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Abstract 

Damage detection and localization is a critical task of structural health monitoring. Artificial Neural Network (ANN) has been 

successfully applied for damage identification in civil and mechanical structures, presenting some limitations. However, it is 

possible to improve the effectiveness of ANNs by modifying their architecture and training strategies. The present paper proposes 

an optimization algorithm, particularly the Grasshopper Optimization Algorithm (GOA), to create an optimum ANN for multiple 

damage prediction in aluminum bars. Natural frequencies are used as input parameters, and crack depths as output. Based on 

different crack depths, an improved Finite Element Model (FEM) is used to collect data using a simulation tool. In order to test the 

reliability of the presented technique, experimental data from cracked beam analysis is collected based on different crack depths. 

The results are compared to similar approaches using metaheuristic algorithms: Ant Colony Optimization (ACO) and Genetic 

Algorithm (GA). The novel proposed approach presents a good performance for damage prediction. 

 

© 2024 The Authors. Published by ELSEVIER B.V. 
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) 
Peer-review under responsibility of the scientific committee of IWPDF 2023 Chairman 
Keywords: Structural health monitoring, Neural Networks, GOA, Finite element analysis, Optimization algorithms 

 

 

 

http://www.sciencedirect.com/science/journal/22107843
https://nam11.safelinks.protection.outlook.com/?url=https%3A%2F%2Fcreativecommons.org%2Flicenses%2Fby-nc-nd%2F4.0&data=05%7C01%7Cprostr%40elsevier.com%7Cc61e9660c51c4203201e08db08cbdddc%7C9274ee3f94254109a27f9fb15c10675d%7C0%7C0%7C638113444804675230%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=HgdXGyvtAx85Jca8rtazijG7e4YT3ItijDDimG%2FRygI%3D&reserved=0
https://nam11.safelinks.protection.outlook.com/?url=https%3A%2F%2Fcreativecommons.org%2Flicenses%2Fby-nc-nd%2F4.0&data=05%7C01%7Cprostr%40elsevier.com%7Cc61e9660c51c4203201e08db08cbdddc%7C9274ee3f94254109a27f9fb15c10675d%7C0%7C0%7C638113444804675230%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=HgdXGyvtAx85Jca8rtazijG7e4YT3ItijDDimG%2FRygI%3D&reserved=0


2 Abdelwahhab Khatir et al. / Structural Integrity Procedia  00 (2019) 000–000 

1. Introduction 

Optimization algorithms have discovered applications across diverse domains, such as applied mathematics, 

engineering, medicine, economics, etc. These methods, particularly in civil, mechanical, electrical, and industrial 

engineering initiatives, are prominently employed during the design phase (Ab Wahab et al. (2015), Kaveh et al. (2020) 

and Jacob et al. (2021)). Optimization algorithms, often called global optimization techniques, have effectively tackled 

intricate real-world optimization problems. These methods draw inspiration from principles rooted in physics, swarm 

intelligence, and biology (Zhang et al. (2015) and Khatir et al. (2016)). 

The evolution of optimization algorithms in recent years has revolutionized the approach to handling optimization 

problems across diverse contexts. Among the array of widely adopted optimization techniques are genetic algorithms 

(GAs) (Ahmed et al. (2019) and Sberna et al. (2023)), which draw inspiration from biological genetic recombination 

and operate through three key parameters: selection, crossover, and mutation. Another prominent approach is particle 

swarm optimization (PSO) (Khatir et al. (2023) and Jain et al. (2022)), which finds its roots in the coordinated 

movement of flocks of birds and schools of fish. The BAT algorithm (Zenzen et al. (2018) Lu et al. (2021)) is 

specifically based on the echolocation behavior exhibited by microbats when hunting prey. A distinct strategy is 

embodied by the cuckoo search algorithm (CS) (Mareli et al. (2018) and Cuong-Le et al. (2021)), which incorporates 

elements of brood parasitism observed in certain cuckoo species, coupled with random walks employing Levy flights. 

The Firefly algorithm (FA) (Kumar et al. (2021)) takes inspiration from the pulsating luminescence displayed by 

fireflies. In the realm of ant colony optimization (ACO) (Dorigo et al. (2018)), the guiding principle is the foraging 

behavior of ants as they communicate food source locations through the use of pheromones. Grey wolf optimization 

(GWO) (Li et al. (2021)) replicates the hierarchical leadership structure and hunting dynamics prevalent in the natural 

world among grey wolves. Lastly, the artificial bee colony (ABC) (Zhao et al. (2020)) draws from the intelligent 

foraging practices of honey bees, resulting in a diversified toolkit of strategies for optimization tasks. 

Artificial neural networks (ANNs) are an intelligent computational methodology applied in damage detection across 

diverse structures. The utilization of ANNs has extended to bridge damage identification, employing both model-

independent techniques and machine-learning strategies (Nyirandayisabye et al. (2022)). Moreover, ANNs have been 

integrated with metaheuristic algorithms in various studies pursuing the same goal (Khatir et al. (2022), Gordan et al. 

(2020), and Gomes et al. (2019)). (Khatir et al. (2020)) Have elevated the capabilities of ANNs by integrating the Jaya 

algorithm, a process applied to identify cracks within plates by employing the Extended Isogeometric Analysis (XIGA) 

in tandem with experimental analysis. Their findings underscore the heightened accuracy achieved in damage 

prognosis through their enhanced approach, which harnesses Jaya algorithm-derived regression to monitor crack 

propagation meticulously. A distinct avenue is pursued by (Gomes et al. (2019)), who introduces a sophisticated 

approach centered on inverse global optimization for pinpointing damage in plate-like structures. This methodology 

leverages an improved SunFlower Optimization (SFO) algorithm to tackle the intricacies of an inverse problem 

framework, thereby enabling the identification of damage based on modal parameters of CFRP laminated structures. 

Based on the above descriptions, in the present study, an attempt is made to investigate the applicability of ANN 

combined with a metaheuristic algorithm, particularly the Grasshopper optimization algorithm (GOA), to improve 

damage prediction in aluminum bars. Experimental modal analysis was carried out to generate natural frequency 

measurements as the input database for the data process to predict the damage severity. Further comparison with other 

optimization algorithms, namely, Genetic algorithm (GA) and Ant Colony Optimization (ACO), confirms GOA 

performance. 

2. Methodology description 

To enhance the accuracy of structural damage prediction, this methodology unites an Artificial Neural Network 

(ANN) with the Grasshopper Optimization Algorithm (GOA). The core objective revolves around optimizing the 

hyperparameters of the ANN to bolster its predictive prowess in structural damage assessment. Commencing with a 

well-defined problem, typically centered on predicting structural damage, the methodology first entails collecting and 

meticulously preprocessing data. Specifically, the dataset comprises natural frequencies, serving as critical input 

parameters. Preprocessing involves addressing missing values, feature scaling, and partitioning the data into training 

and testing subsets. Subsequently, the ANN architecture is established, encompassing input nodes (corresponding to 
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the natural frequencies), hidden layers, and output nodes tailored to the problem. Activation functions, such as ReLU 

for hidden layers and linear for the output layer, are judiciously assigned, followed by the initialization of weights and 

biases. The ANN is then trained using the training dataset, employing a pertinent loss function and backpropagation 

until convergence. Inspired by grasshopper foraging dynamics, GOA is introduced into the methodology as an 

optimization engine. Here, the objective function is crafted to evaluate the ANN's performance, typically through 

validation dataset assessment post-training. 

GOA's parameters, encompassing population size, maximum iterations, and solution search ranges, are configured. 

The synergy between GOA and the ANN emerges as GOA is enlisted to optimize the ANN's hyperparameters. A 

fitness function, contingent upon the ANN's performance evaluation, steers GOA's quest for optimal hyperparameters. 

The ultimate step entails evaluating the refined ANN model, fortified with optimized hyperparameters, against a 

distinct testing dataset. Model performance is gauged through Mean Square Error (MSE), tailored to structural damage 

prediction tasks. Depending on the results, further model refinement or iteration with diverse hyperparameter 

configurations may be undertaken. The mathematical model used to calculate the position Xi of each solution using 

GOA can be expressed as the following equation: 
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where d indicates dimensions,  𝑈𝐵𝑑 and 𝐿𝐵𝑑 are the upper and lower bounds in the dth dimension, respectively, and c 

is decreasing factor according to iterations and can be done by: 
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where 𝑐𝑚𝑎𝑥  and 𝑐𝑚𝑖𝑛  are the maximum and minimum values of c, respectively, iter is the current iteration, and 

𝑀𝑎𝑥𝑖𝑡𝑒𝑟 is the  maximum number of iterations. 

 

The Mean Squared Error can be expressed as follows: 
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where 𝑦𝑖 denotes the actual value, �̅�𝑖 shows the predicted one, and n indicates the total number of instances. 

 

 

The GOA-ANN trainer algorithm follows a series of distinct steps: 

1. Initialization: GOA-ANN initiates by creating a set of grasshoppers, initially randomized. 

2. Mapping of Grasshoppers: The attributes of these grasshoppers are meticulously assigned to the weights and 

biases associated with a potential Artificial Neural Network (ANN). 

3. Fitness Evaluation: The effectiveness of the resultant ANNs is meticulously evaluated using the MSE 

function, which assesses their performance across all samples within the training dataset. 

4. Optimal MLP Identification: GOA-ANN endeavors to identify the ANN exhibiting the lowest MSE value. 

ANNs displaying lower MSEs are given preference over those with higher MSEs. 

5. Position Updates: The positions of the grasshoppers are updated as part of an iterative process. 

6. Iterative Loop: Steps 2 through 4 are recurrently performed until the latest cycle is reached. 

7. Termination and Testing: Ultimately, the process is concluded, and the ANN with the minimal MSE 

undergoes testing using test/validation instances to validate its performance. 
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3. Numerical model and data collection 

The modeling was executed using ABAQUS 16.4 software, considering a free-free boundary condition. The three-

dimensional beam modeling was conducted utilizing the eight-node C3D8R brick element, where each node 

encompasses six degrees of freedom, encompassing rotational (x, y, z) and translational (u, w, v) displacements. Two 

damage scenarios were investigated to assess the GOA-ANN approach's predictive capability concerning hole 

location. In the initial scenario (P1), a single hole was introduced at the midpoint of the beam, with its location varying 

from the center to the edge in 10 mm increments. In the second scenario (P2), an off-center hole was introduced at the 

beam's midpoint, with its location similarly varying from the center to the edge in 10 mm increments. Fig. 1 illustrates 

a model of an aluminum plate, including hole positions, and Table 1 details its geometrical and mechanical properties. 

Fig. 3 showcases the first four mode shapes derived from numerical simulation, which are considered frequency values 

as input data. 

 

                     Table 1. Geometrical and mechanical properties of healthy Aluminum plates. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Numerical model for aluminum plate and damage locations 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. The first four bending mode shapes of vibration: (a) Mode 1, (b) Mode 2, (c) Mode 3, and (d) Mode 4. 
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4. Results and discussion 

     The datasets were compiled using the analysis outcomes of damage instances denoted as P1 and P2, aiming to 

predict the specific centered and eccentric hole positions applied to the plate model illustrated in Figure 1. During the 

training of the GOA-ANN model, it was configured with a fixed number of neurons set to 4. The configuration of 

parameters for the considered algorithms was established through an iterative process of experimentation and 

refinement. Initially, a range of values for each parameter was chosen, drawing from prior research and domain 

expertise. Subsequently, extensive experimentation ensued, involving various combinations of parameter values to 

assess each algorithm's performance, and the population number was 100. To assess the efficacy of GOA in the context 

of ANN training, a comparative analysis was carried out against alternative methods, specifically ACO-ANN and GA-

ANN. 

 

4.1. Centred hole 

In this damage scenario, the GOA-ANN combination was employed to predict centered hole positions at the plate 

model, specifically at positions of X= 30, 80, 120, and 150 mm. Fig. 3 illustrates an examination of the regression and 

performance of the GOA-ANN approach in comparison to ACO-ANN and GA-ANN, all configured with a hidden 

layer size denoted as n and set to 4. A summary of the results is presented in Table 2. 

 

 

 

Fig. 2. Regression and convergence for centered hole damage case: (a) GOA, (b) ACO, (c) GA, and (d) Convergences 

 

The results unequivocally highlight the superior performance of the hybrid GOA-ANN methodology when 

juxtaposed with individual techniques like ACO and GA. The regression value achieved through the hybrid approach 

closely approaches 1, signifying a remarkably high level of precision. With a hidden layer size of n equal to 4, the 

maximum anticipated disparity between the predicted and desired outcomes is estimated to fall within a mere 0.3 mm 

range. While ACO and GA all exhibit competence in predicting hole location, it is noteworthy that the GOA approach 

surpasses them in accuracy. This is primarily attributed to its broader error margin and the fact that GA necessitated 

more generations and larger populations, resulting in increased computational time. Further insights into these 

outcomes are depicted in Fig. 4. 

 

4.2. Eccentric hole 

In this damage scenario, the GOA-ANN combination was employed to predict eccentric hole positions at the plate 

model, specifically at positions of X= 20, 60, 140, and 180 mm. Fig. 3 illustrates an examination of the regression and 

performance of the GOA-ANN approach in comparison to ACO-ANN and GA-ANN, all configured with a hidden 

layer size denoted as n and set to 4. A summary of the results is presented in Table 2. 

 

 

a b c d 
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Fig. 3. Regression and convergence for centered hole damage case: (a) GOA, (b) ACO, (c) GA, and (d) Convergences 

 

 

Upon a comprehensive analysis of the anticipated results against the intended targets, it becomes evident that the 

GOA technique exhibits a maximum error margin of 0.12 mm. This occurrence coincides with a regression value 

approaching unity. Intriguingly, the GOA approach accomplishes this with fewer iterations, emphasizing its 

efficiency. A thorough investigation employing an ANN improved by the GOA reveals that ANN outperforms ACO 

and GA for predicting hole positions in this specific damage scenario. Conversely, GA exhibits less precision and 

demands an extended computational time. The comprehensive findings are itemized in Fig. 4. 

 

                     Table 2. Hole locations prediction for damage cases P1 and P2 using ANN trained by GOA, ACO, and GA. 

 

Damage case Centered hole Eccentric hole 

Approach 

Real hole 

location 

(mm) 

Predicted 

hole location 

(mm) 

Error in 

predicted 

results (%) 

Real hole 

location 

(mm) 

Predicted 

hole location 

(mm) 

Error in 

predicted 

results (%) 

GOA-ANN 30 30.1013 0.3376 20 19.9898 0.0510 

ACO-ANN  30.2220 0.7400  19.1111 4.4445 

GA-ANN  34.0532 13.5106  22.0985 10.492 

GOA-ANN 80 79.9888 0.0140 60 60.1212 0.2020 

ACO-ANN  80.9000 1.1250  58.8734 1.8776 

GA-ANN  85.9878 7.4847  63.6363 6.0605 

GOA-ANN 120 120.3434 0.2861 140 141.0000 0.7142 

ACO-ANN  120.8888 0.7406  140.8745 0.6246 

GA-ANN  120.9898 0.8248  145.9857 4.2755 

GOA-ANN 150 150.0919 0.0612 180 180.0222 0.0123 

ACO-ANN  148.8888 0.7408  180.9999 0.5555 

GA-ANN  153.5409 2.3606  181.9875 1.1041 

 

 

 

a b c d 
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Fig. 4. Real and predicted hole locations for both damage cases P1 and P2 

 

5. Experimental model 

The test procedure involved simulating free-free boundary conditions by suspending the structure, which possesses 

the characteristics detailed in Table 1, using two flexible strings. Fig. 5 provides a visual representation of the 

experimental setup. During this test, the impact hammer was securely positioned at a fixed point, from which the 

structure was excited at various locations. In Fig. 5, h corresponds to the impact hammer's placement, while a1, a2, 

and a3 denote the positions of the accelerometers. A measurement system equipped with the capability to extract 

frequency values by converting signals into the frequency domain through the Fast Fourier Transform (FFT) 

technique, in conjunction with Pulse software, was employed. Each accelerometer location underwent a series of 10 

impacts, and the resultant average value was recorded. Subsequently, frequency values were measured for the various 

damage scenarios corresponding to the previously considered crack depths. 

 

 

 

Fig. 5. Operating mode for modal analysis: (a) Beam specimens, (b) Experimental set up 

 

h a1 a2 a3 

a b 
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                     Table 2. Numerical and experimental frequency values for damaged and undamaged plate models. 

 

EXP and FEM natural frequency values f1 (Hz) f2 (Hz) f3 (Hz) f4 (Hz) 

Damaged plate 

Exp 186 505.10 1000.35 1660.00 

FEM 181.58 501.87 986.33 1633.0 

Error 2.434 0.643 1.421 1.653 

Undamaged plate 

Exp 183.11 504.91 992.24 1654 

FEM 181.08 501.90 984.83 1633.0 

Error 1.121 0.599 0.752 1.285 

 

 

 

 

 

 

 

Fig. 6. Comparison of envelopes of FRFs for undamaged (a) and damaged (b) with holes at accelerometer positions a1, a2, and a3 

6. Conclusion 

     This article introduces an innovative hybrid algorithm that combines ANN and the Grasshopper Optimization 

Algorithm (GOA) to address numerical optimization challenges. This approach centers on enhancing the adaptation 

mechanism within ANN. It was tested through a series of damage scenarios involving an aluminum plate to assess 

this novel algorithm's efficacy. The performance of this method was benchmarked against two other metaheuristic 

techniques derived from swarm intelligence and evolutionary computing: ACO and GA. To validate the proposed 

model, experimental validation was incorporated. The results unequivocally indicate that GOA exhibits superior 

accuracy in addressing numerical optimization problems compared to the other algorithms considered in terms of 

convergence and computational time. 
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