
EasyChair Preprint
№ 5354

uTile PET: a Privacy Preserving Solution for
Collaborative Data-Driven Projects

Daniel Hurtado Ramírez, Luis Porras Díaz, Álvaro Calzado Pérez,
Borja Irigoyen Peña, Alexander Benítez Buenache,
Juan Miguel Auñón García, Ana María García Sánchez and
Pablo González Fuente

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

April 18, 2021



UTILE PET: A PRIVACY PRESERVING SOLUTION FOR COLLABORATIVE
DATA-DRIVEN PROJECTS
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ABSTRACT
There are an increasing number of data-driven space projects.
In these projects, the solution is as important as the quality
of the data. Moreover, the more data available, the better the
performance, so it is normal for different entities to collab-
orate on a common solution. However, this can be a prob-
lem in terms of privacy and it may not always be possible
to share data between the different parties. Therefore, we
present uTile PET, a solution for the collaborative develop-
ment of Artificial Intelligence algorithms without the need
to compromise the privacy of each of the parties. In addi-
tion, SHK-means, a clustering algorithm that works with dis-
tributed data and maintains privacy at all times, is presented
as an example.

Index Terms— Privacy Preserving, Multi-party compu-
tation, Federated Learning, K-means clustering

1. INTRODUCTION

Artificial Intelligence is becoming more and more relevant
in space domain projects. The current potential of Machine
Learning (ML) solutions allows their use to complement (or
even replace in some cases) classical techniques for solving
tasks such as signal processing [16] or anomaly detection
[12], to cite a couple of examples. However, these tech-
niques require the collection and use of historical data to
train the algorithms. This is undoubtedly one of the most
problematic aspects due to the required privacy with projects
data. In some cases it can be solved by means of complex
confidentiality agreements. Nevertheless, this may limit or
even preclude the use of the data. In addition, in order to
obtain optimum performance, it is necessary to have as much
data as possible. Thus, it is very common to create con-
sortiums between entities, companies and/or universities to
jointly address a project. But again, problems arise when
it comes to sharing data due to privacy issues. In view of
the above, new approaches have emerged with the aim of
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solving privacy problems during the training of ML models,
among which Secure Multi-party Computation (SMPC) and
Federated Learning (FL) stand out.

SPMC, and in particular additive secret sharing, allows
a secret data to be segmented into parts in such a way that
none of the participating parties has the ability to reconstruct
the original secret data, but all of them benefit from the re-
sult of the sharing. SMPC has evolved a lot from its begin-
nings in the 80s, starting from theoretical research (see Yao
and Shamir seminar papers [13, 17]), to real applications that
allow the use of this technology to end users [2]. This evolu-
tion has been possible thanks to the effort of different research
groups, which have tried to develop and optimize the proto-
cols responsible of the computation (see [4]).

On the other hand, FL is an algorithmic solution that al-
lows the training of ML models by sending copies of a model
(commonly, trainable model parameters, such as the weights
or gradients during training) and performing training to the
location where the data resides, eliminating the need to share
data on a central server. Sometimes even sharing this informa-
tion can be sensitive in terms of privacy, as the original data
can be reconstructed from such model information. In these
cases, SMPC can be used to share this information. Although
FL solutions are relatively recent, it is a line of research with
great interest from the scientific community due to the great
potential of its use. For the interested reader, the article [7] is
recommended reading.

Both approaches allow different entities to collaborate
in obtaining a joint solution to a common problem without
the need to share their data, thus complying with established
privacy protocols. This is the backdrop for the presentation
of uTile PET (Privacy-Enhancing Technologies), the GMV’s
solution for the development of collaborative data-driven
projects while preserving privacy between different parties.

The paper is organized as follows: Section 2 briefly intro-
duces uTile solution. Section 3 focuses on one of these solu-
tions, namely K-means, describing the solution and showing
its advantages by means of a synthetic example. Some con-
clusions and the description of future lines of research close
the paper in Section 4.



2. UTILE PET

uTile PET is a GMV-developed solution for harnessing con-
fidential and private data to improve ML algorithms and ana-
lytical models, complying at all times with organizational re-
quirements, guaranteeing data privacy as well as current reg-
ulations. There is no need to choose between data privacy
and usability, as it leverages advanced cryptographic meth-
ods that keep data encrypted while all the necessary computa-
tions are performed. In this way, uTile PET enables the pos-
sibility of organizations’ sensitive data will never be exposed
or transferred across departments, organizations or different
countries.

Hence, uTile PET is a set of solutions that, in addition
to the aforementioned technologies (SMPC and FL), includes
Private Set Intersection (PSI) [1]. PSI is a cryptographic tech-
nique that allows finding the intersection between several ver-
tically distributed datasets (the data are distributed among the
parties by columns) without having to expose the data, thus
protecting data privacy.

In this way, uTile PET creates an environment on which to
develop ML solutions while preserving data privacy. Among
the algorithms already implemented are the following:

• K-means [5] clustering, a well known unsupervised
method for finding clusters of points.

• Principal Componnent Analysis (PCA) [15], algorithm
to reduce the data dimensionality.

• Neural network architectures.

These solutions have been developed on top of PySyft [11],
a Python library for secure and private ML, where most of
the Additive Secret Sharing and secureNN [14] routines are
implemented. It is also in charge of managing the communi-
cation between the parties involved in the computation.

3. PRIVACY PRESERVING K-MEANS CLUSTERING

As an illustrative example, this section describes the im-
plemented solution for privacy-preserving K-means when
data is horizontally distributed, i.e., several parties Pj have
different entries (rows), however all of them keep the same
schema. For the reader interested in vertical partitioning (sev-
eral parties have different features), we recommend reading
[9], where both approaches are described in detail.

3.1. Problem definition

In Earth Observation (EO) problems it is common to use K-
means [6, 8] to identify areas with their own characteristics
from the received data (images or signals). Nevertheless, for
demonstration purposes, we have generated a dummy dataset
X consisting of 4 subsets of 100 samples, where each subset
follow a 2-dimensional Gaussian distribution of means µ0 =

(5, 3), µ1(5,−5), µ2(−5, 5) and µ3(−3,−5); and a standard
deviation σ0 = σ1 = σ2 = σ3 = 1.

The usual K-means algorithm assumes that the we have
full access to the data, leaving aside privacy concerns. How-
ever, in this case we will study its application in horizontal
distributed data. Following the usual notation, the famous
characters Alice (A) and Bob (B) [10] are used as parties
for horizontal distribution as follows: X400×2 = X

(A)
200×2 ∪

X
(B)
200×2, being the intersection between X(A) and X(B) an

empty set (X(A) ∩X(B) = ∅). Notice that the difference be-
tween both comes from the samples, the number of columns
is kept. Figure 1(a) shows this data distribution.

3.2. Centralized K-means

First, the operation of the classic K-means is recalled (iterat-
ing until mean does not change):

1. Select k random centroids C, being k the number of
desired clusters. In this example, we know the number
of groups, so we set k = 4, but in a real problem, it
would be a parameter to explore.

2. Calculate the distance between data points and cen-
troids, assigning each data point to the closest centroid.

3. Re-calculate the clusters centroids performing the mean
of the data belonging to such centroid.

Considering that both parties cannot share their data, the
following flow is defined to obtain the results:

• Training phase. Alice wants to train the centralized
K-means algorithm with her data, Xtrain = X(A), so
she will train the algorithm. The output of this step is
the centroids C.

• Testing phase. For the testing phase, Alice and Bob
reach an agreement and Alice sends the model (C in
this case) to Bob, then Bob just have to analyze the
results with his own data (data never seen for the al-
gorithm): Xtest = X(B). Bob calculates the distance
between C and Xtest.

Figure 1(b) shows these steps in a single snapshot. The
training phase shows that points have been assigned to 4 clus-
ters. It can be seen how the model trained locally with one
party’s data may not generalize for the other party’s data.

3.3. SPMC approach: Secure Horizontal K-means

Secure Horizontal K-means (SHK-means) deals with hori-
zontally distributed data, translating the core steps from orig-
inal K-means algorithm into the SMPC framework. It takes
all the data as an additively shared matrix, which allows the
data to be arbitrarily distributed between all parties. Its oper-
ation is described in Algorithm 1, however, some aspects of
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Fig. 1. (a) Dataset distribution between Alice and Bob. (b)
Labeled data points after training the centralized K-means
with data from Alice (◦) and testing with data from Bob (4).
Centroids C from training phase are marked in cyan.

notation and privacy are clarified below, in addition to a brief
description of the protocols, which have been used as build-
ing blocks. For a more detailed description about protocols,
it is advisable to read [9].

From [14] we borrow the notation and the following pro-
tocols: secure matrix multiplication, DReLU and division.
Note that DReLU stands for Derivative of ReLU ; that is,
DReLU(x) = 0 if x < 0 and DReLU(x) = 1 if x > 0

Altought the protocols in SecureNN are presented for the
2-party case, they can be easily extended to work with p par-
ties. The protocols require the presence of an extra party that
assists in the computations without providing data; we take
P0 as the assistant party, i.e., the responsible of generating
triplets for Beaver multiplication [3], and P1, P2, . . . , Pp to
be the parties holding the data.

We assume the aggregate of all parties’ data consists of n
samples of d-dimensional data, and this data is shared addi-
tively across parties P1, P2, . . . , Pp. 〈X〉j refers to Pj’s share
of X , such that X =

∑p
j=1〈X〉j (over ZL, a finite field with

size L ). X[i] refers to sample i, X[i][j] refers to coordinate
j of sample i (1 ≤ i ≤ n, 1 ≤ j ≤ d).

The goal is to split the data into k clusters. These clus-
ters are defined by their centroids C, where C[j] refers to the
centroid of cluster j (1 ≤ j ≤ k). The centroids will also be
shared across all parties, so C =

∑p
j=1〈C〉j .

We wish to reveal as little data as possible; this includes
the original samples, the resulting clusters, the label of any
given sample, and distances between the samples and the
cluster centroids. We consider acceptable revealing how
many samples correspond to each cluster (but not which ones)
since nothing useful can be extracted from this information
while providing a significant speedup of the algorithm.

As one of the core operations for the secure K-means
algorithm, algorithm ElementWiseMatMul addresses the
elementwise secure matrix multiplication, i.e., Zn×d =
Xn×d � Yn×d (� symbol representing the elementwise mul-
tiplication), where parties Pj (j ≥ 1) hold shares of X,Y .
This algorithm is the elementwise version of ΠMatMul (see
Reference [14]), extended to p parties.

Algorithm 1: SHK-means
Input : A shared matrix Xn×d of points, the public

number k of clusters, a public number ε > 0
for the stopping criterion

Output: A shared matrix Ck×d of cluster centroids

1. Select random public integers l1, l2, . . . , lk,
1 ≤ lj ≤ n. Each party p sets Cp[j] = Xp[lj ],
for all j, 1 ≤ j ≤ k

while true do

2. Compute H := LabelSamples(X,C) using the
LabelSamples protocol

3. Set tj :=
∑n

i=1H[i][j], the total number of
samples that go to cluster j

4. Set Tk×d := MatMul
(
HT , X

)
. Intuitively, row j

of T is the sum of samples belonging to cluster j

5. Compute the new centroids as C̃[j] := T [j]/tj .
This division can either be done with a secure
division protocol (completely secure, but slow)
or by first revealing the values tj to both parties

6. For each j ∈ {1, . . . , k}, use the MatDist

protocol to compute Dj = MatDist
(
C[j], C̃[j]

)
7. Set C := C̃

8. Compute the additively shared value
∆ =

∑k
j=1Dj , the total movement of all centroids

9. Compute s := DReLU (ε−∆) and reconstruct its
value. If s = 1, stop and return C;
if s = 0, return to step 2

end

On the other hand, algorithm MatDist computes the
secure squared euclidean distance d2 between two shared
vectors x, y: d2 (x,y)=(x1 − y1)

2
+ (x2 − y2)

2
+ · · · +

(xd − yd)
2=
∑d

j=1 (xj − yj)2, namely between a data point
X [i] and a centroid C [j].

Finally, algorithm LabelSamples addresses the “label”
of a data point X [i], meaning that a point will belong to a
cluster if and only if the distance between this point and the
jth−cluster is closer than the rest.

Bearing all the above in mind, SHK-means learns how
data points are grouped while keeping privacy. Taking ad-
vantange of ML terminology, this phase is usually denoted as
training phase. Figure 2(b) shows the resulting global model
using SHK-means. In the testing phase, i.e., when centroids
are already determined and new data points Y (additively
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Fig. 2. (a) Global dataset distribution. (b) Labeled data
points after training the global SHK-means with data from
Alice and Bob. Centroids C are marked in cyan.

shared across parties) need to be labeled, it is enough to com-
pute H = LabelSamples(Y,C) and reconstruct it. Thanks
to the fact that H is a one-hot encoded shared matrix, it could
also be directly used as an input to some other secure protocol
that builds on top of K-means, without losing any privacy.

4. CONCLUSIONS AND FURTHER RESEARCH

With this work, we have shown how uTile PET bridges the
gap between the low-level SMPC protocols and the high-level
work of the data scientist. We have shown a general approach
for adapting traditional ML algorithms to a secure setting, ex-
emplifying in detail the case of K-Means.

Besides the adaptation of other learning algorithms for
privacy-preserving, we are analyzing the effects that such so-
lutions can have on some singular problem families, such as
imbalanced data.
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