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ABSTRACT

This paper presents a novel pothole detection approach based
on single-modal semantic segmentation. It first extracts vi-
sual features from input images using a convolutional neural
network. A channel attention module then reweighs the chan-
nel features to enhance the consistency of different feature
maps. Subsequently, we employ an atrous spatial pyramid
pooling module (comprising of atrous convolutions in series,
with progressive rates of dilation) to integrate the spatial con-
text information. This helps better distinguish between pot-
holes and undamaged road areas. Finally, the feature maps
in the adjacent layers are fused using our proposed multi-
scale feature fusion module. This further reduces the seman-
tic gap between different feature channel layers. Extensive
experiments were carried out on the Pothole-600 dataset to
demonstrate the effectiveness of our proposed method. The
quantitative comparisons suggest that our method achieves
the state-of-the-art (SoTA) performance on both RGB images
and transformed disparity images, outperforming three SoTA
single-modal semantic segmentation networks.

Index Terms— pothole detection, single-modal semantic
segmentation, convolutional neural network, feature fusion.

1. INTRODUCTION

Potholes are considerable structural failures on the road sur-
face [1]. They are caused by the contraction and expansion
of the road surface as rainwater permeates the ground [2].
The affected road areas are further deteriorated due to tire vi-
bration. This makes the road surface impracticable for driv-
ing [3]. The vehicular traffic can cause subsurface materials

? Corresponding Author

to move, which further expands the potholes, creating a vi-
cious circle [4]. To avoid traffic accidents, it is crucial and
necessary to detect road potholes in time [5]. With recent
advances in machine learning, automated road pothole detec-
tion systems have become a reality [6–9]. Benefiting from the
evolution of convolutional neural networks (CNNs), semantic
segmentation has become an effective technique for road pot-
hole detection [5], and it has achieved compelling results.

Among the state-of-the-art (SoTA) semantic segmentation
CNNs, fully convolutional network (FCN) [10] replaces the
fully connected layer used in traditional classification net-
works with a convolutional layer to achieve better segmen-
tation results. Contextual information aggregation has proved
to be an effective tool that can be used to improve segmenta-
tion accuracy. ParseNet [11] captures global context by con-
catenating global pooling features. PSPNet [12] introduces
a spatial pyramid pooling (SPP) module to collect contextual
information in different scales. Atrous SPP (ASPP) [13–15]
applies different dilated convolutions to capture multi-scale
contextual information without introducing extra parameters.

To take advantage of global contextual visual information,
some pioneering methods have been proposed to reweigh 2-D
feature map channels. SE-Net [16] and EncNet [17] are de-
signed to learn a globally-shared attention vector from global
context. SE-Net [16] employs a squeeze-excitation operation
to integrate the global contextual information into a feature
weight vector and reweigh the feature maps. EcnNet [17] uses
a context encoding module to obtain a globally-shared feature
weight vector. This module adopts learning and residual en-
coding components to obtain a global context encoded feature
vector, which is then used to predict the feature weight vector.
Combining global context information to reweigh the feature
map of each channel has proved to be effective in terms of
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Fig. 1. The architecture of our proposed road pothole detec-
tion network.

improving semantic segmentation accuracy.
Some other methods use backbone CNNs [12, 14, 17, 18]

to extract feature maps at different scales. By performing a
series of convolution and pooling operations, the top layer
has rich semantic information [19–22], while the lower-level
feature maps contain fine-grained information [23]. This in-
formation asymmetry becomes a barrier to accurate seman-
tic prediction. To address this issue, U-Net [24] adopts an
encoder-decoder architecture to improve the semantic seg-
mentation performance. It adds skip connections between the
encoder and decoder, which can recover fine-grained details
in the semantic prediction. Feature pyramid network (FPN)
[25] uses the structure of U-Net [24] with predictions from
each level of the feature pyramid. However, the fusion opera-
tions cannot measure the semantic relevance between feature
maps at different scales. The semantic information between
feature maps at different scales may interfere with each other.

To address the above problems, in this paper, we propose
a novel multi-scale feature fusion module (MSFFM) based
on attention mechanism. Our main objective is to improve
the semantic prediction by leveraging additional low-level in-
formation near the boundaries, where the pixel categories are
difficult to infer. We utilize a matrix multiplication operation
to measure the relevance between the two feature maps in the
spatial dimension, which is the basic idea of weight vectors.
By reweighing feature maps in lower layers, we reduce inter-
ference between feature maps in different layers. Moreover,
we adopt a channel attention module (CAM) to reweigh fea-
ture maps in different channels to further improve the seman-
tic segmentation results.

2. METHODOLOGY

Given a road image, potholes can have diverse shapes and
scales. We can obtain feature maps at the top layer through a
series of convolution and pooling operations. Although the
feature maps have rich semantic information, their resolu-
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Fig. 3. Our employed Channel Attention Module.

tions are not high enough to provide accurate semantic pre-
diction. Unfortunately, directly combining low-level feature
maps can only bring very limited improvements. To over-
come this shortcoming, we design an effective feature fusion
module in this paper.

The schema of our proposed road pothole detection net-
work is illustrated in Fig. 1. Firstly, we employ a pre-trained
dilated ResNet-101 as the backbone CNN to extract visual
features. We also replace the down-sampling operations with
dilated convolutions in the last two ResNet-101 [26] blocks,
thus the size of the final feature map is 1/8 of the input image.
This module helps retain more details without introducing ex-
tra parameters. In addition, we adopt the ASPP module used
in Deeplabv3 [14] to collect contextual information in the top
feature map. Then, we adopt a CAM to reweigh the feature
maps in different channels. It can highlight some features so
as to produce better semantic predictions. Finally, we feed the
feature maps at different levels into the MSFFM to improve
the segmentation performance near the pothole contour.

2.1. Multi-scale feature fusion

The top feature maps have rich semantic information but their
resolution is low, especially near the pothole boundary. On
the other hand, the lower feature maps have low-level seman-
tic information but higher resolution. In order to address this
problem, some works [15, 24, 27] directly combine the fea-
ture maps in different layers. Nevertheless, their achieved
improvements are very limited because of the semantic gap
between feature maps with different scales.

The attention modules have been widely applied in many
works [28–30]. Inspired by some successfully applied spa-
tial attention mechanisms, we introduce a MSFFM, which is
based on spatial attention to efficiently fuse the feature maps



at different scales. Semantic gap is one of the key challenges
in feature fusion. To solve this issue, the MSFFM calculates
the correlation between pixels in different feature maps via
matrix multiplication, and the correlation is then utilized as
the weight vectors for the higher-level feature map:

sji =
exp(Pi ·Qj)∑N
i=1 exp(Pi ·Qj)

, (1)

where sji measures the relevance between the i-th position
in lower feature map and the j-th position in higher feature
map. N represents the number of pixels. P and Q rep-
resent the lower and higher feature maps generated by the
convolutional layer, respectively, where {P,Q} ∈ RC×N .
The higher the similarity between feature representations of
pixels at the two positions, the greater is the relevance be-
tween them. As shown in Fig. 2, we first feed the feature
maps into a convolution layer to compress the channels for
fewer calculations while generating feature maps A and B,
{A,B} ∈ RC×H×W . H and W represent the height and
width of the feature map. Then we reshape the low-level fea-
ture map A and the high-level feature map B to P and Q,
respectively, where N = H ×W represents the number of
pixels. Afterwards, we transpose Q for matrix multiplication
and apply a softmax layer to calculate the spatial attention
map S ∈ RN×N .

Then we perform matrix multiplication between Q and
the spatial attention map S to generate the feature map L ∈
RC×H×W . Finally, we utilize an element-wise sum operation
between B and L to obtain the final output O ∈ RC×H×W as
follows:

Oj = α

N∑
i=1

(sjiqi)+Bj , (2)

where α is initialized as 0 and it gradually learns to assign
more weight, qi represents the i-th position in the lower fea-
ture map, and Bj represents the j-th channel of the top fea-
ture map. It can be inferred from (2) that each position of the
final featureO is a weighted sum of the features across all po-
sitions of the top features. As the final feature is generated by
the top features, the high-level semantic information is well
preserved in the final outputs.

In summary, we utilize matrix multiplication to measure
the relevance of pixels in feature maps from different layers,
which integrates the detailed information from the lower fea-
ture map into the final outputs, thus improving the semantic
segmentation performance for the pothole boundary. We ap-
ply this module between the last two layers.

2.2. Channel-wise feature reweighing

It is well-known that high-level features have rich semantic
information and each channel map can be regarded as a class-
specific response. Each response can affect the final semantic

(a)

(b)

(c)

(d)

(e)

Fig. 4. Examples of pothole detection results: (a) RGB im-
ages; (b) transformed disparity images; (c) pothole ground
truth; (d) semantic RGB image segmentation results; (e) se-
mantic transformed disparity image segmentation results.

prediction to a different extent. Therefore, we utilize CAMs,
as illustrated in Fig. 3, to enhance the consistency of the fea-
ture maps in each layer, by changing the features’ weights in
each channel. The CAM is designed to reweigh each chan-
nel according to the overall pixels of each feature map. We
first employ a global average pooling layer to squeeze spatial
information. Subsequently, we use the Rectified Linear Unit
(ReLU) and sigmoid function to generate the weight vectors,
which are finally combined with the input feature maps by
element-wise multiplication operations to generate an output
feature map. The overall information is integrated into the
weight vectors, making the feature maps more reliable and
the pothole detection results closer to the ground truth. In our
experiments, we employ the CAM in the 4th and 5th layers.

3. EXPERIMENT RESULTS

In this paper, we carry out comprehensive experiments on the
Pothole-600 dataset [4] to evaluate the performance of our
proposed road pothole detection both qualitatively and quan-
titatively. This dataset provides two modalities of vision sen-
sor data: 1) RGB images, and 2) transformed disparity im-
ages [31]. The transformed disparity images were obtained
by performing disparity transformation [32, 33] on dense dis-
parity images estimated by PT-SRP [34]. We conduct experi-
ments to select the best architecture. All the experiments use
the same training setups.

Ablation Study: To validate the effectiveness of our pro-
posed MSFFM and CAM, we first carry out the ablation study
on different network architectures, as shown in Table 1 and



Table 1. Ablation study on RGB images.
Methods mIoU (%) mFsc (%)
Baseline 55.32 71.23
Baseline + CAM 57.17 72.75
Baseline + MSFFM 59.43 74.55
Baseline + CAM + MSFFM (ours) 61.51 76.16

Table 2. Ablation study on transformed disparity images.
Methods mIoU (%) mFsc (%)
Baseline 70.90 82.97
Baseline + CAM 72.26 83.89
Baseline + MSFFM 71.02 83.06
Baseline + CAM + MSFFM (ours) 72.75 84.22

Table 3. Performance of other SoTA networks on RGB im-
ages.

Methods mIoU (%) mFsc (%)
PSPNet [12] 58.61 73.90
DANet [18] 59.42 74.54
Deeplabv3 [15] 58.60 73.90

Table 4. Performance of other SoTA networks on trans-
formed disparity images.

Methods mIoU (%) mFsc (%)
PSPNet [12] 69.85 82.25
DANet [18] 70.52 82.71
Deeplabv3 [15] 70.36 82.60

Table 2. The baseline network uses Deeplabv3 [14], which
concatenates the feature maps from ASPP module and the
lower layer.

Moreover, we implement the two modules into the base-
line network and verify their effectiveness, respectively. Ac-
cording to the results shown in Table 1 and Table 2, imple-
menting two modules can achieve better performance than
the baseline network on both RGB images and transformed
disparity images. The mIoU improvements on RGB images
with the use of CAM and MSFFM are 1.85% and 4.11%, re-
spectively, while the mIoU improvements on the transformed
disparity images are 1.36% and 0.12%, respectively. The net-
work with MSFFM and CAM embedded yields an mFsc of
76.16% on RGB images and an mFsc of 84.22% on trans-
formed disparity images. Based on these experimental results,
we believe that the CAM and MSFFM adopted in our network
can improve the segmentation accuracy significantly.

Performance Comparison: We also compare our method
with three SoTA semantic segmentation CNNs: 1) Deeplabv3
[15], 2) PSPNet [12], 3) DANet [18] on both RGB images
and transformed disparity images, as shown in Table 3 and
Table 4. PSPNet [12] and Deeplabv3 [15] collect contextual
information in different scales, and therefore, they achieve
similar results on RGB images and transformed disparity im-
ages. DANet [18] collects contextual information based on
attention mechanism and it shows better performance on both
RGB images and transformed disparity images. This further
demonstrates the superiority of attention mechanism on se-

mantic segmentation for road pothole detection, which can
also be observed from the comparison between our method
and other SoTA networks.

Additionally, when using RGB images, the mIoUs of
our method are 2.91%, 2.9%, and 2.09% higher than those
achieved by Deeplabv3 [15], PSPNet [12], and DANet [18],
respectively. Moreover, our method also outperforms the
above-mentioned SoTA semantic segmentation networks on
transformed disparity images, where the improvements on
mIoU with respect to Deeplabv3 [15], PSPNet [12], and
DANet [18] are 2.39%, 2.9%, and 2.23%, respectively.
Specifically, our method achieves the best performance, even
when it only utilizes a MSFFM.

We also provide some qualitative results of our proposed
road pothole detection method in Fig. 4, where it can be ob-
served that the CNN achieves accurate results on the trans-
formed disparity images. The results obtained from our com-
prehensive experimental evaluations have demonstrated the
effectiveness and superiority of our method compared to other
SoTA techniques. Owing to the proposed CAM and MSFFM,
our method achieves better performance for potholes detec-
tion on both RGB and transformed disparity images.

4. CONCLUSION

This paper introduced a method to detect road potholes based
on semantic segmentation, which employs a novel multi-scale
feature fusion module based on spatial attention to reduce the
semantic gap between the feature maps in different layers.
This helps maintain the semantic information in the higher-
level feature maps and combine the detailed information near
the pothole boundary. The top feature maps can be reweighed
using the vectors generated by the relevance of each pixel in
the different layers, which combine the global information of
the feature maps. Moreover, a channel attention module is in-
troduced to strengthen the channels which are more relevant
to the semantic segmentation ground truth. Extensive experi-
ments were conducted on both RGB images and transformed
disparity images, where our proposed network outperforms
all other SoTA semantic segmentation networks.
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