 
this function takes the form Risk = P(ignition) ´ ∑𝑤!𝐶! where Ci is the wildfire consequence for 
a given attribute i and wi is the weight of the attribute. Currently the California utilities use three 
attributes: safety (weighted at 50-60%), financial (weighted at approximately 20-25%), and 
reliability (also weighted at 20-25%) (OEIS/PGE-2022-WMP, pp. 57-60, OEIS/SCE-2022-
WMP, pp.63-68, OEIS/SDGE-2021-WMP, pp. 25-26). Risk is analyzed separately for different 
causes, equipment components and tranches of similar risk profile, and can be aggregated 
depending on purpose. Mitigations can affect either probability of the risk event or consequence, 
and risk can be compared before and after mitigation. 

There is a key limitation in this formulation of risk, namely that it assumes that probability and 
consequence are independent of each other. If there is an external risk driver coupling probability 
and consequence of ignition, then consequence and ignition must not be calculated 
independently. Mitchell 2013 [11] discusses how extreme winds are a common-cause risk driver 
affecting component or tree failure, ignition, and speed of wildfire spread. Nevertheless this 
dependency is ignored in many of the risk analyses discussed in this paper, leading to spurious 
results that will be discussed in subsequent sections. 

 
3.2 Biases in Utility Wildfire Spread Modeling 

The wildfire spread model used by SDG&E, PG&E, and SCE is Wildfire Analyst by 
Technosylva [12]. Utilities use this model for “match drop” simulations of ignitions by their 
infrastructure in all areas of potentially affected landscape, predicting spatiotemporal fire 
progression and potential damage from each ignition. These simulations are used for 1) 
operational decisions, specifically whether to de-energize power lines, 2) predicting the risk of 
loss from an ignition at any specific point of the utility infrastructure, and 3) aggregating all risks 
from 2 and predicting an overall utility wildfire risk values that can be compared with other 
enterprise risks.  

The accuracy of Technosylva Wildfire Analyst in supporting real-time decision-making during 
wildfire events is enhanced by the ability to update the fire model with real-time fire and weather 
data [13]. However, Rate of Spread (ROS) calculations are considered to be highly inaccurate 
due to uncertainty of local weather conditions (particularly wind) and fuels [14,15,16]. The 
uncertainty associated with fire size increases with the length of the model run, preventing the 
accurate prediction of very large fire sizes from initial conditions. For this reason, simulations 
run for the California utilities adopt a Monte Carlo approach, running thousands of simulations 
for each potential ignition location (CPUC/SDGE-2022-WMP, p. 103) and limit their fire spread 
simulations to 8 hours (CPUC/SPD-9, p. 62, SCE-2021-WMP-Rev, p. 62, SDGE-2021-WMP, p. 
83). This choice effectively puts a cap on maximum wildfire size. This is shown in Figure 1, 
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which demonstrates that 8 hour Wildfire Analyst simulations rarely produce fires exceeding 
10,000 ha to 20,000 ha (Data/SCE-Technosylva-Raw, Data/PGE-Technosylva-Raw).  

 
Fig. 1 Raw Technosylva simulation data was provided by SCE and PG&E in response to MGRA 
data requests, and the logarithm of maximum wildfire size for each set of 8-hour runs was 
accumulated into histograms. Maximum wildfire sizes rarely exceed 20,000 ha for SCE and 
20,000 ha for PG&E. 

 

The limitation of maximum wildfire fire size is problematic. Wildfire sizes follow power law 
distributions [17, 18, 19]. This has been validated for California wildfires as well [20,21] and 
Mitchell 2009 [8]. Cumulative size distributions for California wildfires based on CAL FIRE 
perimeter data are shown in Figure 2 for both non-power line and power line fires 
(Data/CALFIRE-Perimeter-2019)  

  
Fig. 2 CAL FIRE perimeter data for wildfires attributed to power line ignitions. 2007 and 2017 
fire attributions are corrected with CAL FIRE and CPUC assessments. The trendlines are a guide 
to the eye, rather than a best fit and shows how power law exponents would appear. Deviations 
from power law behavior appear above 30,000 acres (without power lines) and 80,000 acres for 
power line fires. 
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The power law exponent has not been fit, but lines equivalent to exponents a = 0.48 and a = 
0.44 have been added as guides to the eye. Moritz 2005 [20] finds an exponent of 0.5 for 
wildfires in the Los Padres National Forest in California. 

The problem with power laws having exponents less than 1.0 is that their means sizes do not 
converge as more historical data is collected, potentially making the entire notion of wildfire risk 
prediction intractable [22]. The danger of ignoring large fires in consequence calculations is 
amply demonstrated in Figure 3, which uses an identical approach to Figure 2 but calculates 
cumulative damage per bin. 

 
Fig 3 Total area burned per logarithmic bin for California wildfires 2005 to 2019, calculated by 
multiplying logarithmic mean of bin by number of wildfires in the bin. Power line related 
wildfires are compared against full sample with non-power line wildfires removed. 

 
The Highly Optimized Tolerance (HOT) suggested by Moritz et. al. [20] suggests that deviations 
from power law behavior will occur when wildfire sizes become comparable to the size of the 
contiguous burnable landscape. This enables a cut-off value to be set, preserving the mean and 
allowing non-divergent risk values to be calculated.  In response to regulator and stakeholder 
input, both PG&E and SDG&E have adopted a Generalized Pareto Distribution (GPD) to 
describe behaviors of very large wildfires, with a maximum loss cutoff currently set to 5 times 
the Camp Fire losses, and they performed a sensitivity analysis on the cutoff value. 
(CPUC/PGE_PL_Whitepaper; CPUC/SDGE-2024-GRC-03-R-Risk, p. RSP/GSF-9). This is 
applied via a Monte Carlo to their Enterprise Risk Model to ensure extreme fires are 
incorporated. Southern California Edison uses only Wildfire Analysist outputs for its size 
estimations. 
 
While the approach taken by PG&E and SDG&E corrects enterprise risk models, their planning 
models, which calculate risk based upon line segment or infrastructure component, and which 
are used for prioritization of mitigation, are still limited by the maximum wildfire size allowed 
by the 8 hour simulation. This creates a bias in risk prediction that leads to electrical components 
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closer to population centers (which have higher potential consequences) being rated as having 
higher risk than remote components. An example is shown in Figure 4, which shows PG&E 
model estimates near the Sacramento area (Data/PGE-GIS-SegmentRisk). Areas in yellow and 
orange (higher risk) are clustered close to population centers while remote circuits tend to have 
lower risk scores. However, many of the great historical wildfires (Witch, Camp, Dixie) started 
in remote locations and grew to large size before descending onto a broad WUI frontline. A 
realistic model incorporating catastrophic wildfires would show risk more uniformly distributed 
across the landscape. 

 
Fig 4 PG&E Wildfire Distribution Risk Model (WDRM) v2 risk estimates for circuits in the 
Sacramento/Lake Tahoe area. Green areas. Note that the areas of greatest risk tend to be greater 
nearer population centers, and drop to lower values for more remote areas.  

 

3.3 Limitations in Utility Probability of Ignition (PoI) Machine Learning Models 

As per regulatory requirements put in place over the last decade, California electrical utilities are 
now required to collect and provide extensive metrics on ignitions, outages, inspections, 
maintenance, and other infrastructure-related items. The goal of collecting metrics is to allow the 
prediction of potential future ignitions and to allocate resources to prevent ignitions from 
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occurring. As the field of data science has developed, the electric utilities have recruited data 
scientists to help with this task. Both outage and ignition data may be used for ignition risk 
estimation. Outages provide a much larger data set for use in modeling but also require a 
Bayesian approach to calculating ignition probability:  PoI = (𝑃𝑜𝐹	 × 	𝑃𝑜𝐼")/𝑃𝑜𝐹# 	, where PoI 
is the probability of ignition, PoF is the probability of failure, PoIF is the conditional probability 
of ignition given a failure, and PoIF is the conditional probability of failure given ignition, equal 
to 1 (OEIS/SDGE-2022-WMP, p. 87). SDG&E applies a regression model to determine 
likelihood of ignition (Id., p. 86-92), while SCE uses a machine learning (ML) utilizing a 
Random Forest Classifier for PoI (OEIS/MGRA-2021-WMP-App, pp. 131-3/296), and PG&E 
uses a Maximum Entropy (MaxEnt) classifier (OEIS/PGE-2021-WMP, p. 97). Both the SCE and 
PG&E analyses use a wide variety of geospatial attribute data for their predictive models. 
However, both of these analyses use aggregated weather data (means, maxima, and exceedance 
frequency) (Id., Op. Cite) and therefore have no means to discriminate for transient extreme 
conditions. An independent review sponsored by PG&E at the request of regulators notes that 
“The current formulation cannot incorporate short but intense events” and that “[t]o properly 
incorporate this impact, the temporal resolution would allow either incorporation or exclusion of 
the events from the training data set” (OEIS/PGE-E3-Review). Consequently, both SCE and 
PG&E models find that wind-related variables have low predictive value for ignition. PG&E’s 
2021 WMP finds that the number of “gusty summer days” with wind speeds in excess of 32 
km/h has a 6% permutation importance for vegetation ignitions and that average wind speed has 
a permutation importance of only 0.9% (OEIS/PGE-2021-WMP, pp. 164-165). SCE’s analysis in 
2022 also finds that aggregated wind variables have relatively low predictive value, with yearly 
maximum windspeed ranking 12th of 50 variables for contact from object and log of wind force 
ranking 19th of 50 variables for equipment failure (CPUC/MGRA-SCE-RAMP-Cmt, pp. 41-
43/44.) Utilities have demonstrated that these analyses are skillful at predicting geographic 
dependence of ignition probability, but have not demonstrated that these predictions apply 
specifically to the locations of ignitions of catastrophic wind-driven fires.  

3.4 Biases in Combining Probability and Consequence of Ignitions 

SDG&E, SCE and PG&E employ a technique that further couples the probability of 
outage/ignition component to the consequence component when computing risk scores. The 
Wildfire Analyst match drop simulations are run with WRF data from  hundreds of historical 
“worst case” weather days (OEIS/SDGE-2022 WMP, p. 101, OEIS/SCE-2022-WMP, p. 470;  
CPUC/MGRA-PGE-GRC23-Testimony, pp. 106-107/208) in order to optimize computing 
resources. However, this introduces bias if there is no attempt to correct for the fact that certain 
types of outages that lead to ignition are more likely during “worst case” weather conditions 
(such as equipment failure and vegetation contact) and others are less likely (such as “external 
agent” contact – animal, vehicle, balloons, or third parties). This will lead to an artificial 
amplification in the predicted risk associated with drivers uncorrelated with extreme weather. 
This effect is evident in Table 2, which shows that a significant fraction of ignitions are predicted 
from external agents such as vehicles, balloons, animals, and vandalism in the SCE and SDG&E 
data models. 
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Table 2 – Percentage of enterprise ignition risk represented by different risk drivers as per SCE 
and SDG&E’s 2022 Wildfire Mitigation Plans (OEIS/SDGE-2022-WMP, p. 46; OEIS/SCE-
2022-WMP, pp. 55-56; OEIS/PGE-2022-WMP, p. 61, OEIS/MGRA-2022-WMP Comments, pp. 
32-34.  PG&E’s analysis is limited to National Weather Service Red Flag Warning (RFW) days. 
All PG&E external agent contact (vehicle, balloon, animal, other) is listed under “Other 
Contact”. 

Ignition Driver Percentage 
  SDG&E SCE PG&E (RFW) 
Vehicle 17 7  
Balloon 17 13  
Veg Contact 15 11 59 
Other Contact 8 6 4 (all external) 
Animal 5 13  
Wire Contact 3 5 1 
Vandalism 2 5 0 
Equipment 33 42 33 

 

Table 2 shows that SCE and SDG&E show relatively large contributions from external agent 
contact (39% and 47% of enterprise wildfire risk, respectively), while PG&E estimates only 4% 
of risk from external agents. PG&E, in response to stakeholder input and internal analysis, 
restricted its data set to risk events occurring during National Weather Service Red Flag Warning 
days (OEIS/PGE-2022-WMP, p. 87).  The dramatic difference between the SCE and SDG&E 
risk estimates on the one hand and PG&E risk estimates on the other demonstrates the effect of 
using “worst case” weather conditions for fire spread modeling of historical ignitions without 
adjusting for the conditional probability that a specific risk driver occurs on a “worst case” 
weather day. 

Major utility wildfires rarely result from external agent ignitions. Most utility ignitions during 
fire weather events result from vegetation contact and equipment failure (Mitchell, 2013 [11]). 
SCE and PG&E provided lists of major utility caused fires (>100 acres for SCE, >500 acres for 
PG&E) between 2015 and 2020 (Data/SCE-Ignitions-2015-2020, OEIS/PGE-2022-RN-Rsp, pp. 
1-13).  These were analyzed using a Pearson Chi-squared goodness of fit (with/without Yates 
correction) to compare them against the utility-prediction probabilities for different ignition 
drivers. To improve statistical power the SCE and PG&E datasets were combined and driver 
categories of “external agent” (balloon, vehicle, animal, 3rd party), and “non-agent” (vegetation 
and equipment failure) were used for binning. The analysis demonstrates that the utility ignition 
cause hypotheses of Poisson-distributed ignition times for catastrophic wildfires can be excluded 
with statistical significance (Data/Ignition-Risk-Rankings).  
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Table 3 - Statistical analysis of combined SCE and PG&E ignition data binned into Agent 
(balloon, 3rd party, vehicle, and Non-Agent (vegetation, equipment) to improve statistical power. 
Probabilities were calculated with the Excel function CHISQ.DIST.RT, using 2 degrees of 
freedom. 

Driver Observed Expected Chi2 Yates 
Non-Agent 31 24.09 1.98 1.71 
Agent 4 10.91 4.38 5.03 
Total 35 35 6 7 
P - Chi2 0.01168126    
P - Yates 0.00943576    

 
This is not to imply that agent-related causes cannot cause catastrophic fires. However, wind 
related drivers have been observed to be the predominant contributor to utility risk as represented 
by historical losses, as would be expected from physical models. Accurate risk models must 
correctly take geographic dependency of wind-related drivers into account. 

3.5 Utility Operational Models and Wind Speed 

Despite the fact that utility ignition models used for risk planning show little to no dependency 
on wind, utility operational models, which use much of the same analytical infrastructure and are 
used for planning de-energization during high wind events, include a parameterization of outage 
and ignition dependency on wind. All three utilities have identified results similar to those shown 
in Mitchell 2013 [11], namely that outage probability is a strong function (polynomial or 
exponential) of wind speed. (OEIS/SDGE-2022-WMP, p.129-132; OEIS/PGE-2022-WMP, pp. 
93-94, OEIS/ MGRA-2021-WMP-Cmts, pp. 27-30). 

It is also noteworthy that utilities use only aggregated historical weather data for planning and 
mitigation. Real-time weather data is used only as an input to operational planning, specifically 
for de-energization. 

3.6 De-Energization as Mitigation and Risk, and Resulting Risk Estimation Bias 

In general, only utility equipment that is energized can produce a fault that ignites a wildfire. 
Therefore, de-energization (called “Public Safety Power Shutoff” or PSPS by California utilities 
and regulators) during extreme fire weather has been shown to be an effective wildfire 
preventative measure. However, loss of electrical power has severe safety and economic impacts, 
and has a strong negative connotation with the public and regulators.  

The efficacy of de-energization was examined by the CPUC’s Safety and Enforcement Division 
(SED) which contracted with Technosylva to run its Wildfire Analyst [12] simulations using 
input data from post-de-energization damage surveys [23]. These datasets comprise utility 
damage and object contacts noted by utilities after the windstorm and reported to the CPUC. 
Weather simulations for the model uses both measured and predicted data to predict the course 
of fire events ignited at the damage point. Simulations model a 24 hour spread. While these fire 
spread models are problematic for several reasons – they lack a suppression component, only 
building exposure and not loss is modeled, inaccuracies cascade and multiply over the course of 
the calculation – they nevertheless demonstrate a likely answer to the contrafactual question 
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“What would have happened if utilities had not heavily utilized de-energization during the 
October 2019 weather events?” 

 

Table 4 shows a summary of the Technosylva simulations, showing how many acres would be 
burned, displaced population, and how many houses impacted had all potential fires due to 
damage and contact with de-energized equipment occurred and had outcomes similar to the 
simulation [23]. 

Utility Dates Potential 
Ignition Evts 

Population Buildings Acres 
burned (ha) 

PG&E Oct 9-12, 2019 114 36,015 18,819 11,279 
PG&E  Oct 26-29, 2019 422 421,271 257,570 1,236,859 
PG&E Numerous, 2019 4 400 47 284 
SCE Numerous, 2019 54 55,982 25,434 148,028 

SDG&E 3 weather events 
Oct-Nov 2091 

13 34,471 35,122 132,444 

 

Only damages deemed capable of supporting a wildfire ignition were included in the analysis. 
The projected damages are inaccurate due to lack of any fire suppression component, the 
assumption that all damage would have produced an outage capable of igniting a wildfire, some 
fires might extend beyond the 24 hour runtime, and divergence due to uncertainties in the initial 
conditions.  Nevertheless, these demonstrate that a major power line firestorm event would have 
been likely in 2019, much like in 2017 or 2007, had utilities not resorted to widespread outages. 
The only catastrophic utility fire occurring during this period was the Kincade fire, which 
originated from a transmission circuit that had not been de-energized (CAL FIRE/Kincade-Fire-
2019). 

While de-energization is effective in preventing wildfire ignition, it itself causes great public 
harm [24]. Currently, there is no generally agreed mechanism for assigning this harm [25], and 
each utility assesses harm using its own methodology. The CPUC recently decided (CPUC/D.22-
12-027, pp. 38-41, CPUC/ D.22-12-027-AppC) that utilities should work with the ICE calculator 
tool [26] group to devise a common mechanism to determine monetized losses from de-
energization. However, additional mechanisms to quantify the risk of power shutoff to the public 
during extreme fire weather conditions (loss of communications, secondary fires, evacuation 
traffic disruption, inadequate post-event inspection) have yet to be quantified. 

A complete risk analysis must incorporate both the comprehensive harm of power shutoff and its 
benefits in terms of avoided wildfires.  

One final note on utility models and de-energization: Because de-energized equipment can 
experience neither a fault nor an ignition, the historical record for outages and ignitions will be 
missing the areas and times during which lines were de-energized. To the extent that these 
historical records are used to project future risk, the results of the subsequent analysis will be 
biased, with commonly de-energized areas appearing to have lower risk than they actually do.  
So far only PG&E has introduced a correction to this bias, in which it incorporates its post-
shutoff damage events into its event history (CPUC/PGE-GRC23-WP4, p. WP 4-53). 
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3.7 Wildfire Smoke Effects 

Over the last decade, wildfire smoke has become known as a major health risk that leads to 
morbidities and fatalities, particularly due its PM2.5 particulate component [27]. Evidence points 
to PM2.5 particulates from wildfire being significantly more dangerous than PM2.5 particulates 
from other sources [28]. Utility risk estimates fail to adequately take this risk into account, 
though rough approximations indicate that wildfire smoke risk may cause more morbidities and 
fatalities than direct exposure to wildfire.  

SDG&E initiated the attempt to incorporate wildfire smoke risk into its regulatory proceedings 
by estimating a “fatalities per acre” equivalency.  An equivalent analysis was performed by the 
author using more recent references (O’Dell, et al.[27], Liu, et. al [29]) and yielded equivalent 
proportionalities of one fatality per 445 hectares and 4,654 hectares burned, respectively 
(CPUC/SDGE-RAMP-SPD-Report, pp. 220-221/295).  SCE was also requested to perform a risk 
analysis using an equivalency of one fatality per 465 hectares and one per 4411 hectares. 
According to SCE’s weighting of risk, for fatality rates greater than one fatality per 1,600 acres 
burned, wildfire smoke would provide the greatest contribution to wildfire safety risk 
(CPUC/MGRA-SCE-RAMP-Cmt, pp. 7-9). However it is important to emphasize that 1) 
wildfire fatality and morbidity numbers are highly uncertain [30] and wildfire smoke affects 
populations depending on the ambient weather conditions at the time. A more useful and 
accurate estimation of utility wildfire smoke risk will require the development of new 
methodologies that can estimate plume dispersal and perform population impact analyses based 
upon epidemiological studies. 

 

3.8 Utility Wildfire Mitigations 

Aside from shutting off the power, utilities utilize a number of mitigations in order to reduce 
wildfire ignition risk [31], including enhanced inspections of vegetation and equipment, 
(OEIS/SDGE-2022-WMP, pp. 244-304) vegetation management, (OEIS/PGE-2022-WMP, pp. 
631-704) and “grid hardening”. 
 
While there are many possible components to “grid hardening” the most effective at scale are 
“covered conductor” and “undergrounding”.  The three utilities in question have performed a 
common study of “covered conductor”, which in their case comprises a three-layer polymer and 
semiconductor extrusion over the conductors (CPUC/SDGE-2022-WMP, pp. 213-214).  
Analysis by utility subject matter experts concludes that covered conductor reduces overall 
wildfire ignition risk by 65% compared with bare conductor (Id., pp. 562-639/699). As of 
September 2022, SCE had deployed 4,025 km of covered conductor, (CPUC/SCE-RAMP-SPD-
Report, p. 104/142) with 688 km of circuits completely covered (CPUC/MGRA-SCE-RAMP-
Cmt, pp. 33-34/44). While the overall fault rate is reduced by approximately the predicted value 
(Op. Cite), its observed rates for ignitions and “wires down” is reduced to a lower value than 
would be accounted for by a 65% reduction in risk. For the period January 2019 through 
September 2022, at SCE’s ambient ignition rate the mean of predicted ignitions would be 5, 
while 0 have been observed, and the predicted mean of “wires down” events would be 26, with 3 
observed (Data/SCE-CC-Eff). This indicates that the prediction that covered conductor will 
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reduce ignitions by 65% may be an underestimate, and this should be re-evaluated after further 
deployment and field experience.  

There are additionally a variety of technical innovations being researched by utilities that may 
drastically reduce the potential for ignition. Generally these share the characteristic of reducing 
the available energy in the line before an arc can be generated capable of sustaining ignition. 
PG&E claims that a simple change to its fault trip triggering threshold using its existing 
equipment (which calls “EPSS”) allowed it to cut wildfire ignitions by a third (OEIS/PGE-2022-
-WMP, p. 55), though it also severely impacted its customer service with 600 unplanned outages 
affecting 650,000 customers [24, p. 32].   An example of more advanced technologies is REFCL 
(Rapid Earth Fault Current Limiter), which was developed in Australia [32] and is currently 
being deployed and tested by both PG&E and SCE. While these technologies may not address all 
fault scenarios (such as phase-to-phase contact), in combination with other mitigation such as 
covered conductor they may provide protection approaching that of placing conductors 
underground.   

 

3.9 Undergrounding and Affordability Impacts 

Placing conductors underground virtually eliminates the potential for wildfire ignition. The 
reason that this mitigation hasn’t been widely deployed is expense.  The cost of undergrounding 
currently averages  $1.9 million per kilometer, depending on specific circumstances, making it 
far more costly than other mitigations such as covered conductor (OEIS/SDGE-2022-WMP, p. 
672/699). With nearly 40,000 miles (64,000 km) of conductor in wildfire prone areas [24, p. iii] 
the cost of using undergrounding as a primary mitigation in California could cost over $US 100 
billion. Consequently, when undergrounding as a mitigation is compared via its risk-spend 
efficiency against other mitigations, it fares poorly. 

Nevertheless, in June of 2021, PG&E announced plans to rely primarily on putting conductors 
underground as its primary mitigation strategy and expenditure, announcing a target to complete 
10,000 miles of undergrounding in 10 years (CPUC/PGE-2022-WMP, p. 5). SCE and SDG&E 
have also announced plans to expand their undergrounding programs. And the State of California 
in 2022 passed legislation (Senate Bill 884)[33] which expedites the review process for utility 
undergrounding plans. 

If major undergrounding plans move forward unprecedented costs may fall on utility ratepayers, 
and these costs could potentially have significant public health effects.  

It is well known that income affects life expectancy, for example a US study shows men in the 
20% household income percentile have a life expectancy of 77.5 years and men in the 80% 
percentile have a life expectancy of 85 years [34]. A naive example of the effect of $300 per year 
utility rate increase on the 20-40% household income quintile , with a low-income population of 
10 million, could result in the loss of 380,000 years of life or the equivalent of 5,000 75 year life 
spans (OEIS/MGRA-2022-WMP-Cmts, pp. 58-60). While this is purely a thought experiment – 
there are for instance programs to help low income California with energy bills – it demonstrates 
clearly that societal cost of mitigations cannot be decoupled from wildfire mitigation programs 
without shifting the risk from residents of the Wildland Urban Interface to low income 
ratepayers. 
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4. Conclusions 

Significant progress has been made in quantifying and analyzing utility wildfire risk over the 
past decade, a period that has also seen some of the most catastrophic power line fires in history, 
particularly in California. The goal of understanding utility wildfire risk is to understand where 
and under what conditions are utility-sparked ignitions likely to occur and spread into 
catastrophic wildfires. With this knowledge, the most cost-effective mitigations can be chosen 
and applied to the riskiest circuits first. However, a number of mistakes have compromised the 
initial effort to estimate wildfire risk in California and lessons from these mistakes should inform 
future work both in California and elsewhere.  Primarily, the physical process coupling utility 
faults to rapid fire spread should be incorporated into risk models. The power of data science 
modelling is compromised in a process with temporal dependencies if none of the covariates 
adequately capture these dependencies. In the current case, data models tell us that there is a 
substantial risk of catastrophic fires from animals, balloons, and vehicles, whereas these are 
relatively minor contributors during extreme wind events, when the vast majority of catastrophic 
fires actually occur. 

Another shortcoming in models results from limitations in fire spread modeling, which lead to 
fires much smaller than those that have historically been responsible for most losses. This leads 
to a perceived risk that is greater near population centers (the consequence target) and lesser 
deeper into the wildlands. This ignores a common mechanism for catastrophic fire growth, where 
remote ignitions deep in the wildlands (Witch (2007), Cedar(2003)) are fanned by winds and 
descend many hours later onto the Wildland Urban Interface in a long destructive front. 

Based on current modeling, utilities are already deploying a number of mitigation methods to 
reduce wildfire risk, and have begun to heavily rely on de-energization. While effective in 
preventing large fires, harm from de-energization has yet to be fully incorporated into risk 
estimations, and these measures have proven unpopular among regulators and the public. The 
effects of wildfire smoke have only now begun to be incorporated into utility risk models, but a 
scientifically supportable methodology has yet to be developed.  

Fortunately, the California utilities continue to improve their risk models at the behest of 
regulators, stakeholders and on their own initiative.  Development of risk modeling that takes 
into account extreme wind drivers that couple ignition probability and fire spread must be 
completed, and models also need to include catastrophic fires that have historically been the 
cause of most losses. Research and development on technologically based innovations must be 
accelerated. In the meantime, utilities should tune their de-energization thresholds to optimize 
the risk/benefit balance for the population. Risk models should also be expanded to include 
wildfire smoke and the effects of utility rates on the population.  Finally, abandoning risk 
modeling and mitigation planning to adopt a comprehensive undergrounding program threatens 
to shift risk from the Wildland Urban Interface onto other vulnerable segments of the population. 
Achieving the long term goal of reducing utility wildfire risk requires a comprehensive wildfire 
risk model that balances the needs of all Californians.  Such a model would be applicable to 
similar areas around the globe where utility-ignited wildfires are a threat. 
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