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Abstract—Causal modeling is very useful in the pursuit of 
cybersecurity since it often helps us to execute actions leading to 
fruitful results, without performing unnecessary computations 
that might affect the values of other variables. The causative 
factors that are necessary and sufficient, are explored, with the 
help of modeling a real-life example taken from 2017, United 
States cybersecurity case. One can recommend future company 
policies, based on the causal modeling results. It also makes us 
understand how an event such as a breach of cybersecurity 
occurs, and how it can be dealt with.  
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I. INTRODUCTION (SCIENTIFIC METHOD FOR 
CYBERSECURITY BASED ON CAUSATION) 

We offer a scientific method based on the notion of 
causation, which is productive in the field of cybersecurity. 
Our goal in this paper is to develop this notion, in terms of 
which practical cases of cybersecurity can be understood and 
evaluated. An example of such a practical case is that of an 
internet infrastructure company called Cloudflare, that 
suffered from a severe data security breach. The problem 
was solved by a Google employee who isolated the cause of 
the data breach and fixed the problem; however, he did not 
perform any formal causal modeling of the situation, which 
could have helped the public to be informed about similar 
future investigation modes. Here we propose the method of 
causal analysis and describe how it is to be handled, by 
recommending that the problem at hand is to be 
accomplished by causal modeling, in order to provide 
support for future cases. This shows that the problem at hand 
is the effect of some particular cause; this way, we can 
transform indeterminate situations into more determinate 
ones.  

II. DESCRIPTION AND IMPORTANCE OF  THE TOPIC OF CAUSAL 
MODELING FOR CYBERSECURITY 

 New methods for tackling the modern problem of 
cybersecurity are critical. Instead of trying to fit the new 
phenomenon into the framework we already have, we should 
try a new approach. [1].  

This paper covers some important aspects of handling 
modern cases of cybersecurity, with the new approach of 
causal  modeling.   

In 2017, the internet infrastructure company Cloudflare 
stated that a (computational) virus in its platform caused 
accidental escape of potentially vulnerable customer data. 
Cloudflare offers performance and security services to about 
six million customer websites (including companies that 
have a large incoming traffic, such as Fitbit and OKCupid), 
so though the leaks were occasional and only involved small 
pieces of data, they drew from a vast collection of 

information. The flaw was uncovered and fixed by a Google 
vulnerability researcher, in the early part of 2017.[2] 
However, if proper causal modeling accompanied this 
protection, then future cases could also benefit.  

According to the Google researchers who discovered the 
virus, now known as “Cloudbleed,” the problem or 
vulnerability had been sending data to the browsers of the 
users when they visited a web page hosted by the company. 
This was extremely costly to the companies, and also to the 
economy overall. 

The first impulse can be to use statistical modeling. 
Statistical modeling, a widely used technique, can handle 
some of this data breach problems, but not all.  

One can draw from past experiences, and try to build a 
probability distribution. [3] Standard probability theory has 
been productive in these problems and similar ones, when 
the past experiences are readily available for analysis. But 
there are instances where it fails to provide adequate 
concepts and mathematical methods, particularly when the 
past experiences are either not available, or are not similar.  

A context like breach of data can interact with the 
phenomena of interest in ways that standard probability 
theory does not productively capture; that is, in ways that 
standard probability theory does not provide insights and 
methods for useful modeling and fails to capture key 
concepts.  Some of these key concepts are the necessary and 
sufficient conditions that produce the essential model of the 
cause-effect relationships involved.  

A necessary condition is one that is required if a certain 
effect is to follow. For example, it is necessary for the data 
security in cases like Cloudflare, that the information is 
given out to companies, without there being bugs in the 
system. A sufficient condition, on the other hand, is enough 
for certain effect to follow. So, it is sufficient for data 
security that there not be bugs (like computational viruses) in 
the system where it can originate. Thus, in systems like 
Cloudflare, data security signifies the absence of bugs, which 
constitutes both necessary and sufficient conditions.  

Some of the usage of the necessary and sufficient 
conditions are as follows: we have to look for causes that are 
common in the cases where the effect also occurs. Thus, 
some event is not a necessary condition if it occurs without 
the effect occurring. [4] [5]  

Thus, a necessary condition for a normal transfer of 
information is the absence of bugs. The sufficient condition 
of detecting that the presence of bugs causing security breach 
has taken place, is as follows: if an instance of the lack of 
security (in data transfer) occurs (bugs) and an instance in 
which this lack of security does not occur, (absence of bugs), 
the circumstance(s) in which the two situations differ is an 
indispensable part of the cause – a sufficient condition.  



 

 

One can view cause-effect relationships via directed 
acyclic graphs; one should also link these types of causal 
parameters and observed data, as well as approaches to 
estimation of the resulting statistical parameters. [6] The 
method of using Directed Acyclic Graphs for viewing causal 
relationships has been successfully utilized in the fields of 
Biometrics and Biostatistics. [7] It is also useful in the field 
of cybersecurity.  

We can explore causal modeling on observational data.  
This is important in cases like the cybersecurity of 
Cloudflare, because  controlling the situation of data leakage 
will require knowing which independent factors actually 
cause the  outcomes, so that we may create changes in the 
scenario of information pool in a manner that will be 
predictable and useful in the future. 

One may look for correlation, but one might be fooled by 
spurious association; so can the method of regression. We 
must move beyond correlation to causation as a 
methodology, if we want to make use of cause and effect 
relationships. 

Suppose that we tried to confront  this problem with only 
the knowledge of the joint distribution of a set of random 
variables. Then we cannot deal with certain mechanisms, 
such as leading to actionable intelligence better than models 
based on statistical methods. Ultimately, we will be able to 
identify practices, methods, and tools that improve how 
software is built. 

But if we are able to formulate the causal structure and 
the joint distribution among a set of random variables, then 
we can predict the effects of intervening in the system by 
maneuvering the values of certain variables. For example, if 
we can identify or discern that the computational virus in the 
platform caused the data leakage (not just a joint distribution 
between them), we can predict that stopping those bugs will 
prevent the leakage. Predicting the effects of interventions is 
important.  

Fortunately, in this case, the cause of the data leakage 
(bugs in the system) were strongly suspected and also 
identified.  One could use the domain knowledge to solve the 
problem at hand.  

One could utilize the method of causal modeling to 
predict the effects of  interventions and policies of the 
company, and also to recommend company policies.  

Let us consider the case where the causal structure is 
known (the case of the company with data leakage).  The 
population actually sampled is that of the known case; that is 
the non-maneuvered population. The hypothetical population 
for which these bugs are taken out is the causally 
maneuvered population.  

Studying this case, we find that if the policy of taking out 
the bugs in the system were put into effect by the company, it 
would be effective in stopping the leakage, but it would not 
affect the value of any other variable in the population, 
except through its effect on stopping the leakage. In this 
case, we can say that the leakage-stopping has been 
maneuvered.  However, the other variables are not affected.  
For example, the distribution of the number of people 
accessing the web sites does not change. This way, causal  
modeling operates by performing less unnecessary 
computational processes.  

In this exploratory analysis, we can show that one can 
generate a plausible graph explaining the occurrence of the 
lack of cybersecurity.  

The graphs for the causally maneuvered and the non-
maneuvered populations will be different.  The distribution 
of the data leakage will be different.  

Fig. 1. Non-maneuvered graph (before proper modeling was 
accomplished) 

Fig. 2. Graph maneuvered by causal modeling  

The Figure 2 shows 3 possible paths to data leakage; but 
the predominant cause is dealt with first (bugs) and the 
connection leaves it open for the other vertices to be 
considered later. Some vertices that are parents of the 
causally maneuvered variable in the non-maneuvered graph 
may not be parents of the maneuvered variables of the 
causally maneuvered graphs (notice the arrows being absent 
in the second graph). 

Next, we have to describe the change in the distribution 
of the bugs in the system that will result by taking the bugs 
out in this case (that is, so far).  

The value of a variable that represents the company  
policy is different in the two populations.  

So, we can introduce another variable in the causal graph.  
This is the “dispense with the bugs”  variable. In the non- 
maneuvered population, this particular variable has the value 
off, and in the hypothetical population, it is on. In the non- 
maneuvered population we measure  

 P(bugs | “dispense with the bugs” = off)        (1) 

In the causally maneuvered population that would be 
produced if bugs were dispensed with, the case can be 
represented  as  

 P(bugs = 0| “dispense with bugs” = on) = 1        (2) 



What, and how, empirical evidence legitimizes a cause-
effect connection?  

David Heckerman of Microsoft Corporation covered this 
important topic [8].  

In this elaboration of concepts behind causation, we 
clarify as to how a causal structure can be legitimately 
acknowledged. Dr. David Heckerman [9] introduced the 
notion of responsiveness, a fundamental relation underlying 
causation. One can use this notion to define causal 
dependence.  

In general, to determine whether or not an uncertain 
variable x (the supposed effect – in our case, it is the 
purported data leakage) is responsive or unresponsive to 
decision d (for example , leakage is due to the bugs in the 
system), we have to answer the query “Would the outcome 
of x have been the same had we chosen a different alternative 
for d?" Queries of this form are counterfactual queries. 

We need some definitions of the counterfactual world 
and also of the concepts of responsiveness and 
unresponsiveness,  in order to understand this. 

Definition of the Counterfactual World:  there are some 
uncertain variables, X (of which x is an instance), such as 
data leakage (including some uncertainty as to why, and are 
we sure about the leakage?)  in the scenario;  there is also the 
set of  potential causes C. In our case, possible candidates for 
the potential causes in C are: (a) too many people accessing, 
(b) employees monitoring the system poorly, and (c) bugs in 
the system.  

Given the uncertain variables X ⊆ U (where U is the total 
set of  possible variables that can be and could have been 
contenders as effects to be determined correctly) and the set 
of decisions D (for example, the decision that the data 
leakage  is, indeed, there, and that it is there because of the 
bugs, in our case; the other contenders can be leakage 
because of people accessing, and leakage because of poor 
monitoring by employees), a counterfactual world of X and 
D is any instance assumed by X ∪ D after the decision 
maker chooses a particular instance of D.   

Definitions of unresponsiveness and responsiveness are 
to be understood next.   Given uncertain variables X and 
decisions D, X is unresponsive to D, denoted X  ↚  D, if X 
assumes the same instance in all counterfactual worlds of X 
∪ D.  (In other words, instances of  X do not affect  the 
status of X ∪ D ).  

In our case, D contains, for example: 

Case 1: data leakage  is because of the bugs, or possibly. 

Case 2: leakage because of people accessing. 

Case 3: leakage because of poor monitoring by 
employees. 

 X (the set of the effect or effects for which we are 
seeking the cause) is the same in all counterfactual worlds of 
X ∪ D, if D is Case 2 or Case 3.  One should remember, at 
this stage, that we have chosen a particular instance of D, 
namely, decision regarding data leakage in the case of 
Cloudflare, February 2017. So, X ∪ D will be any instance 
in the case of their union (set containing data leakage as the 
only member) with Cloudflare data problem (a set containing 
only that case as a member).  

(Note that there can still be, in theory if not in practice, 
more than one  instances of the union).  

X is responsive to D, denoted X ← D, if X can assume 
different instances in different counterfactual worlds of X ∪ 
D.  We should go back to our   chosen instance of D, namely, 
the Cloudflare  data problem; if our element in the set of X is 
the problem of data leakage, then X ∪ D is such that X can 
assume different instances in the different counterfactual 
worlds of X ∪ D.  

X refers to the collections of events (indicating, for 
example, different states of data leakage) some of which 
occur after decision(s) D have been made 

(A side-remark at this stage is that this can explain, in 
many cases, as to how a robot can acquire causal information 
from the environment. However, Robotics is not the main 
concern of this paper.) 

Now we can come up with a formal definition of a cause. 

Given decisions D, the variables in the set C are causes 
for x with respect to D if all the following three conditions 
are met. 

Condition 1: x is not a member of C. 

Condition 2: x is responsive to D.  

Condition 3: C’ is a minimal set of variables such that x 
is unresponsive to D in worlds limited by C’ (that is, x ← D, 
and C’ is a minimal set such that x ↚ c’ D).   

The third condition can be difficult to understand. It is 
saying that C has a definite influence on x being responsive 
to D. The influence is that the relevant cause (or causes) 
must be included in whichever set of variables that also 
necessarily differ (being responsive) in accord with x being 
responsive to D.  So, the set C’ that limits the relation of x 
with D (regarding responsiveness) is a minimal set.  

The following are the brief explanations with regard to 
the system discussed here.  

Condition 1 is affirming that the effect is not a member 
of the set of causes. 

Condition 2 is ffirming that for x (data leakage) to be 
caused with respect to decision D (data leakage must have 
been caused by the bugs in the system) , it must be 
responsive to that decision. 

Condition 3 is explaining the following: suppose  that 
one can find a set of variables Y such that x, data leakage, 
can be different in different counterfactual worlds  only when 
Y is different.  In that case, Y must contain a set of  causes 
(that is, include the bugs in the system, in our case).  

III. CONCLUSION 
The authors are currently undertaking the causal program 

for cybersecurity; it is showing the progress towards the 
advances in our effort, and promises to bring forth the results 
shortly. The program will be tested with several real-world 
cases  where cybersecurity is needed.  
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