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ABSTRACT
Unobtrusive human activity recognition plays an integral role in a lot of applications,
such as active assisted living and health care for elderly and physically impaired
people. Although existing Wi-Fi-based human activity recognition methods report
good results, their performance is susceptible to changes in the environment. In this
work, we present an approach to extract environment independent fingerprints of
different human activities from the channel state information. First, we capture the
channel state information by using the standard Wi-Fi network interface card. The
channel state information is processed to reduce the noise and the impact of the
phase offset. In addition, we apply the principal component analysis to removed
redundant and correlated information. This step not only reduces the dimensions of
the data but also removes the impact of the environment. Thereafter, we compute
the spectrogram from the processed data which shows the environment independent
fingerprint of the performed activity. We use these spectrogram images to train a
convolutional neural network. Our approach is evaluated by using a human activity
data set collected from 9 individuals while performing 4 activities (walking, falling,
sitting, and picking up an object). The results show that our approach achieves an
overall accuracy of 97.78%.

KEYWORDS
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1. Introduction

Wi-Fi-based human activity recognition (HAR) has become an important research
topic due to the growing number of applications that need to monitor indoor hu-
man activities in a truly unobtrusive way. These applications include elderly care,
surveillance, and active assisted living. Furthermore, Wi-Fi-based HAR offers several
advantages over vision- and wearable sensor-based techniques. For instance, in con-
trast to vision-based HAR systems, Wi-Fi-based systems are cost-effective, unaffected
by lighting conditions, and preserve the user’s privacy. Furthermore, the users are not
required to wear the sensor in contrast to wearable sensor-based HAR systems.
In Wi-Fi-based HAR systems, a transmitter and a receiver are deployed in the envi-
ronment. The transmitter emits radio signals, and the presence of moving objects in
the propagation environment causes the Doppler frequency shift in these radio signals
before they are received by the receiver. In the literature, it has been shown that the
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received signal strength indicator (RSSI) and the channel state information (CSI) can
be used to recognize human activities (Wang et al. 2017). In contrast to the RSSI
which represents the attenuation of the received signal strength during propagation,
the CSI is more informative. The CSI includes both amplitude and phase information
associated with each orthogonal frequency division multiplexing (OFDM) subcarrier.
It has been shown that CSI-based HAR systems generally perform better than RSSI-
based HAR systems (Wang et al. 2017). There exist various approaches to recognize
human activities from CSI data by using machine learning (Wang et al. 2017) and
deep learning (Chen et al. 2018; Zou et al. 2018) techniques. In (Wang et al. 2017),
the authors proposed two theoretical models. The first model (also known as “the CSI-
speed model”) links the speed of human body movements with the CSI data, while
the second model (known as “the CSI-activity model”) links the speed of human body
movements with human activities (Wang et al. 2017). The proposed approach was de-
veloped using commercial Wi-Fi devices and achieved an overall recognition accuracy
of 96%. In (Chen et al. 2018), an attention-based bidirectional long short-term mem-
ory (ABLSTM) technique was used to recognize humans activities from the CSI data.
The CSI data sets collected in two different environments, namely an activity room
and a meeting room were used to evaluate the performance of the proposed approach.
This approach achieved recognition accuracies of 96.7% and 97.3% when the CSI data
from the activity room and the meeting room is used, respectively. However, in the
cross-environment scenario, where the training data that has been collected in one
environment and the testing data from the other environment are used, the overall
recognition accuracy drops to 32%. A deep learning technique consisting of autoen-
coder, convolutional neural network (CNN), and long short-term memory (LSTM)
modules to recognize human activities from the CSI data has been proposed in (Zou
et al. 2018). This deep learning network achieved an overall accuracy of 97.4%.
Although existing CSI-based HAR systems have reported reasonably good results,
they still suffer from the drawback that they are environment dependent. This implies
that their performance is susceptible to changes in the environment. One solution to
this problem is to extract features from the CSI data that are subject and environment
independent. This approach requires a lot of training data that must be collected from
a variety of subjects in different environments (Jiang et al. 2018). The other approach
proposes the use of a semi-supervised learning technique, which requires users to man-
ually label the activity fingerprints that may have been changed due to changes in
the environment (Wang et al. 2014). This solution requires user interaction that is not
very practical for applications in elderly care.
In this work, we compute the spectrograms from the CSI data corresponding to dif-
ferent human activities. These spectrograms capture the Doppler characteristics of
the radio channel caused by fixed and moving objects present in the environment.
The static objects do not cause any variation in the trend of spectral components.
This implies that different positions of static objects present in the environment will
not influence the performance of our HAR system. These spectrograms are saved as
portable network graphics (PNG) images and used to train a deep CNN. We evaluate
this novel approach by using a CSI data set which is collected from 9 participants while
performing four different activities: walking, falling, picking up an object, and sitting
on a chair. Using this data set, our approach yields an overall accuracy of 97.78%.
Moreover, our system recognizes the activities performed at greater distances. For in-
stance, three out of the four activities are performed at a distance of 13 feet from the
transmitting and receiving antennas.
The rest of the paper is organized as follows. Details about the experimental setup
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and human activity data collection are given in Section 2. In Section 3, we explain the
steps involved in processing the CSI data and computing the spectrogram. In Section
4, we present our CNN model, the classification process, and the obtained results.
Finally, concluding remarks are given in Section 5.

2. Experimental Setup and CSI Data Collection

In this paper, we considered an indoor environment where 9 participants performed
four different activities, namely walking, sitting on a chair, falling on a mattress, and
picking up an object from the floor. During the data collection process, we ensured
that only a single person is moving inside the room and all other objects are static.
The participants of this experiment were asked to stand still for one second before
starting an activity and after finishing that activity.

For the walking activity, we asked the participant to walk in a straight line from
Point A to Point B and back (see Fig. 1). They repeated the activity 10 times, walking
five times from Point A to B and five times from Point B to A. For the sitting activity,
we placed a chair at Point B and asked the participants to stand still next to the
chair facing the antennas and then sit on the chair as shown in Fig. 1. For the falling
activity, a mattress was placed at Point B, and the participants were asked to stand
on the shorter edge of the mattress and then fall on it. They repeated the activity 10
times. Out of these 10 falling trials, they fell on the mattress five times facing towards
the antennas and five times facing away from the antennas. The last activity, picking
up an object from the floor was also repeated five times, placing a small object on the
floor at Point B, and asking the participants to pick it up.

To collect and parse the CSI data while the participants performed the activities
mentioned above, we used two laptops, each was equipped with an Intel 5300 Wi-Fi
network interface card (NIC). We installed the CSI Tool (Halperin et al. 2011) on
both laptops. One laptop is used as the transmitter (Tx) and the other laptop as the
receiver (Rx). The NICs of the Tx and the Rx are configured to operate at 5.745 GHz
band with 20 MHz bandwidth in single-input multiple-output (SIMO) transmission
mode. Instead of using the internal antennas of the laptops, which normally have
a limited range, we connected an external directional antenna to the Tx and two
external antennas to the Rx, where one of which was a directional and the other one

Figure 1. The experimental setup for data collection.
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an omnidirectional antenna. We used the injector-monitor Wi-Fi mode, where the
Tx was set to inject 1000 random data packets per second into the wireless channel,
and the Rx captured the injected packets. The transmitting and receiving antennas
were attached to a table as shown in Fig. 1 at a height of 0.8 meters from the floor.
For each received data packet, the Rx reports the estimated CSI in a matrix form.
The dimension of the CSI data matrix was NTx

× NRx
× K, where NTx

indicates
the number of transmit antennas, NRx

stands for the number of receive antennas,
and K represents the number of OFDM subcarriers. By default, the CSI tool reports
estimated CSI data along 30 OFDM subcarriers for each transmission link. Therefore,
in our case, the dimension of the CSI data matrix was 1× 2× 30.

3. Processing CSI Data and Estimating the Spectrogram

The raw CSI data contains amplitude and phase information. Both the amplitude and
phase of the CSI data are corrupted by noise; and therefore, the CSI data streams
can not directly be used for activity recognition. The noise sources of the amplitude of
the CSI data are mainly the ambient noise and adaptive changes of the transmission
parameters (Yousefi et al. 2017). In addition to that, the phase of CSI data suffers
from the carrier frequency offset (CFO) and the sampling frequency offset (SFO)
(Wang et al. 2017; Yousefi et al. 2017). The errors related to the CFO and SFO are
due to the asynchronicity between the transmitter and receiver clocks.

To denoise these data, we first calibrated the phase of the CSI data by applying
the CSI ratio method (Zeng et al. 2019), where it has been shown that this approach
significantly reduces the influence of CFO and SFO on the phase. The CSI ratio method
requires that two antennas must be connected to the same receiver to collect the CSI
data simultaneously. Thereafter, the CSI data from the first transmission link are
divided by the CSI data of the second transmission link. Recall that each transmission
link reports 30 CSI streams thus, we can obtain 30 CSI ratios. By comparing the
spectrogram images of the CSI ratio method and the back-to-back phase calibration
method (Keerativoranan et al. 2018), we observed in our experiments that the CSI
ratio method works better.

Thereafter, we remove the correlated CSI ratios using the principal component
analysis (PCA), which applies an orthogonal transformation to the 30 CSI ratios and
converts them to 30 linearly uncorrelated variables. These variables are called principal
components, where the first PCA component has the highest possible variance and
the last PCA component the lowest variance. At this stage, we performed several
experiments to determine the suitable number of PCA components for the subsequent
steps. We observed that the first PCA component is sufficient to obtain a spectrogram
that clearly shows the environment independent fingerprint of the performed activity
as shown in Fig. 2.

To further minimize the effect of the high frequency components, which are not
caused by the human movement, we apply a low pass filter to the selected principal
component. Thereafter, we first compute the short-time Fourier transform (STFT) of
the filtered data as given in (1). In (1), t′, t, y(t), and g(t) indicate the running time, the
local time, the filtered data, and the Gaussian sliding window function, respectively.

X(f, t) =

∞∫
−∞

y(t′)g(t′ − t)e−j2πft
′
dt′. (1)
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(a) Falling (b) Picking

(c) Sitting (d) Walking

Figure 2. Spectrograms of the four activities.

Finally, the STFT (X(f, t)) is multiplied with its complex conjugate (S(f, t) =
|X(f, t)|2) which gives the spectrogram (Boashash 2015).

4. Classifying Spectrogram Images with CNN

For every activity trial in the collected data, we first computed the spectrogram and
then saved it as a PNG image in a folder labelled with the activity. Thereafter, all
spectrogram images were scaled to the same 224 × 224 × 3 dimension by applying
the bicubic interpolation technique. We split the spectrogram data into the train,
validation, and test data sets representing 70%, 15%, and 15% of the total data. The
training data were used to train the CNN (shown in Fig. 3) with a batch size of 16.

The CNN model consists of 14 layers including input, flatten, and output layers.
The dimensions (i.e., height and width) of the filters used in all convolutional layers
are 5× 5 and in all max-pooling layers 2× 2. The stride parameter (i.e., the number
of cell shifts over the given data matrix) was set to 1 for the convolutional layers
and to 2 for the max-pooling layers. The number of filters in the first, second, and
third convolutional layer was 32, 48, and 64, respectively. All convolutional layers used
the rectified linear unit (ReLU) activation function. After each max-pooling layer, a
dropout layer (indicated by a green circle in Fig. 3) with a threshold 0.3 was used. The
last two layers are fully connected (FC) with dimensions 256×1 and 84×1, respectively.
The dimension of the output layer is 4 × 1 and uses the softmax activation function.
The validation data were used to monitor the training progress of the CNN and to
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Figure 3. The architecture of the CNN, where the symbols S, F, and FC indicate stride, filter size of the

max-pooling layer, and fully connected layer, respectively. The Green circles represent the dropout layer.
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Figure 4. The accuracy (a) and loss (b) during the training process based on the training and validation

data sets.

stop the training if the validation accuracy does not improve over 8 consecutive epochs.
The accuracy and loss of the CNN model over the training and validation data are
presented in Fig. 4(a) and Fig. 4(b), respectively.

Finally, the performance of the CNN model was evaluated based on the test data
set. The results of our approach are shown in the confusion matrix (see Table 1). In
this confusion matrix, the green cells represent the correctly classified examples and
incorrectly classified examples are indicated in the red cells. The overall accuracy of
the CNN model is given in the blue diagonal cell. We observe that the CNN model
achieves an overall recognition accuracy of 97.78%. Moreover, the precision of the
model for the activities walking, falling, picking up an object, and sitting is 100%,
93%, 100%, and 100%, respectively. The recall of the sitting activity is 88%, whereas
the other three activities have a recall of 100%.

Table 1. The confusion matrix of results obtained from the CNN model.

- - Predicted labels -
- - Walk Fall Pick Sit Precision

Walk 15 0 0 0 100%
Fall 0 14 0 1 93%
Pick 0 0 8 0 100%

T
ru

e
la

b
el

s

Sit 0 0 0 7 100%
- Recall 100% 100% 100% 88% 97.78%

5. Conclusion

In this work, we developed a system that combines RF sensing and deep learning
techniques to recognize human activities. In the RF sensing stage, we used two laptops,
one acting as a transmitter and the other as a receiver to collect the CSI data. We
collected CSI data while 9 participants performed 4 activities walking, falling, picking
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up an object from the ground, and sitting on a chair. A three-step process was used to
filter the collected CSI data. At first, we applied the CSI ratio method to the collected
CSI data to reduce the impact of the phase offset. In the subsequent step, the PCA is
applied to remove redundant and correlated information from the data. In the last step,
a low pass filter is used to reduce the impact of high frequency components that were
not caused by human movements. Thereafter, we computed a spectrogram for each
activity trial in the collected data. These spectrogram images were divided into the
train, validation, and test data sets. The training and validation data sets were used
to train a 14-layer CNN model and monitor the training process, respectively. The test
data set was used to evaluate the performance of the CNN model. The results show
that our CNN model achieved an overall accuracy of 97.78%. In the future, we will
conduct more experiments to quantitatively evaluate the performance of our approach
in different environments.
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