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Abstract

We propose an interpretation of the first-order answer set programming (FOASP) in terms of intuitionistic
proof theory. It is obtained by two polynomial translations between FOASP and the bounded-arity frag-
ment of the Σ1 level of the Mints hierarchy in first-order intuitionistic logic. It follows that Σ1 formulas
using predicates of fixed arity (in particular unary) is of the same strength as FOASP. Our construction
reveals a close similarity between constructive provability and stable entailment, or equivalently, between
the construction of an answer set and an intuitionistic refutation.
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1 Introduction

The logic programming paradigm originates from the fundamental idea that program execution
can be realized as constructive proof search done by means of SLD resolution. A solution to
a computational problem is obtained in proof construction as a witness of the statement being
proven. While very natural and effective, this idea is hardly applied any further than to slight
variations of Horn clauses. (Works exploring the constructive approach, like (Fu and Komen-
dantskaya 2017), are not very common.) Consider for example first-order ASP which is a form
of adding negation to Datalog. The standard way in which ASP is implemented consists in en-
coding a program into a satisfiability problem and then applying a SAT-solver (Brewka et al.
2011). This clearly goes away from the proof search oriented motivation of logic programming.

In this paper we attempt to argue that this semantic approach to ASP is not necessary. We
demonstrate a proof-theoretical interpretation of answer set programming by showing a mutual
translation between first order ASP and the bounded arity Σ1 fragment of intuitionistic predi-
cate logic, as defined in (Schubert et al. 2016). This extends our previous work (Schubert and
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Urzyczyn 2018) where we have defined a similar equivalence between propositional answer
set programming and a fragment of intuitionistic propositional logic. The extension required
a new approach since the techniques used in (Schubert and Urzyczyn 2018) turned out to be
not adequate in the first-order case. Of course, a first-order program can be propositionalized by
grounding, and then one could repeat the propositional construction to obtain a (quantifier-free)
formula provable iff the given entailment holds. However, the resulting formula would be no
longer polynomial in the size of the original program, as the grounding is exponential in size.

In addition, avoiding the exponential explosion is far not enough. The straightforward gener-
alization of the propositional approach would yield a formula that does not fit our co-NEXPTIME

fragment of Σ1, because targets of subformulas would be of arbitrary arity. Instead we built
our formula using "easy" axioms with nullary targets. While the overall scheme “unsound ver-
sus inconsistent” remains the same, the construction must be different. This is because we can
no longer use proof goals to control proof construction, (in particular to discover loops in the
unsound case B) because there is too few of them. Instead we must use (significantly more non-
deterministic) approach, continuation-passing in spirit.

Strictly speaking, the direct correspondence between proofs and programs has a “contravari-
ant” flavour in the case of ASP (also known as stable model semantics). Indeed, a stable model
of a program does not represent a proof of a formula but rather a refutation, i.e., a certificate that
a proof does not exist. Put it differently, provability in a fragment of first-order intuitionistic logic
is equivalent to stable entailment, i.e., the ASP consequence relation.

The construction consists of two polynomial time translations. First, for a given first-order
logic program P with negations, and a given atom Ω we define a formula ϕ so that P entails Ω

under stable model semantics if and only if ϕ is an intuitionistic theorem (Proposition 1).
The formula ϕ is a first-order formula using only unary predicate symbols and only ∀ and→

as the logical connectives. Since all quantifiers occur in ϕ at negative positions, our formula
belongs to the Σ1 fragment of Mints hierarchy (Schubert et al. 2016). In general, provability of
Σ1-formulas is NEXPSPACE-complete. However, for any fixed bound on the arity of predicate
symbols, in particular for our unary object language. the provability problem turns out to be
co-NEXPTIME complete.

Actually, the formula ϕ constructed in Section 3 is not yet unary. It is an easy formula in
the sense of (Schubert et al. 2016), because all its non-atomic subformulas have nullary targets.
Provability of such formulas can however be reduced to provability with unary predicates.

Our second construction reduces the question of refutability (non-provability) of a formula ϕ

to the non-existence of a stable model of a logic program with negations. Yet differently, given
a formula ϕ , we define P so that ϕ is not an intuitionistic theorem if and only if P has a stable
model (Proposition 2). The form of the latter equivalence is intended to stress that the stable
models of P correspond to intuitionistic refutations. The construction works for Σ1 formulas
using predicate symbols of any bounded arity, not necessarily unary.

The two translations together add up to a polynomial equivalence of two problems known to
be NEXPTIME-complete: the existence of stable models and the provability for bounded-arity Σ1

formulas.
As such, it does not constitute a formally new theorem concerning complexity of the for-

malisms, and it was not meant to do so. The purpose and contribution of this paper is to point out
a natural constructive counterpart of the first-order answer set programming, and by derivation
of the correspondence to expose the constructive nature of ASP. In this way we complement the
purely propositional accounts (Pearce 2006; Schubert and Urzyczyn 2018) of the links between
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logic programming and intuitionistic logic. In addition the current account is in terms of proof
theory and its details are closely related to the original procedure of answer derivation in logic
programming.

2 Answer set programming and logic

First order answer set programming is an extension of Datalog by negation understood as “fix-
point” (Kolaitis and Papadimitriou 1988). The short presentation we give here is essentially fol-
lowing (Brewka et al. 2011).

Basic definitions: A positive atom, or simply an atom, is an atomic formula P(~x), where ~x are
individual variables or constants. A negative atom has the form ¬P(~x), where P(~x) is a positive
atom. A ground atom is an atom where only constants can occur (and no variables).

A clause is an expression of the form a :− a1, . . . ,an, where a is a positive atom and a1, . . . ,an

are positive or negative atoms. A ground clause is one without variables. A program is a finite
set of clauses P , together with an associated nonempty finite set of constants DP , the domain
of P , which is assumed to include all constants occurring in P .

We write B(P) for the set of all positive ground atoms P(~c), where P is a predicate in the
language of P and ~c is a vector of constants in DP of appropriate length. By ground(P) we
denote the set of all ground clauses obtained from clauses of P as substitution instances using
constants in DP . Note that ground(P) can be seen as a propositional program with negations
using ground atoms in B(P) as propositional literals. The following definitions are therefore
immediate adaptations from the propositional case.

A model of the language of P is a set M of positive ground atoms. One can think of M as
of a Herbrand structure of domain DP , satisfying the ground atoms in M and no other atom,
or as of a Boolean valuation of ground atoms. Given a program P and a model M, we trans-
form ground(P) into a program PM without negations. For every ground atom a:

• If a 6∈M then we delete ¬a from the rhs of all clauses of ground(P);
• If a ∈M then we delete all clauses of ground(P) with ¬a at the rhs.

The interpretation of P under M, denoted I(P,M), is the least fixed point of the operator:

F(I ) = I ∪{a | there is a clause a :− a1, . . . ,an in PM such that all ai are in I }.

A model M of P is stable (or it is an answer set for P) if and only if M= I(P,M). We say that
P entails an atom a under SMS, written P |=SMS a, when every stable model of P satisfies a.
It is known (Dantsin et al. 2001; Kolaitis and Papadimitriou 1988) that the existence of a stable
model and the entailment under SMS are, respectively, NEXPTIME and co-NEXPTIME complete
problems.

Lemma 2.1
Let Ω be a nullary predicate letter not occurring in a program P . Then P |=SMS Ω if and only if
P has no stable model.

Intuitionistic logic: We consider formulas of minimal predicate logic with→ and ∀ as the only
connectives. Our formulas use neither function symbols nor equality. In particular, the only in-
dividual terms are object variables, written in lower case, e.g., x,y, . . . A formula is therefore
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either an atom P(x1, . . . ,xn), where n≥ 0, or an implication ϕ → ψ , or it has the form ∀xϕ . The
convention is that→ associates to the right, i.e., ϕ → ψ → ϑ stands for ϕ → (ψ → ϑ).

Quantifier scopes are marked by parentheses or dots; for example ∀x.P(x) → Q(x) is the
same as ∀x(P(x)→ Q(x)). The set of free variables in a formula ϕ is defined as usual and de-
noted FV (ϕ). The notation ϕ[x := y] stands for a capture-avoiding substitution of y for all free
occurrences of x in ϕ . We also use the notion of simultaneous substitution written ϕ[~x :=~y].

A clause of the form a :− a1, . . . ,an (without negations) is identified with the universal formula
∀~x(a1→ ··· → an→ a), where~x are all individual variables occurring in the clause. In particular
a ground clause is an implicational closed formula, and a ground program can be seen as a set of
such formulas.

Let P be obtained from ground(P) by replacing all occurrences of negative atoms ¬P(~c)
by P(~c), where P is a new predicate symbol. Now let M= {b | b ∈ B(P)−M}. The following
easy lemma (where ` is intuitionistic provability) is an immediate consequence of Lemma 4
in (Schubert and Urzyczyn 2018).

Lemma 2.2
I(P,M) = {a ∈ B(P) |P ∪M ` a}.

Lambda-terms: We use lambda-terms for proof notation as e.g. in (Schubert et al. 2015). In
addition to object variables, used in formulas, we also have proof variables occurring in proofs.
By convention, proof variables are written in upper case, e.g., X ,Y, . . . A finite set of declarations
(X : ϕ), where X is a proof variable and ϕ is a formula, is called an environment provided there
is at most one declaration for any variable X . A proof term (or simply “term”) is one of the
following:

• a proof variable,
• an abstraction λX :ϕ.M, where ϕ is a formula and M is a proof term,
• an abstraction λxM, where M is a proof term,
• an application MN, where M, N are proof terms,
• an application Mx, where M is a proof term and x is an object variable.

That is, we have two kinds of lambda-abstraction: the proof abstraction λX :ϕ.M and the object
abstraction λxM. There are also two forms of application: the proof application MN, where N
is a proof term, and the object application My, where y is an object variable. Terms (and also
formulas) are taken up to alpha-conversion, i.e., the choice of bound variables is irrelevant.

The type-assignment rules in Figure 1 infer judgments of the form Γ `M : ϕ , where Γ is an
environment, M is a term, and ϕ is a formula. In rule (∀I) we require x 6∈ FV (ψ) for every ψ ∈ Γ.

The formalism is used liberally. For instance, we may say that “a term M has type α” leaving
the environment implicit. We also may identify proof environments with the appropriate sets of
formulas.

The notion of a term in long normal form (lnf) is defined according to its type in a given
environment.

• If N is an lnf of type ϕ then λxN is an lnf of type ∀xϕ .
• If N is an lnf of type ψ then λX :ϕ.N is an lnf of type ϕ → ψ .
• If N1, . . . ,Nn are lnf or object variables, and XN1 . . .Nn is of an atom type, then XN1 . . .Nn

is an lnf.

The following lemma makes it possible to restrict proof search to long normal forms.
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Lemma 2.3 (Schubert et al. 2015)
If ϕ is intuitionistically derivable from Γ then Γ ` N : ϕ , for some lnf N.

Γ,X : ϕ ` X : ϕ (Ax)

Γ,X : ϕ `M : ψ

(→I)
Γ ` λX :ϕ.M : ϕ → ψ

Γ `M : ϕ → ψ Γ ` N : ϕ

(→E)
Γ `MN : ψ

Γ `M : ϕ

(∀I)
Γ ` λxM : ∀xϕ

Γ `M : ∀xϕ

(∀E)
Γ `My : ϕ[x := y]

Fig. 1. Proof assignment rules

We are concerned with the Σ1 level of the Mints hierarchy, defined by:

• Σ1 ::= a | Π1→ Σ1;
• Π1 ::= a | Σ1→Π1 | ∀xΠ1 ,

where a stands for an atomic formula.
Observe that every Σ1-formula takes the form ϕ = τ1→ τ2→ ·· · → τq→ c, where all τi are

Π1-formulas and c is an atom, called the target of ϕ . The following follows from Lemma 2.3.

Lemma 2.4
If ϕ = τ1→ τ2→ ··· → τq→ c then Γ ` ϕ is derivable if and only if so is Γ,τ1, . . . ,τq ` c.

Proof
A long normal proof of ϕ (i.e., a lnf of type ϕ) must have the form λX1 :τ1 . . .λXq :τq.N, where
the term N has type c.

Thus to determine if a given Σ1-formula is provable, one has to consider judgments Γ ` c,
where all members of Γ are in Π1, i.e., of the form ∀~y1(σ1→∀~y2(σ2→ ···→ ∀~yk(σk→ b) . . .)),
where σi ∈ Σ1, and b is an atom. The atom b is called the target of ψ .

From Lemmas 2.3 and 2.4 we now obtain the following “generation lemma”:

Lemma 2.5
Let c be an atom, and let Γ consists of Π1 formulas. Then Γ ` c is derivable iff there is a formula
in Γ of the form ψ = ∀~y1(σ1→ ∀~y2(σ2→ ·· · → ∀~yk(σk → b) . . .)), and variables ~x =~x1 . . . ,~xk

such that b[~y :=~x] = c, where~y =~y1 . . .~yk, and, for i = 1 . . . ,k, if σi = τ i
1→ τ i

2→ ··· → τ i
qi
→ ai

then all judgments Γ,τ i
1[~y :=~x], . . . ,τ i

qi
[~y :=~x] ` ai[~y :=~x] are derivable.

Lemma 2.5 defines a Ben-Yelles style proof-search algorithm, which can be seen as a be-
haviour of an alternating automaton. One interprets Γ ` c as a configuration of the machine,
where c is the internal state and Γ is (write-only) memory or database. A computation step
consists of a nondeterministic choice of an assumption ψ from the database, together with an
appropriate substitution, and of a universal split into as many computation branches as there are
premises in ψ . Each of these commences with the proof goal (internal state) given by a target of
one of the premises in ψ .
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3 SMS entailment as provability

Given a program P with negations, and a ground atom Ω, we define in this section a formula ϕ

such that P entails Ω under stable model semantics if and only if ϕ is intuitionistically provable.
We begin with some preparatory considerations regarding the (now fixed) program P .

We assume that DP = {c1, . . . ,cm}, and every clause K of P is written as
R(~u) :− P1(~v1), . . . ,Pr(~vr),¬S1(~w1), . . . ,¬Ss(~ws),

where ~u,~v1, . . . ,~vr,~w1, . . . ,~ws are some vectors of variables and constants, possibly with repeti-
tions. The arity of clause K is the arity of R (the length of~u).

Let ~x be the sequence of all variables in ~u taken without repetitions. Then let ~y stand for the
sequence of all variables occurring in~v1, . . . ,~vr,~w1, . . . ,~ws, but not occurring in~x, listed without
repetitions in some fixed order. We may now denote the clause K by K(~x,~y). The vector~y consists
of variables that only occur at the rhs of K.

Recall that program P is obtained from ground(P) by replacing all occurrences of negative
atoms ¬P(~c) by P(~c). The program P thus consists of clauses K(~a,~b) of the form

R(~e) :− P1(~c1), . . . ,Pr(~cr),S1(~d1), . . . ,Ss(~ds),
obtained from K(~x,~y) by substituting elements ~a,~b of DP for ~x,~y. Vectors ~e, ~ci, and ~di are ap-
propriately selected from ~a,~b. More precisely, if S denotes the substitution [~x,~y := ~a,~b], then
~e =~u[S],~ci =~vi[S] and ~di = ~wi[S].

The vocabulary of ϕ consists of DP and the following predicate symbols:

• For every predicate symbol P in P , there are four symbols P, P, P!, and P?, each of the
same arity as P.
• For every pair P, Q of predicate symbols, of arity m,n respectively, there is a predicate PQ

of arity m+n.
• For every clause K(~x,~y) of arity l with |~y|=m, and for every i= 0, . . . ,m there is a predicate

Ki of arity l + i, and a nullary predicate Ki.
• In addition we have six nullary predicates loop, Ω, A, B, ◦, and •.

The arity of predicates occurring in ϕ depends on the arity of atoms in P . However, all targets of
the implication subformulas in ϕ are nullary. As such, ϕ is an “easy formula” and by (Schubert
et al. 2016) it is translatable in polynomial time to a formula ϕ ′ with unary predicates so that ϕ ′

is provable if and only if so is ϕ .
The formula ϕ has the form ψ1→ ·· · → ψd → loop, where loop is a nullary predicate symbol,
and ψ1, . . . ,ψd are closed formulas, called axioms, listed in Figure 2. We now explain how these
axioms can be used to prove ϕ .

First we have the initial axioms (1), for every predicate letter R. These axioms can be applied
towards proving the main goal loop. Every time an axiom of type (1) is used, the proof universally
splits into two branches and at each of them a ground atom either of the form R(~c) or of the
form R(~c) is added to the proof environment. At the end of this phase we are facing the task
of proving loop under any possible choice of positive or overlined ground facts. More precisely,
every branch of the proof leads to a judgment Γ ` loop, where Γ contains a selection of ground
atoms in addition to the axioms of ϕ . Ideally we could make exactly as many choices as is needed
to fully determine a different model M at every branch. This happens when axiom (1) is used at
every branch exactly once for every predicate letter R and every substitution~z :=~c. Then the set Γ

contains either R(~c) or P(~c), for every R and every~c. We could achieve this in the propositional
case (Schubert and Urzyczyn 2018) by using all propositional atoms as proof goals one after one
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1. ∀~z((R(~z)→ loop)→ (R(~z)→ loop)→ loop), for every predicate symbol R of P .
2. Ω→ loop, A→ loop, and B→ loop.
3. ∀~z.R(~z)→ (R!(~z)→•)→ A, for every predicate symbol R of P .
4. ∀~z.R(~z)→ (R?(~z)→◦)→ B, for every predicate symbol R of P .
5. ∀~x~y.R!(~u)→ (P1!(~v1)→•)→ ··· → (Pr!(~vr)→•)→ S1(~w1)→ ·· · → St(~ws)→•,

for every K(~x,~y) of the form R(~u) :− P1(~v1), . . . ,Pr(~vr),¬S1(~w1), . . . ,¬St(~wt).
6. ∀~z.R?(~z)→ (K0

1(~z)→ K0
1)→ ··· → (K0

l (~z)→ K0
l )→ ◦, for every predicate symbol R

such that K1, . . . ,Kl are all clauses with target R.
7. ∀~z1~z2.K0(~z1,d,~z2)→K0, for every constant d 6= c, and every clause K with target R(~u),

where c occurs in~u as the |~z1|+1-st argument.
8. ∀~z1~z2~z3.K0(~z1,c,~z2,d,~z3)→ K0, for every pair c,d of different constants, and every

clause K with target R(~u), where the |~z1|+1-st and the |~z1|+1+ |~z2|+1-st arguments in
~u are the same variable.

9. ∀~z~ν .Ki(~z,~ν)→ (Ki+1(~z,~ν ,c1)→ Ki+1
)→ ·· · → (Ki+1(~z,~ν ,cm)→ Ki+1

)→ Ki,
for every clause K(~x,~y), and every prefix~ν of~y such that |~ν |= i < |~y|.
(Recall that c1, . . . ,cm are all the constants occurring in P .)

10. ∀~x~y.Km(~u,~y)→ (P?(~v)→RP(~u,~v)→◦)→Km, for every clause K(~x,~y) with target R(~u)
such that P(~v) occurs at the rhs of K(~x,~y).

11. ∀~x~y.Km(~u,~y)→ S(~w)→ Km, for every clause K(~x,~y) with target R(~u) such that ¬S(~w)
occurs at the rhs of K(~x,~y).

12. ∀~z~y~w(RP(~z,~y)→ PQ(~y,~w)→ (RQ(~z,~w)→◦)→◦), for every predicate symbols R,P,Q
of P of respective arity |~z|, |~y|, |~w|.

13. ∀~z(PP(~z,~z)→◦), for every predicate symbol P of P .

Fig. 2. Axioms of the formula ϕ . Vectors~z,~zi always consist of different variables.

in a deterministic fashion. As we now work with nullary goals, this is impossible, and we must
accept nondeterminism. So in general on any given branch we may either have a “partial model”
(when neither R(~c) nor R(~c) was chosen) or an “inconsistency” (when both are chosen). In the
latter case a certain branch of the proof leads to a judgment of the form Γ,R(~c),R(~c) ` loop.
Observe though that such an inconsistency is not as dangerous as it may appear. It only happens
when the same axiom (1) was used twice for the same ground substitution~z :=~c. Then in addition
to the “inconsistent” branch we have two other branches where both R(~c) and R(~c) were selected
in a consistent manner. A successful proof must therefore always handle all the consistent cases,
i.e., apply to all models.

The goal loop should be provable when P entails Ω. The three axioms (2):
Ω→ loop, A→ loop, B→ loop,

where A,B are fixed nullary predicate letters, correspond to the three ways in which the entail-
ment P |=SMS Ω may hold in a stable model: either Ω holds, or the model is unstable because
P ∪M proves too much (P is unsound for M), or the model is unstable because P ∪M does
not prove what is needed (P is incomplete for M). In the first case, a proof of ϕ should be
completed with help of the axiom Ω→ loop, as the atom Ω (a member of B(P)) is available as
an assumption. Otherwise the proof goal is set to A or B, respectively.
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The unsound case A : For the unsound case we have a nullary predicate • and a collection of
axioms (3) of the form

∀~z.R(~z)→ (R!(~z)→•)→ A.
Only one of axioms (3) can be used at every branch of any proof and only once. In our automata-
theoretic interpretation, it passes control from A to •, adding R!(~c) to the memory, for some
instance~c of~z. The following proof should succeed if R(~c) ∈ I(P,M), despite that R(~c) ∈M.

The intuitive meaning of the predicate R!(~c) is: “the atom R(~c) has been visited as a proof
goal in a derivation from P ∪M” (cf. Lemma 2.2).

Now consider any clause of P with target R, e.g., R(~x) :− P(~x),Q(~x),¬S(~x), where~x consists
only of variables and has no repetitions. (That is assumed for simplicity of the example.) With
such a clause we associate an assumption of type (5) which in this case takes the form

∀~x.R!(~x)→ (P!(~x)→•)→ (Q!(~x)→•)→ S(~x)→•,
and enforces a universal split to two new tasks: (i) prove • under the assumption P!(~c), and (ii)
prove • under the assumption Q!(~c), provided R(~c) has already been visited as a proof goal and
S(~c) holds in the model. Axioms of type (5) are now repeatedly applied in every branch of the
proof until • can be derived without creating a new proof task. This happens when an assumption
of the form R!(~d ) corresponds to a clause with no positive atom at the rhs. The next lemma makes
this explicit.

For a model M, let ΓM be the union of M∪M and the set of all axioms of ϕ .

Lemma 3.1
Let ∆ consist of assumptions of the form R!(~c). Then ΓM,∆ ` • holds if and only if there is an
atom R!(~c) ∈ ∆ such that P ∪M ` R(~c).

Proof
(⇒) Induction wrt the size of a long normal proof (cf. Lemma 2.3). To prove • one must use an
instance of one of the axioms (5), say of the form:

R!(~a)→(P1!(~c1 )→•)→ ··· →(Pr!(~cr )→•)→S1(~d1 )→ ··· →St(~ds )→• (*)

Then the atoms R!(~a),S1(~d1), . . . ,Ss(~ds) are provable from ΓM,∆, and this can only happen
when R!(~a)∈ ∆ and S1(~d1), . . . ,Ss(~ds)∈M, as there are no other assumptions with these targets.

In addition there are proofs of ΓM,∆,Pi!(~ci ) ` • , for i = 1, . . . ,r. By the ind. hypothesis,
there are atoms Ri!(~ei ) ∈ ∆,Pi!(~ci ) such that P ∪M ` Ri(~ei ). Should any of these belong to ∆,
we are done. Otherwise Ri(~ei ) = Pi(~ci ), for all i. (This covers the “base case” when r = 0 and
the induction hypothesis is not used.) Then we can derive R(~a) from the appropriate clause
in P ∪M, which is R(~a) :− P1(~c1 ), . . . ,Pr(~cr ),S1(~d1 ), . . . ,Ss(~ds ).
(⇐) Induction with respect to the size of a long normal proof. The proof must use a clause

R(~a) :− P1(~c1 ), . . . ,Pr(~cr ),S1(~d1 ), . . . ,Ss(~ds ) which corresponds to an axiom (5) instance of
the form (*). Then S1(~d1 ), . . . ,Ss(~ds ) ∈M and P ∪M ` Pi(~ci ), for every i = 1, . . . ,r. By the
induction hypothesis we have ΓM,∆,Pi!(~ci ) ` • , for all i. This enables us to apply (*) to obtain
a proof of • from ΓM,∆.

The following is an easy consequence of Lemmas 2.2 and 3.1.

Lemma 3.2
We have ΓM `A if and only if there is R(~c) ∈ I(P,M) such that R(~c) ∈M. That is, ΓM `A if
and only if P is unsound for M.
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Proof
(⇒) The only way to prove ΓM ` A is by applying one of the axioms (3), for some R(~c).

Then R(~c) ∈ ΓM and there must be a proof of ΓM,R!(~c) ` •. We apply Lemma 3.1 for the one
element set ∆ = {R!(~c)}.
(⇐) Let P be unsound for M. There is an atom R(~c) ∈ I(P,M) such that R(~c) ∈M. Then

we have P ∪M ` R(~c) by Lemma 2.2 whence ΓM,R!(~c) ` • by Lemma 3.1. To prove A one
uses an instance of axiom (3).

The incomplete case B: The atom B can be derived with the help of (4):
∀~z.R(~z)→ (R?(~z)→◦)→ B.

This axiom can be used when R(~c) ∈M, for some~c, and it yields the proof task ΓM,R?(~c) ` ◦.
The meaning of the assumption R?(~c) is “we claim that R(~c) cannot be derived from P ∪M”.
Now if K1, . . . ,Kl are all clauses with target R(~x) then we can use an instance of axiom (6)

R?(~c)→ (K0
1(~c)→ K0

1)→ ··· → (K0
l (~c)→ K0

l )→◦.
This results in l parallel proof obligations ΓM,R?(~c),K0

i (~c) ` K0
i , for all i ≤ l. The intuitive

understanding of the assumption K0
i (~c) is “clause Ki cannot be used to derive R?(~c)”.

We need some care to handle the additional free variables in K1, . . . ,Kl , and this is why we need
axioms of type (9). For example, if clause K is one of K1, . . . ,Kl , and it has free variables y1,y2,y3

occurring only at the rhs, then we need three additional assumptions to extend the vector~z. So
we take the following steps (recall that c1, . . . ,cm are all the constants):
∀~z.K0(~z)→ (K1(~z,c1)→ K1

)→ ··· → (K1(~z,cm)→ K1
)→ K0

∀~zy1.K1(~z,y1)→ (K2(~z,y1,c1)→ K2
)→ ··· → (K2(~z,y1,cm)→ K2

)→ K1

∀~zy1y2.K2(~z,y1,y2)→(K3(~z,y1,y2,c1)→K3
)→···(K3(~z,y1,y2,cm)→K3

)→K2

Note that with m elements of the domain we could “compress” the three example formulas into
one with m3 premises, but we cannot do it in general: the number of added variables in a clause
can be proportional to the size of the program. We have avoided that using n formulas with m
premises each rather than one formula with mn premises.

The auxiliary formulas, targeted ◦,K1
,K2, generate m3 independent processes, each with a dif-

ferent “valuation” of y1,y2,y3. For every such valuation one of the assumptions targeted K3 must
be fired to guarantee that clause K cannot be used towards a proof of R(~x).

For example let K has the form R(~x) :− P(~w),Q(~ν),¬S(~v), where ~x are different variables.
Then all variables ~w,~ν ,~v are among~x,~y, and we can use axioms of type (10) and (11):

∀~x~y.K3(~x,~y)→ (P?(~w)→ RP(~x,~w)→◦)→ K3

∀~x~y.K3(~x,~y)→ (Q?(~ν)→ RQ(~x,~ν)→◦)→ K3

∀~x~y.K3(~x,~y)→ S(~v)→ K3

Predicates denoted RP(~x,~w),RQ(~x,~ν) “remember” about the transition from the goal R?(~x) to
the goal P?(~w), respectively Q?(~ν). The axiom (12) ensures that this memory is transitive, and
axiom (13) terminates the proof construction when a loop in memory is revealed.

An additional source of complication is that the lhs of a clause can contain constants or re-
peated variables. Such a clause can therefore be used only towards matching goals, and this is
handled by axioms (7) and (8). For example, if clause K begins with R(x,y,x) :− ·· · , and an
assumption K0(a,b,c) was introduced with a 6= c, then the proof can be immediately completed
using axiom (8) of the form ∀z.K0(a,z,c)→ K0.

We now show that a proof of B is possible if and only if our program P is incomplete. We
begin with the “if” part.
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Refutations Fix an M. Let a ∈ B(P). A refutation for a is a possibly infinite tree labeled by
members of B(P) such that the root has label a and as many immediate subtrees as there are
clauses in ground(P) with target a. For every such clause, the corresponding subtree

• either is a refutation for b, for some positive atom b occurring at the rhs of the clause,
• or consists of a single node labeled b, where b ∈M and ¬b occurs at the rhs of the clause.

Lemma 3.3
If R(~c) 6∈ I(P,M) then there exists a refutation for R(~c).

Proof
Suppose R(~c) 6∈ I(P,M). Then for any clause of ground(P) of the form

R(~c) :− P1(~c1), . . . ,Pr(~cr),S1(~d1), . . . ,Ss(~ds),
either some Pi(~ci) is not in I(P,M), or some Si(~di) is in M. A refutation is thus defined by
co-induction.

Let D be a refutation. For any node ν of D we define a set of atoms ∆ν by induction. If ν is the
root then ∆ν =∅. Otherwise ν is an immediate successor (child) of a node µ . If the labels of µ

and ν are respectively P(~a) and Q(~b) then we take ∆ν = ∆µ ∪{PQ(~a~b)}. One can say that ∆ν

collects the history of transitions between atoms along the path to ν . Observe that, as the distance
from the root increases, this history must eventually contain a repetition.

Lemma 3.4
Let node ν in a refutation D be labeled R(~c). Then ΓM,∆ν ,R?(~c) ` ◦.

Proof
Let h(ν) be 0 if all children of ν are labeled by overlined atoms of the form Q(~d ) or some label
occurs twice on the path to ν . Otherwise take h(ν) to be one plus the maximum of h(π), for
all children π of ν . The measure h(ν) is well-defined, because on any infinite path labels must
repeat. The proof goes by induction on h(ν).

First suppose that an atom P(~c) occurs twice at the path leading to ν . Then the set ∆ν contains
a sequence of assumptions of the form PQ(~c, ~d ), QS(~d,~e), . . . , TP(~a,~c). By repeatedly using
axioms (12) we reduce our proof obligation ΓM,∆ν ,R?(~c) ` ◦ to proving ◦ from an environment
containing PP(~c,~c) and finally we apply axiom (13).

In the other case we prove ◦ using an axiom of type (6). This splits our proof into as many
parallel ones as as there are clauses in P targeted R(~u), for some ~u. For every such clause
K(~x,~y) we need to prove the judgment ΓM,∆ν ,R?(~c),K0(~c) ` K0. Here we have two cases, de-
pending on whether the vector ~u can be instantiated to ~c or not. The latter may happen when
~u contains a constant or a repetition while ~c does not. But then an appropriate instance of ax-
iom (7) or (8) can be applied to do the job. Otherwise we apply axioms (9) and this leads
to further branching of the proof. At the end of each of the branches we have the judgments
ΓM,∆ν ,R?(~c),K0(~c), . . . ,Km(~c, ~d ) ` Km, where ~d are all possible choices of constants. So now
we have as many judgments to prove as there are immediate successors of ν in D: each one
corresponds to a clause K(~c, ~d ) in ground(P) targeted R(~c).

Suppose that the successor π of ν corresponding to K(~c, ~d ) is labeled S(~e), where S(~e) ∈M.
Then S(~e) ∈ ΓM and we can derive Km using axiom (11).

Otherwise the subtree of D rooted at π is a refutation of some P(~e). Now h(π)< h(ν) whence
by the induction hypothesis we have a proof of the judgment ΓM,∆ν ,RP(~d,~e),P?(~e) ` ◦. It
remains to call an instance of axiom (10).
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Lemma 3.5
If P is incomplete for M then ΓM ` B.

Proof
There is an atom R(~c) ∈M− I(P,M). By Lemma 3.3 we have a refutation for R(~c). Apply
Lemma 3.4 to the root to obtain ΓM,R?(~c) ` ◦, and use axiom (4) to derive B.

We now prove that whenever B is provable, the program must be incomplete.1

Derivations from P ∪M : Proofs of P ∪M ` a, for a ∈ D(P), (cf. Lemma 2.2) are of
particularly simple shape (they do not contain any lambda-abstractions). Such proofs can be
represented as trees labeled with clauses of P and elements of M. More precisely, we say that
a finite tree T is a derivation for R(~e) when:

• The root of T is labeled K(~a,~b), where K(~a,~b) is a clause in P of the form
R(~e) :− P1(~c1), . . . ,Pr(~cr),S1(~d1), . . . ,Ss(~ds). (*)

• The immediate subtrees of T are derivations of P1(~c1), . . . ,Pr(~cr) and single nodes labeled
S1(~d1), . . . ,Ss(~ds) ∈M.

Let K(~a,~b) be of the form (*) and assume that ~b = b1 . . .bd . We say that the following atoms
(where i = 0, . . . ,d and j = 1, . . . ,r) are justified by clause K(~a,~b):

R?(~e), Ki(~e,b1 . . .bi), RP j(~e,~c j).
If a node n of T is labeled by a clause which justifies an atom a then we also say that the atom a is
justified by the node n. We say that T contains a return if there are two nodes in T such that one
is a descendant of the other and both justify the same atom of the form Q?(~e). Clearly, a return
can be “pumped out” so the following lemma is quite immediate.

Lemma 3.6
An atom Q(~e) belongs to I(P,M) if and only if there exists a derivation for Q(~e) without returns.

Justified environments: Let T be a derivation. An atom of the form Q?(~e) or of the form
Ki(~e,~b) is justified by T when it is justified by some clause occurring as a label in T . An atom of
the form PQ(~e,~c) is justified by T when it is either justified by some clause occurring as a label
in T or there are atoms PS(~e, ~d ) and SQ(~d,~c) justified by T . (Informally, T justifies the transitive
closure of the relation induced by atoms justified by labels of T .)

Now let ∆ consist of atomic formulas of forms PQ(~e,~c), P?(~e) and Ki(~e,~b). We say that ∆ is
justified by T when all members of ∆ are justified by T .

Lemma 3.7
Let T be a derivation without returns and let ∆ be justified by T . Neither ◦ nor any of the logical
constants Ki is provable from ΓM,∆.

1 Surprisingly, the natural conjecture that every proof of B yields a refutation (a correct refuter’s winning strategy) is
actually false. In a sense, the refuter can win by cheating, but she cannot cheat against a winning strategy of the prover.
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Proof
Suppose otherwise, i.e., suppose that either ◦ or some Ki has a (long normal) proof M. By induc-
tion on the size of M we show that it is impossible. We proceed by cases depending on the head
variable of M. As a first example, consider the case when the proof uses an assumption

∀~z.R?(~z)→ (K0
1(~z)→ K0

1)→ ··· → (K0
l (~z)→ K0

l )→◦
of type (6) to derive ◦. Then, for some ~e, we have ΓM,∆ ` R?(~e) and ΓM,∆,K0

i (~e) ` K0
i , for

all i. There is no axiom where R? occurs in the target, so it must be the case that R?(~e) ∈ ∆. Thus
R?(~e) is justified by some clause Ki(~a,~b) occurring in T . Therefore also K0

i (~e) is justified by T
(for this particular i), whence the environment ∆,K0

i (~e) is justified by T . This way we obtain
a contradiction from the induction hypothesis, because the proof of ΓM,∆,K0

i (~e) ` K0
1 must be

shorter than our proof of ΓM,∆ ` ◦.
The constant ◦ could be proven using the transitivity scheme (12):

∀~z~y~w(RP(~z,~y)→ PQ(~y,~w)→ (RQ(~z,~w)→◦)→◦)
There are~e,~b,~c such that ΓM,∆ ` RP(~e,~b) and ΓM,∆ ` PQ(~b,~c). This can only happen when
RP(~e,~b) and PQ(~b,~c) are in ∆ and therefore are justified by T . By definition, also RQ(~e,~c) is
justified, and we apply induction to the proof of ΓM,∆,RQ(~e,~c) ` ◦.

If ◦ were proven using the axiom ∀~x(PP(~x,~x)→◦) of type (13) then PP(~e,~e) ∈ ∆, for some~e.
This is a contradiction because PP(~e,~e) cannot be justified in a derivation without returns.

Now suppose that a proof of ΓM,∆ ` Ki uses an axiom (9):
∀~z~ν .Ki(~z,~ν)→(Ki+1(~z,~ν ,c1)→Ki+1

)→ ··· →(Ki+1(~z,~ν ,cm)→Ki+1
)→Ki,

where ~ν is a vector of variables of length i, and c1, . . . ,cm are all the constants of P . There are
vectors ~e, ~d of constants such that ΓM,∆ ` Ki(~e, ~d ) and ΓM,∆,Ki+1(~e, ~d,c j) ` Ki+1, for all j.
We must have Ki(~e, ~d ) ∈ ∆, as there is no other way to prove it, whence Ki(~e, ~d ) is justified
by T . Therefore a clause of the form K(~a,~b) occurs in T , for some ~a and some vector ~b ex-
tending ~dc j. Then Ki+1(~e, ~d,c j) is justified by T and we can apply the induction hypothesis to
ΓM,∆,Ki+1(~e, ~d,c j) ` Ki+1. Other cases are omitted.

Lemma 3.8
If ΓM ` B then P is unsound for M : there exists an atom R(~e) such that R(~e) ∈M but
R(~e) 6∈ I(P,M).

Proof
If R(~e) ∈ I(P,M) then any derivation for R(~e) without returns justifies R?(~x). Therefore a proof
of ΓM,R?(~e) ` ◦ is impossible by Lemma 3.7.

Proposition 1
The formula ϕ is provable if and only if P |=SMS Ω.

4 Refutations into programs

Now we describe a translation in the direction opposite to that discussed in Section 3, namely
from bounded-arity intuitionistic formulas to answer set programs. The title of this section al-
ludes to the famous slogan "proofs into programs", because our translation demonstrates that
ASP, as a programming paradigm, corresponds to logic understood from the refuter’s, rather
than prover’s, point of view.
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Let ϕ be a Σ1 formula with atomic predicates of arity at most r. We assume that ϕ is written
so that no free variable is bound and no variable is bound twice. From now on the variables free
in ϕ are called constants, the word variable being reserved for the bound ones. The latter may of
course become free in certain subformulas of ϕ .

Let n be the length of the formula ϕ . The number of constants and variables in ϕ cannot
exceed n so let us assume that all the constants in ϕ are among c1, . . . ,cn, and that all bound
variables are among x1, . . . ,xn. Observe that the number of all atoms over c1, . . . ,cn,x1, . . . ,xn is
polynomial in n.

A sequence of constants of length n is called a substitution. We write ψ[S] for the result of
applying a substitution S = ci1 . . .cin to a formula ψ , i.e., substituting ci j for x j, whenever x j is
free in ψ .

Let Γ be a set of Π1 formulas of the form ψ[S], where ψ is a subformula of ϕ , and S, T be
substitutions. A statement of the form Γ 0 a, where a is a closed atom, is called a disjudgment.
A triple of the form 〈ψ,S,T 〉 is called a question asked at Γ 0 a when the formula ψ[S] belongs
to Γ and the target of ψ[S][T ] coincides with a.

Then ψ = ∀~y1(σ1 → ∀~y2(σ2 → ··· → ∀~yk(σk → b) . . .)), where σi ∈ Σ1, and b is an atom.
A question 〈ψ,S,T 〉 represents a possible proof attempt (an attempt to construct a term in long
normal form) with a variable of type ψ[S] as a head variable and with ~y1, . . . ,~yk instantiated
by T . The variables~y1, . . . ,~yk are called the top variables of ψ . Every σi is a Σ1 formula of shape
τ1 → τ2 → ··· → τq → ci, where τ j ∈ Π1, and c is an atom. The atom ci is then called the i-th
subgoal in ψ and the formulas τ1, . . . ,τq are i-th descendants of ψ . Note that top variables of ψ

may occur free in the target atom of ψ , the i-th descendants and subgoals of ψ . More precisely,
we have FV(b)∪FV(τ j)∪FV(ci)⊆ FV(ψ)∪~y1∪·· ·∪~yi.

An i-th answer to the question 〈ψ,S,T 〉 as above is any disjudgment of the form Γ′ 0 ci[S][T ]
such that Γ,τ1[S][T ], . . . ,τq[S][T ] ⊆ Γ′. A question is answered in a set Z when it has an i-th
answer in Z , for some i.

The intuition to be associated with an i-th answer is that the question (proof attempt) 〈ψ,S,T 〉
is challenged at the i-th argument: the prover is expected to fail to prove the formula σi[S][T ].

Finally we define a refutation soup for ϕ , for brevity called soup, as a set Z of disjudgments
such that ∅ 0 ϕ belongs to Z and every question asked at any (Γ 0 a) ∈Z is answered in Z .
It is shown in (Schubert et al. 2016) that:

• If there is a soup for ϕ then 0 ϕ .
• If 0 ϕ then there is a soup of size at most 2nr

, where r is the maximum arity of the
predicates in ϕ .

We now construct a program P such that P has a stable model if and only if there exists a soup
for ϕ of size 2nr

.
The domain DP of P consists of all (occurrences of) subformulas of ϕ , all the constants

c1, . . . ,cn, and two additional constants 0 and 1. The size of DP is clearly polynomial in n. Note
that we count different occurrences of the same subformula as different objects.

Every disjudgment in a soup of size 2nr
can be identified by a sequence of 0s and 1s of

length nr, called an address. One can think of a soup as of a set of triples of the form ξ : Γ 0 a,
where ξ is the address of the disjudgment Γ 0 a.

The vocabulary of P: The atomic predicates occurring in P are written using some abbrevi-
ations. We use ξ ,η , . . . as metavariables for addresses, i.e., ξ ,η , . . . are sequences of length nr,
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intended to be instantiated by 0s and 1s. We also write S,T, . . . for “substitutions”, i.e., sequences
of length n to be instantiated by constants of ϕ .

The program P will use the following predicates. Each of them is accompanied below by its
intuitive meaning.

• Dsci(τ,ψ,S,T,U), “the formula τ is an i-th descendant of ψ , and τ[U ] is obtained
from τ[S] by applying T to the top variables of ψ”;

• Sbgi,a(ψ,S,T ), “the atom a is the result of applying T to the i-th subgoal in ψ[S]”;
• Hda(ψ,S,T ), “the atom a is the result of applying T to the head atom of ψ[S]”;
• Gola(ξ ), “the atom a is the goal at the address ξ ”;
• Env(ψ,S,ξ ), “the instance ψ[S] of ψ occurs in the assumption environment at ξ ”;
• Env(ψ,S,ξ ), “the above does not hold”;
• Qst(ψ,S,T,ξ ), “the triple 〈ψ,S,T 〉 is a question at ξ ”;
• Ansi(ψ,S,T,ξ ,η), “the question 〈ψ,S,T 〉 at ξ has an i-th answer at η”;
• Ansi(ψ,S,T,ξ ,η), “the above does not hold”;
• F, an auxiliary “false” for the contradiction clauses (11) and (14);
• Y(ψ,S,T,ξ ), an auxiliary predicate for clauses (14–15).

The clauses of P: We begin with the most obvious clauses determined by the syntax of ϕ . There
is a number of facts of the form

1. Dsci(τ,ψ,S,T,U) :− ;
2. Sbgi,a(ψ,S,T ) :− ;
3. Hda(ψ,S,T ) :− ,

where τ,ψ,S,T,U , are concrete formulas and substitutions, and a is any atom. For example,
if n = 4 and ψ = ∀y1(R(y1,c2)→ ∀y2(P(y1,c1)→ R(c1,y2,y3))) then P contains all clauses
of the form HdR(c1,c4,c2)(ψ,∗,∗,c2,∗,∗,c4,∗,∗) :− , where every asterisk can be replaced by
any constant. This clause can be written as HdR(c1,c4,c2)(ψ,S,T ) :− , where S = (∗,∗,c2,∗) and
T = (∗,c4,∗,∗). Let ψ = σ →∀y3((· · · → τ → ··· → a)→∀y1(σ

′→ b)) be another example,
where y4 is free and τ = ∀y2(P(y2,y1)→ R(y3,y4)). Then P contains e.g., all clauses of the
form Dsc2(τ,ψ,S,T,U) :− , for S = (∗,∗,∗,d ), T = (∗,∗,e,∗), and U = (∗,∗,e,d ), where the
asterisks can be replaced by anything. This is because variables y1 and y2 are bound in both ψ

and τ , and therefore ignored by the substitutions. There is a lot of similar clauses but still only
a polynomial number of such clauses. The remaining clauses determine the shape of the model
which is supposed to represent a soup. We begin with a few facts describing the initial judgment
at address 00 . . .0. If ϕ = ψ1→ ··· → ψn→ a then the following clauses are in P:

4. Gola(00 . . .0) :− ;
5. Env(ψi,S,00 . . .0) :− ;
6. Env(ψ,S,00 . . .0) :− ,

where i = 1, . . . ,n, ψ 6∈ {ψ1, . . . ,ψn}, and S is an arbitrary substitution (note that ψi have no free
variables, so S does not matter).

The following clauses guarantee that any answer given in the model is correct with respect to
the question it responds to.

7. Env(τ,U,η) :− Ansi(ψ,S,T,ξ ,η), Env(τ,U,ξ );
8. Env(τ,U,η) :− Ansi(ψ,S,T,ξ ,η), Dsci(τ,ψ,S,T,U);
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9. Gola(η) :− Ansi(ψ,S,T,ξ ,η), Sbgi,a(ψ,S,T ).

The last one of the three above clauses defines the goal at η , while the first two list the necessary
assumptions at η . But the definition of a soup allows any other formula to occur as an assumption
in the answer judgment. This must be reflected by any stable model. For this purpose we add to P

the three clauses (using the special symbol F):

10. Env(ψ,S,ξ ) :− ¬Env(ψ,S,ξ ), Env(ψ,S,ξ ) :− ¬Env(ψ,S,ξ ),
11. F :− Env(ψ,S,ξ ),Env(ψ,S,ξ ),¬F,

which force that either Env(ψ,S,ξ ) or Env(ψ,S,ξ ) must hold, but not both.
A similar measure is also applied for the predicates Ansi (so far only occurring at the rhs).

That is, P contains (for i = 1, . . .n) the constructs:

12. Ansi(ψ,S,T,ξ ,η) :− ¬Ansi(ψ,S,T,ξ ,η),Qst(ψ,S,T,ξ ),
Ansi(ψ,S,T,ξ ,η) :− ¬Ansi(ψ,S,T,ξ ,η),Qst(ψ,S,T,ξ ).

The next clauses (one for each a) define the notion of a question.

13. Qst(ψ,S,T,ξ ) :− Env(ψ,S,ξ ), Hda(ψ,S,T ), Gola(ξ ).

Clauses 12 permit an arbitrary choice between predicates Ansi(. . .) and Ansi(. . .). We need
additional clauses to ensure that this choice makes sense, i.e., that every question has an answer.
For this purpose P includes clauses (where i≤ n, and Y does not occur elsewhere).

14. F :− ¬Y(ψ,S,T,ξ ), Qst(ψ,S,T,ξ ),¬F;
15. Y(ψ,S,T,ξ ) :− Ansi(ψ,S,T,ξ ,η).

Clauses (14–15) together enforce that any stable model of the program must satisfy the follow-
ing property: If Qst(ψ,S,T,ξ ) ∈M then Ansi(ψ,S,T,ξ ,η) ∈M, for some i and η . Indeed, in
a stable model it is impossible to have Qst(ψ,S,T,ξ ) without Y(ψ,S,T,ξ ). And Y(ψ,S,T,ξ )
can only be derived if Ansi(ψ,S,T,ξ ,η) holds for some i and η .2

At the end we need to guarantee that no judgment can address two goals. This is handled by
one clause for any pair a and b of distinct atoms.

16. :− Gola(ξ ), Golb(ξ ).

Cooking a soup from a model We now show that every stable model M of P defines a soup
for ϕ . Clauses (10) and (11) force M to assign an environment Γξ to every address ξ . This Γξ is
uniquely defined. Indeed, for each formula ψ[S] either Env(ψ,S,ξ )∈M or Env(ψ,S,ξ )∈M by
clause (10), and not both of them by clause (11). (Note that (10) alone are not enough, because
Env and Env may occur at the lhs of other clauses.)

Lemma 4.1
Let Z consists of all disjudgments ξ : Γξ 0 a such that Gola(ξ ) ∈M. Then Z is a soup.

2 This is an example of a more general pattern: clauses Y(~y) :− P(~x,~y) and :− ¬A(~y), where Y is fresh, enforce that
any stable model must satisfy ∀~y∃~xP(~x,~y).
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Proof
Clauses (4–6) ensure that the initial judgment is in Z . In addition, whenever Gola(ξ ) ∈M,
and the triple 〈ψ,S,T 〉 is a question at ξ , then this question has an answer in Z . Indeed,
clause (13) yields Qst(ψ,S,T,ξ ) ∈M, and this implies that either Ansi(ψ,S,T,ξ ,η) ∈M or
Ansi(ψ,S,T,ξ ,η) ∈M by clause (12). Because of (14) we must have Y(ψ,S,T,ξ ) ∈M and
since M is stable, one of clauses (15) must have been fired, i.e., at least one Ansi(ψ,S,T,ξ ,η)

is in the model. It remains to observe the effect of clauses (7–9): the disjudgment at η is indeed
an answer to the question 〈ψ,S,T 〉 asked at ξ .

Boiling out a model from a soup Suppose Z is a soup without unnecessary ingredients, that is
every judgment in Z , except the initial judgment, is an answer to some question posed in Z .
Assume also that every judgment in the soup is given an address, with the initial judgment hav-
ing the address 00 . . .0. We require that any given address uniquely determines a judgment, but
one judgment may have several addresses. Repetitions are permitted, because it is technically
convenient that all addresses of a fixed length are in use (do actually refer to some judgments).

We say that the address 00 . . .0 has depth zero. Otherwise the depth of an address is 1 plus the
minimal depth of a question it answers. This definition is extended to closed atoms as follows:
the depth of a closed atom, where a single address occurs (like e.g., Env(ψ,S,ξ )) is the depth of
that address, and in case of Ansi(ψ,S,T,ξ ,η) it is the depth of the first address ξ .

We define a model M (recall that a model is just a set of ground atoms). The elements of M
are chosen as follows:

• Atoms Dsci(τ,ψ,S,T,U), Sbgi,a(ψ,S,T ), Hda(ψ,S,T ) are selected according to the syn-
tax of the main formula ϕ .

• Atoms Gola(ξ ), Env(ψ,S,ξ ), Env(ψ,S,ξ ) are selected according to the shape of judg-
ments.
• Atoms Qst(ψ,S,T,ξ ), Ansi(ψ,S,T,ξ ,η), and Ansi(ψ,S,T,ξ ,η) are selected according

to the structure of questions and answers in the soup. But if 〈ψ,S,T 〉 does not form a ques-
tion at address ξ then neither Ansi(ψ,S,T,ξ ,η) nor Ansi(ψ,S,T,ξ ,η) is in the model.

• Atom F is not selected.
• The atom Y(ψ,S,T,ξ ) is selected whenever at least one of Ansi(ψ,S,T,ξ ,η) is selected.

Lemma 4.2
The model M is a stable model of P .

Proof
One must check that all the selected atoms are derivable, i.e., belong to I(P,M). For the syntax-
related atoms it is obvious by the choice of facts (1–3). In all other atoms there are occurrences
of addresses, and one proceeds by induction with respect to depth. Suppose all atoms in M

of depth smaller than d are derivable, and let the depth of ξ be d. Consider the goal a at
the address ξ . If d = 0 then Gola(00 . . .0) is derived from clause (4). Otherwise ξ is an ad-
dress of an answer to a question of depth at most d− 1. Thus we can instantiate clause (9) as
Gola(ξ ) :− Ansi(ψ,S,T,ζ ,ξ ), Sbgi,a(ψ,S,T ), where ζ is of depth at most d− 1, and by the
induction hypothesis Ansi(ψ,S,T,ζ ,ξ ) ∈ I(P,M). This derives Gola(ξ ) which is then used
to derive atoms of the form Qst(ψ,S,T,ξ ) from (13).3 Given Qst(ψ,S,T,ξ ), clause (12) yields

3 This is the only way to derive Qst(ψ,S,T,ξ ), so it can only happen when the necessary atoms are in M, i.e., the
question in question does actually occur in the soup.



First-order ASP 17

either Ansi(ψ,S,T,ξ ,η) or Ansi(ψ,S,T,ξ ,η), for any η , depending on whether an appropriate
answer occurs at η or not.

The proof that no unwanted atom is derivable goes by induction with respect to derivations
in PM. First observe that clauses (1–6) only introduce atoms that belong to the model M.
Then note that in each pair of clauses (10) and (12) one of the negated atoms is already in the
model. As the corresponding clause gets erased, it is impossible to use (10) or (12) to derive both
the underlined and non-underlined version of the same atom. In particular, clause (11) will not
derive F. Suppose an atom Env(τ,U,η) is derived by clause (7). Then both Ansi(ψ,S,T,ξ ,η)

and Env(τ,U,ξ ) must have been derived before, and therefore belong to M. It follows that η

provides an i-th answer to ξ in our soup, whence Env(τ,U,η) ∈M as well. Similar argument
applies to atom derived using clauses (8,9,13,15).

We can now conclude with the following

Proposition 2
The program P has a stable model if and only if ϕ is refutable.

Corollary 3
SMS entailment and monadic Σ1 provability formulas are mutually polynomial time translatable.

Conclusion

In this paper we demonstrated a mutual polynomial time translation between first-order Answer
Set Programming and the bounded arity Σ1 fragment of intuitionistic predicate logic. One of
the main motivations for this work was to give an alternative point of view on ASP, namely the
constructive interpretation. Constructive proofs serve to derive conclusions from assumptions,
very much as logic programs derive goals, therefore we find it natural to work in the context of
the ASP entailment problem. Especially because existence of stable models is nothing else than
non-entailment.

While our translations may seem complicated on the first look, let us point out that they are
actually quite natural. The format of the object (target) language is very simple, in particular
very similar to the ASP source language. All the assumptions in the resulting formul have the
form of straightforward rules where each premise is either an atom or a pseudo-negated atom
of the form a→ ?. With such rules as axioms, proof search can be seen as an algorithm which
manipulates a database by expanding and querying it. The translation therefore not only yields
the known complexity bound but also delineates the spectrum of adequate proof tactics.

Our work gives a complementary sight on the explanation of logic programming in terms of
Howard’s system H introduced by Fu and Komendantskaya (Fu and Komendantskaya 2017).
The system interprets Horn formulas as types, and derivations for a given formula as the proof
terms inhabiting the type corresponding to the formula. The authors demonstrate that different
forms of resolution can be expressed in this system and relate them. In our work the operation
of resolution is limited since we work with constants only. Instead, our work concentrates on the
operational semantics of negation. Indeed, our translation, due to the limited number of available
formula targets, has strong flavour of countinuation-passing style transformation.

Logic programming with negation undestood as in ASP has its explanation in terms of equi-
librium logic (Pearce 1999; Pearce 2006). This logic is built on the foundations of intuitionistic
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theory called here and there logic, which can be axiomatized in propositional case by the scheme

(¬α → β )→ ϕP(α,β ),

where ϕP(α,β ) = ((β → α)→ β )→ β is the Peirce’s law. It is interesting to see that proof
construction techniques that occur when the result of our translation is to be proved are very
similar to ones used in case of here and there logic.

While the equilibrium logic relies on a property of a model to settle the space to represent
a coherent database of inferrable basic statements, in the case of our logic, the space is located
in the proof environment that evolves during the proof construction process.
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