
EasyChair Preprint
№ 15689

Diversity Measure for Drift Detection in Data
Streams

Osama A. Mahdi, Savitri Bevinakoppa and Sarabjot Singh

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

January 8, 2025

Abstract— Concept drift is a notable challenge in machine

learning, data mining, and applications involving big data and

large-scale data processing. The employment of diversity

measures has emerged as an effective strategy. We examine and

investigate the role of diversity measures in detecting concept

drift and provide a comparative analysis of four different

approaches: DMDDM for drift detection in a fully supervised

binary classification context, DMDDM-S in a semi-supervised

context, DMODD for online dri

Osama Mahdi

School of IT and Engineering

Melbourne Institute of Technology

Melbourne, Australia

Diversity Measure for Concept Drift Detection in

Data Streams

omahdi@mit.edu.au

Savitri Bevinakoppa

School of IT and Engineering

Melbourne Institute of Technology

Melbourne, Australia

sbevinakoppa@mit.edu.au

Sarabjot Singh

School of IT and Engineering

Melbourne Institute of Technology

Melbourne, Australia

sarabjotsingh@academic.mit.edu.au

ft detection in a fully supervised

multi-classification context, and HBBE, a hybrid block-based

ensemble designed for addressing different types of concept

drifts. Our comparative analysis evaluates the efficacy of these

methods in detecting concept drift and enhancing model

performance. The results confirm the effectiveness of all four

approaches within their respective settings. Moreover, this

paper provides insights into potential advancements and

research opportunities in the application of diversity measures

for concept drift detection.

Keywords— Concept drift, data stream, non-stationary

environments, big data applications

I. INTRODUCTION

The constant transformation or evolution of data is a
crucial concern in dynamic settings and applications,
including aviation, autonomous vehicles, nuclear power
plants, healthcare, defense, smart urban infrastructure, and the
aerospace industry. Fundamentally, the critical characteristics
of these environments are subject to change, potentially
leading to negative consequences, such as endangering human
lives, if not adequately addressed [1]. Consequently, learning
methods must employ sophisticated algorithms to monitor
these changes and adapt accordingly. Furthermore, the
effectiveness of learning algorithms may vary due to the
changing nature of incoming data, meaning that an algorithm
that is effective today may become outdated following
changes in the environment or data.

The literature on learning from data streams identifies the
phenomenon of class distribution changes within data streams
as concept drift [2]. In the context of machine learning,
concept drift describes a situation where the statistical
properties of the target variable, which the model is designed
to forecast, shift over time [3]. This implies that the original

diminishing efficacy of antibiotics with prolonged use due to
microbial resistance highlights concept drift; misuse of
antibiotics can lead to resistance, compromising their
effectiveness when critically needed. This reflects how
alterations in medication usage can influence disease
progression. In the financial sector, areas like bankruptcy

input data's relevance to the model has altered significantly,
yet the model remains oblivious to these modifications and, as
a result, fails to make precise predications. Thus, it is
imperative for learning algorithms to detect concept drift in
dynamic data streams and accordingly adjust or renew their
prediction models. To address this challenge, adaptive
learning models are developed, employing drift detection
methods to pinpoint the instances of drift in changing
environments [2]. Concept drift is a phenomenon that impacts
a broad range of applications, recognised and tackled across
various domains including medicine, industry, education, and
commerce. For instance, in the medical sector, the

979-8-3503-6314-2 /24/$31.00 ©2024 IEEE

forecasting or credit evaluation, traditionally viewed as stable,
may experience concept drift due to underlying shifts in social
trends and behaviors. In the realm of industrial monitoring,
shifts in production processes, service monitoring, or
consumer actions can lead to concept drift. Likewise, in the
field of transportation, traffic control systems that utilize data
mining to assess traffic conditions, such as vehicle density and
accident rates, need to adapt to concept drift caused by
seasonal or long-term changes in traffic flows.

Among the variety of concept drift techniques that have
been proposed so far, the diversity measure has been used as
a promising method for detecting concept drifts [4], [5], [6],
[7], however, there is a necessity for a comparative analysis to
ascertain their efficiency, identify the most effective approach,
and delineate a trajectory for their sustained evolution in
machine learning contexts. In this paper we examine the role
of the diversity measure in detecting concept drift and
compare four different ways of using them: DMDDM for drift
detection in a fully supervised binary classification context
[4], DMDDM-S in a semi-supervised framework [5],
DMODD for online drift detection in a fully supervised multi
classification context [7], and HBBE, a hybrid block-based
ensemble designed for addressing various forms of concept
drifts [6].

This study seeks to explore the following research
questions: (1) How do different methodologies, such as
DMDDM in a fully supervised context, DMDDM-S in a semi-
supervised framework, DMODD as online drift detection, and
HBBE as a hybrid block-based ensemble, utilize diversity
measures effectively for concept drift detection? (2) In a
comparative analysis, which method among the four methods
performs the best in terms of detecting concept drift and
enhancing model performance? (3) What are the potential
future directions and research opportunities in using diversity
measures for concept drift detection?

To answer these research questions, we present three
analyses of the four methods, evaluating their effectiveness in
detecting concept drift and their ability to improve model
performance.

The paper is structured as follows: Section II provides an
overview and notation on concept drift. Section III covers the
literature review. Section IV discusses diversity measures and
their role in concept drift detection. Section V presents the
experimental results and analysis of DMDDM, DMDDM-S,
DMODD, and HBEE. Finally, Section VI concludes the
paper.

2024 IEEE 9th International Conference on Engineering Technologies and Applied Sciences (ICETAS)

Osama A Mahdi
Text Box

Osama A Mahdi
Text Box

II. CONCEPT DRIFT

This section presents an overview of concept drift,
including its definition, origins, varieties, and the
methodologies for adapting to concept drift [2], [8].

A. The Definition of Concept Drift

Assuming Pt0 denotes the joint probability distribution of
the input variable x and the target variable y at time t0, and Pt1
denotes the joint probability distribution of x and y at time t1,
concept drift is said to occur if Equation (1) is satisfied when
transitioning from t0 to t1.

∃𝑥 ∶ 𝑃𝑡0 (𝑥, 𝑦) ≠ 𝑃𝑡1(𝑥, 𝑦) (1)

Currently, the distribution of the underlying data has
shifted away from concept C1 to a new concept C2. This shift
is attributed to the dynamics of joint probability Pt(x, y) = Pt(x)
Pt(y|x), and if Equation (2) is fulfilled as time progresses from
t0 to t1, a concept drift is observed. Variations in either Pt(x) or
Pt(y|x) are capable of inducing concept drift.

∃𝑥 ∶ 𝑃𝑡0 (𝑥)𝑃𝑡0 (𝑥|𝑦) ≠ 𝑃𝑡1 (𝑥)𝑃𝑡1 (𝑥|𝑦) (2)

B. The Origins of Concept Drift

Based on the concept of concept drift and the properties of
joint probability distributions, it is identified to have three
primary origins:

Virtual Concept Drift: when there is a change in the
probability of x, while the probability of y given x remains
unchanged, i.e., 𝑃𝑡0 (𝑥) ≠ 𝑃𝑡1(𝑥) and 𝑃𝑡0 (𝑥|𝑦) ≠
 𝑃𝑡1(𝑥|𝑦). This case belongs to virtual concept drift, which
does not affect its decision boundary and only changes the
feature space. Real Concept Drift: when the probability of y
given x undergoes a change, the probability of x remains the
same, i.e., 𝑃𝑡0 (𝑥|𝑦) ≠ 𝑃𝑡1(𝑥|𝑦) and 𝑃𝑡0 (𝑥) = 𝑃𝑡1(𝑥). This
scenario significantly affects the prediction model,
representing a genuine concept drift that alters both the feature
space and its decision-making boundary. Also, in line with
Bayesian decision theory [9], Equation (3) is derived:

𝑃(𝑦|𝑥)
𝑃(𝑦) ∗ 𝑃 (𝑥|𝑦)

𝑃(𝑥)
 (3)

It is evident that Pt(y) and Pt(x|y) influence Pt(y|x), thereby
contributing to an indirect real concept drift. The various
forms of concept drift resulting from distinct causes are
depicted in Figure 1, where (X1, X2) symbolizes the two-
dimensional feature space, and y denotes the category label.

C. The Types of Concept Drifts

Research identifies several patterns in concept changes, as

depicted in Figure 2. An Sudden Drift occurs when the

original distribution St is instantly replaced by a new

distribution St+1 at a specific time t, significantly impairing

classifier performance. Gradual Drifts involve a slower

change where examples from distributions St and St+1

intermingle, with St examples decreasing over time and St+1

examples increasing. Recurrent Concepts are concepts that

were active in the past and may reappear after a period of

absence.

III. BACKGROUND

In this section, we review well-known drift detectors from
previous studies that are highly relevant to our research.

The Fast Hoeffding Drift Detection Method (FHDDM)
[10] uses Hoeffding's inequality within a specified window
size 𝑛 to detect drifts. A drift is indicated if there's a significant
change between current probabilities and the peak of accurate
forecasts.

The Drift Detection Method (DDM) [11] is notable for
using classifier error to detect drifts. An increase in error and
training samples may indicate a shift. DDM sets a caution
threshold, and when error rates reach it, incoming samples are
placed in a window. If the error rate hits the drift threshold,
the classifier is reconfigured using these samples.

The Adaptive Sliding Window (ADWIN) approach [12]
shifts a window 𝑤 across prediction outcomes, evaluating two
sub-windows. If a significant difference in their averages is
detected, ADWIN flags a concept drift and removes elements
from the window's end until the variation disappears.

The HDDM_A and HDDM_W tests [13] use Hoeffding's
bounds to identify drifts. HDDM_A compares moving
averages, while HDDM_W examines the weight of these
averages using the EMWA forgetting scheme [14]. The
creators found that HDDM_A is better for immediate shifts,
while HDDM_W excels at detecting gradual drifts.

The PH Test technique [15], used in signal processing for
drift detection, calculates a cumulative discrepancy between
observed values and their average up to the present moment
𝑇, captured by mT. The minimum value of MT, denoted as MT,
is updated over time. A significant discrepancy between mT
and MT indicates a concept drift.

The SegDrift2 approach [16] uses two storage
mechanisms: one combines new and old data, while the other
stores only new entries. It evaluates the mean values in both
repositories and identifies a concept drift when the
discrepancy between these means exceeds a predefined
threshold.

SEED [17] uses a window approach to compare two sub-
windows. When a significant difference in their averages is
detected, the earlier segment is discarded. SEED also applies

Figure 1. Two forms of drift are illustrated with instances shown as differently

colored circles

Figure 2. Patterns of Concept Drift.

Hoeffding's Inequality with the Bonferroni correction to
determine the test statistic and perform block compression,
removing unnecessary cut points.

RDDM [18] was introduced to improve DDM's
sensitivity. It discards older data points and periodically
refreshes its statistics for drift detection. The creators noted
that RDDM often outperforms DDM in accuracy and
promptness but may result in more false positives and higher
memory usage.

EDDM [19] modifies DDM by tracking the distance
between consecutive errors instead of the error rate. Using the
same warning system as DDM, EDDM signals drift when the
gap between sequential errors widens, indicating unstable data
concepts.

The Accuracy Updated Ensemble (AUE2) [20] uses an
online classifier to update individual learning models directly,
unlike the Adaptive Weighted Ensemble (AWE) which only
adjusts weights. When no drift is detected, classifiers improve
as if trained on a single, large dataset, allowing for a reduced
block size without compromising accuracy.

Accuracy Weighted Ensemble (AWE) [21] trains a new
classifier with each incoming data block using static
algorithms like Naive Bayes, C4.5, or RIPPER. After training,
the current classifiers are evaluated using mean square error
on the latest data block. The top 𝑛 classifiers are then selected
to refresh the ensemble.

The Dynamic Weighted Majority (DWM) [22] weights
incremental classifiers based on accuracy after each example.
For every error, a classifier's weight is reduced by a set factor.
Periodic evaluations of the ensemble may lead to adding new
classifiers. However, training on many examples can create
numerous components, indicating that future work could
focus on pruning classifiers.

Learn++.NSE [23] employs a block-based ensemble
strategy for incremental learning of concept drift. With each
new data block, it trains a new classifier and uses a
dynamically weighted majority voting system. The innovation
lies in calculating voting weights based on the time-adjusted
accuracy of each classifier across both current and past
environments.

IV. DIVERSITY MEASURE AND ITS ROLE FOR CONCEPT

DRIFT DETECTION

In non-stationary environments with concept drift,
methodologies are categorized into Statistical-based,
Windows-based, and Ensemble-based Methods [2].
Statistical-based Methods monitor the learning process by
observing changes in online error rates, where a significant
decline in performance indicates concept drift. Windows-
based Methods use a static reference window for historical
data and a dynamic sliding window for recent data; a
significant discrepancy between these windows signals
concept drift. Ensemble-based Methods divide data streams
into blocks, replacing the least effective ensemble member
with a new classifier after evaluations, effectively identifying
gradual drifts while maintaining accuracy. These techniques
benchmark the efficacy of learning algorithms in managing
concept drift.

In ensemble learning with static data, diversity among
members is crucial. Evaluating diversity provides insights into
methods fostering it, leading many studies to use diversity as

a criterion for pruning ensemble components [25-27]. Limited
efforts have aimed at enhancing diversity; for example,
research in [27] examines diversity's impact on online
ensemble learning and modifies the Poisson distribution in
online bagging to better address concept drift, focusing on
accuracy rather than diversity. To the authors' knowledge,
using diversity measures to directly evaluate component
classifiers and detect drifts is a novel approach, contrasting
with previous methods that relied on classification accuracy.
This innovation uses the disagreement measure and the PH
test to create four distinct algorithms, each with a unique
objective. The disagreement measure quantifies diversity as
the proportion of discordant decisions out of total
observations, reflecting performance variance between two
classifiers on identical training sets. It indicates how
classifiers respond differently to data stream changes and is
one of the simplest diversity indicators [28]. These four
algorithms, which incorporate diversity measures to adapt to
drift in dynamic settings, represent a significant shift from
existing methods, offering rapid drift response with minimal
time and memory requirements. The following subsections
(A, B, C, and D) will detail the primary contributions of each
method.

A. DMDDM as a Drift Detector in a Fully Supervised Binary

Classification Context.

To calculate the diversity between component classifiers

on a pairwise basis, consider X = x1, . . . , xn as a labeled dataset

and y′ v = [y′ v (x1), . . . , y′ v (xn)] as an n-dimensional binary

vector representing the outputs of classifier hv. In this vector,

y′v (xj) = 1 indicates a correct prediction of the class label by

hv, and 0 indicates an incorrect prediction. Table 1 showcases

(referred to as oracle outputs) all possible prediction outcomes

for a pair of classifiers hu and hv, with the condition that hu =

hv. Here, Nab denotes the count of instances xj ∈ X where y′u

(xj) = a and y′v (xj) = b. Consequently, the probability values

for Nab are outlined as follows:
• N10 represents the count of instances where classifier Ci forecasts

class 1 while classifier Cj forecasts class 0.

• N01 represents the count of instances where classifier Cj forecasts

class 1 while classifier Ci forecasts class 0.

• N11 represents the count of instances where both Ci and Cj forecast

class 1.

• N00 represents the count of instances where both Ci and Ci forecast

class 0.

Calculating the diversity between two base classifiers (hu

and hv) through the disagreement measure is quantified by
Equation (4):

𝐷𝑢:𝑣 = 𝑁10 + 𝑁01 (4)

The PH test utilizes a variable 𝑚𝑇 to track the cumulative
differences in observed values e (error estimates). To calculate
these values in a prequential (incremental with forgetting)
manner, two primary methods are employed: sliding windows
and fading factors. The fading factor method is applied across
the four strategies. This method systematically removes
outdated information by applying a factor to the previous
summary, followed by the addition of a new value derived

Table 1: The association between two classifiers (2 × 2).

hu = hv hu corrects (1) hu incorrect (0)

hv corrects (1) N11 N10

hv incorrect (0) N01 N00

from recent data. Conversely, alternative strategies employ
sliding windows to maintain a collection of the d most recent
examples at any given time, thereby constraining the sample
size for analysis. Consequently, the fading sum 𝑆𝑥,𝛼 and the

fading increment 𝑁𝛼 at time t for a sequence of objects x are
computed as follows:

𝑆𝑥:𝛼(𝑡) = 𝑥𝑡 + 𝛼 + 𝑆𝑥,𝛼 (𝑡 − 1) (5)

𝑁𝛼(𝑡) = 1 + 𝛼 ∗ 𝑁𝛼 (𝑡 − 1) (6)

Then, the fading average is computed at observation i:

𝑀𝛼(𝑡) =
𝑆𝛼(𝑡)

𝑁𝛼(𝑡)
 (7)

Per [15], the fading factors method is more efficient in
terms of time and memory usage than the sliding windows
technique. Hence, across the four methodologies, the focus is
on diversity measures observed through the fading factor,
rather than on error rates. By incorporating the diversity value
from Equation (4) into Equation (5), we derive the subsequent
equations.

𝑆𝑢:𝑣,𝛼(𝑡) = 𝐷𝑢:𝑣 + 𝛼 ∗ 𝑆𝑢:𝑣,𝛼 (𝑡 − 1) (8)

𝑀𝛼(𝑡) =
𝑆𝑢:𝑣,𝛼(𝑡)

𝑁𝛼(𝑡)
 (9)

Equation (9) is applicable alongside the PH test for
tracking the diversity between two classifiers. Through this
approach, the PH test triggers a drift alert when the predictions
of the components (hu and hv) begin to diverge in an
unexpected manner, effectively recognizing a notable rise in
diversity. Equation (10) is then utilized to compute the
cumulative difference 𝑚𝑇 , representing the discrepancy
between observed values and their average up to the present
time t:

𝑚𝑇 = ∑(𝑥𝑡 − 𝑥𝑇
− − δ)

𝑇

𝑡=1

 (10)

Where 𝑥𝑇
− =

1

𝑇
 ∑ 𝑥𝑡

𝑡=1 𝑡
 and δ corresponds to the

magnitude of changes that are allowed. Additionally, the
minimum value of this variable is calculated as follows:

𝑀𝑇 = 𝑚𝑖𝑛(𝑚𝑇 , 𝑡 = 1 … 𝑇) (11)

In the final step, the test observes the disparity between
𝑀𝑇 and 𝑚𝑇: as follow:

 𝑃𝐻𝑇 = 𝑚𝑇 − 𝑀𝑇 . (12)

Algorithm 1 outlines the DMDDM method from
reference [6], starting with initial data stream sample
processing to evaluate classifier predictions (lines 1-3). An
oracle output table, as shown in Table 1, identifies instances
(N10 and N01) where classifier pairs produce differing
outcomes on the same training data xt. The algorithm counts
occurrences where one classifier is correct and the other is
incorrect (lines 4-5). The disagreement metric is calculated by
aggregating these counts and normalizing them against the
total number of classifiers (line 6). The fading factor technique
is then applied, calculating the fading sum and increment
(lines 7-8) and using the diversity score from line 6 as a
substitute for error predictions from the PH test. The fading
average is computed in line 9. To monitor classifier pair
diversity, the PH test (lines 10-13) uses variable mT to evaluate

the cumulative deviation between the observed diversity
measure and its average. This test compares the current mT
value against the lowest recorded MT value to determine if the
difference exceeds a threshold, indicating a drift.

B. DMDDM-S as a Drift Detector in a Semi-Supervised

Binary Classification Context.

DMDDM-S [5] builds upon the concept of DMDDM by
addressing situations where class labels for the incoming data
stream are unavailable, particularly in the context of concept
drift challenges. In a binary classification scenario involving
a pair of classifiers, each component can predict an example
as either 0 (negative class) or 1 (positive class). By analyzing
the predictions from each classifier, we can determine the
level of disagreement between their predictions. Thus, this
method focuses on quantifying the discrepancy in predictions
between pairs of classifiers without considering the actual
class labels.

The DMDDM strategy initially detects concept drift in a
semi-supervised setting (DMDDM-S), identifying
disagreements in binary classification without actual labels.
This new drift detection mechanism also identifies abrupt
drifts in scenarios without class labels. To our knowledge, this
is the first attempt to use such a method for concept drift
detection. Additionally, we integrate k-prototype clustering to
label unlabelled data and retrain the model with both new and
previous labels to match the current concept. Our findings
show that this drift detector, even with only 50% labelled data,
identifies drifts more quickly and efficiently in terms of
runtime and memory compared to traditional fully labelled
methods.

Algorithm 2 introduces the DMDDM-S technique, which
begins by processing each data stream example to get
predictions from two classifiers (line 1). It identifies instances
where these classifiers disagree and tallies cases where one is
correct, and the other is incorrect (lines 1-3). Using a
disagreement measure combined with the PH test, it detects
concept drift (line 5). The disagreement measure is calculated
by summing these observations and dividing by the total
number of classifiers.

 The fading factor method is then applied (lines 6-8), with
the diversity value replacing error estimates from the original
PH test. The modified PH test tracks classifier pair diversity
(lines 9-13) using variable mT to measure the disparity
between the observed diversity and its average. A drift is
indicated if the difference between mT and the minimum MT
exceeds a threshold. Upon drift detection, the algorithm labels
current unlabelled data for model retraining, maintaining
accuracy. It merges windows of labelled (Wld) and unlabelled
data (Wuld) using K-prototype clustering. After drift detection,
the drift detector is evaluated (lines 14-15), and the model is
incrementally trained with newly labelled data (Nld) (line 16).
If the labelled data window (Wld) reaches a predefined size,
the oldest data is replaced with new data; otherwise, xt is added
to (Wld).

C. DMODD as an Online Drift Detector in a Fully

Supervised K-Class Problem Context.

Initially, for binary classification (DMDDM, DMDDM-
S), the disagreement measure Dv,u (Eq. 1) was used. However,
for multi-label classification, Table 1's method for
distinguishing discrepancies between classifier pairs that
misclassify the same instance with different labels is
ineffective. This study refines the approach to track precise
classifier predictions beyond binary correct/incorrect
assessments. We introduce a contingency table Ci,j, which

records instances x ∈ X where classifier hv(x) = i and

classifier hu(x), as shown in Table 2 for multi-label issues.
Aligned classifier pair decisions are cataloged along the
diagonal of Ci,j. Eq. 13 calculates their similarity by summing
these diagonal values and dividing by the total instance count
n. To indicate potential drifts, we apply the PH test, as
described in Eq 10 and 12 from our preliminary findings.

A drift is suggested when this disparity exceeds a
predetermined threshold (λ).

ɵ =
1

𝑛
∑(𝐶𝑖,𝑗)

𝐾

𝑖=0

 (13)

The DMODD, referenced in [7] and detailed in Algorithm
3, processes data stream examples and evaluates classifier
predictions. It uses a contingency table to tally diverging
classifier decisions (lines 1-3). This approach aggregates and
normalizes these tallies by the total instance count (lines 4-5).
It then calculates the fading sum, increment, and average
(lines 6-8). The method tracks classifier diversity using the PH
test to monitor cumulative variation (lines 9-14). A drift is
identified and addressed when the disparity between current
and minimum cumulative variations exceeds a threshold. The
algorithm concludes with the incremental model update (line
15), keeping it responsive to new data and identified drifts.

D. HBBE is a Hybrid Block-Based Ensemble designed to

address different types of concept drifts.

The examination of block-based ensembles and drift
detection strategies enhances understanding of adaptive
block-based ensembles and online drift detection, specifically
their mechanisms for responding to concept drift.
Consequently, a Hybrid Block-Based Ensemble (HBBE)
framework has been developed and empirically proven [6].
This model outperforms other leading adaptive learning
algorithms in predictive accuracy across various scenarios,
including sudden, gradual, recurring, and multi-class
challenges. HBBE merges an online drift detector (DMODD),
tailored for K-class problems and capable of real-time
processing, with block-based weighting to effectively address
diverse forms of drifts. The operational mechanism of the
block-based ensemble framework is characterized as follows:
(1) An Online Drift Detector, tailored for K-class problems,
processes data instance by instance to promptly enhance the
ensemble's responsiveness to sudden drifts. (2) In a Block-
Based manner, following every d examples, an evaluation is
conducted alongside incremental updates to the ensemble's
components, plus the integration of a new component. This
process is aimed at bolstering the ensemble's ability to adapt
to gradual drifts. (3) Upon drift detection by the online

Table 2. Output of a Pair of Classifiers for the Multi-class Problem

detector, a new classifier (nominee) is constructed using the
latest instances. This nominee is weighted and incorporated
into the ensemble based on a specific criterion 𝜃(). Post-drift,
existing components of the ensemble are re-adjusted in terms
of their weight. (4) During periods of stability, where no drifts
are identified, the framework operates akin to a conventional
block-based ensemble. (5) The decision outputs from both the
online drift detector and batch learners are amalgamated
through a weighted majority vote, employing a measure of
suitability to guide the weighting.

Algorithm 4 integrates a block-based ensemble with an
online drift detector. It processes data stream examples one at
a time (line 1) and accumulates them in a buffer with a defined
capacity d (line 2). The online drift detector from Algorithm 1
is then applied (line 3). Upon detecting a drift or when the
buffer is full, a new classifier is built using the latest buffer
examples and assigned a weight (line 4). Weights are assigned
to all ensemble components based on the buffer (line 5).

If the ensemble has fewer than k classifiers, the new
classifier is added (lines 7-8); if it already has k classifiers, the
least effective one is replaced (lines 9-10). This method
swiftly adapts to sudden and gradual changes in the data
stream.

V. RESULTS AND ANALYSIS.

The performance of the four methods (DMDDM,
DMDDM-S, DMODD, and HBBE) is evaluated through
experiments using various concept drift detection methods
like FHDDM, DDM, ADWIN, Wtest, PH Test, SeqDrift,
Atest, STEPD, SEED, RDDM, and EDDM. Additionally,
HBBE is compared with ensemble approaches such as AUE2,
AWE, DWM, and Learn++.NSE. For full details of the
literature and experiments settings of each method refer to the
original works in [29].The following section details these
experiments, evaluations, and findings. In addition, Table 3
shows the abbreviations of the measures that will be used
during the analysis. To simplify the comparative analysis of
each method, we will use the Weighted Sum Model (WSM),
a multi-criteria decision-making method [30], [31]. WSM
involves transforming and weighting each metric, then
summing them to create a single score for each method. This

score will represent the balance between all metrics and will
be visualized using a bar chart.

The process includes:

• Normalizing each metric between 0 and 1.

• Assigning weights to each metric based on importance.

• Computing a single score for each method.

The method with the longest bar on the chart offers the

best balance across metrics, with longer bars indicating better

overall performance. This visualization helps easily identify

which method optimally balances all the metrics.

A. RQ1

To address RQ1, we must evaluate each method in relation
to its counterparts. The next paragraphs show the results of the
experiments and the analyses of each drift detector.

In the comparative visualization across the SEA and Sine1
datasets, detectors exhibit varied performance, as shown in
Figure. 3. DMDDM stands out, particularly in Average True
Detection (ATD) and Average False Negative (AFN) metrics,
consistently scoring optimally. It ensures swift event
detection, with low Average Delay Detection (ADD) values,
especially in the SEA dataset. However, DMDDM shows a
relatively higher Average False Alarm (AFA) in SEA,
indicating a need to reduce false alerts. Other detectors like
FHDDM and ADWIN show trade-offs between true detection
and false alarms. For instance, ADWIN maintains a low ADD
in Sine1 but has higher false alarms, impacting overall
accuracy.

DMDDM achieves the highest Weighted Sum Model
(WSM) scores, indicating balanced performance across all
metrics, as shown in Figure 4. Its lower ADD and minimal
false alarms/negatives (AFA and AFN) contribute
significantly to this superior score. While DMDDM excels in
rapid, accurate change detection, methods like FHDDM and
Atest also perform well, especially in the Sine1 dataset,
highlighting their potential in specific contexts. Conversely,
ADWIN and PH Test generally reflect lower WSM scores,
suggesting areas for improvement in detection speed,
accuracy, or resource efficiency. Optimizing these models
could enhance their applicability across varied data-streaming
environments.

The visualization provides a comparative analysis of
various drift detectors, including DMDDM-S, across the
Sine1 and Mixed datasets. Figure 5 shows that DMDDM-S
consistently performs well across most metrics, demonstrating
robustness in diverse contexts. It has the lowest detection
delay and minimal memory usage, making it suitable for real-

Table 3: Abbreviations of Measures Used

time applications with memory constraints. Although SEED
and FHDDM also show low delay, DMDDM-S stands out for
its balance between low delay and memory efficiency,
optimizing computational resources. While SEED excels in
Mean Accuracy, DMDDM-S has notable accuracy, especially
in the Sine1 dataset. This balanced performance highlights
DMDDM-S's viability as a drift detector, offering timely
detection, memory efficiency, and good accuracy for dynamic
environments. Further examination of specific use cases will
enhance understanding of DMDDM-S's applicability. Figure
6 shows that DMDDM-S consistently achieves the highest
WSM scores across both datasets, due to its low delay,
efficient time usage, and commendable accuracy.

DMDDM-S stands out for its efficient performance with
low memory usage, balancing computational resources. While
methods like SEED and RDDM perform well, particularly on
the Sine1 dataset, they require more memory. PHTest and
EDDM, on the other hand, show lower overall performance in
terms of accuracy, delay, and time. Figure 7 compares drift
detectors, with DMODD excelling in detection delay (ADD)
across both the Wave and SEA datasets, showcasing its quick
and efficient drift detection. datasets, indicating its efficiency
in identifying concept drifts promptly.

Although DMODD does not lead in accuracy (ACC), its
balanced performance across metrics, especially in
minimizing DRMS and MUB, highlights its efficiency. While

Figure 5. Comparison of detectors including DMDDM-S.

Figure 4. Comparison of detectors including DMDDM.

Figure 3. The balanced score for each method including DMDDM.

Figure 6. The balanced score for each method including DMDDM-S.

Figure 7. Comparison of detectors including DMODD.

Figure 8. The balanced score for each drift method

Figure 11. The WSM balanced score for each of the four diversity

measures.

detectors like MDDM-A also show low ADD in the Wave
dataset, DMODD consistently performs well across both
datasets, demonstrating its reliability.

Figure 8 shows that DMODD achieves a strong balance
across all metrics in the SEA dataset, excelling in detection
speed, runtime, memory efficiency, and accuracy. It remains
competitive in the Wave dataset, showcasing its adaptability.

Figure 9 evaluates AUE2, DWM, HBBE, AWE, NSE, and
DWM across multiple datasets. HBBE consistently shows
strong accuracy, especially in the Wave and SEA datasets,
indicating its reliable predictive capabilities.

 However, it consumes more runtime and memory,
particularly in the 'Airline' dataset. DWM consistently uses
less memory and has a more favorable runtime, though
sometimes at the cost of accuracy. NSE exhibits high runtime
and memory usage in certain datasets like 'RBFGR', making it
less suitable for scenarios with limited resources. Thus, HBBE
is robust in accuracy but requires careful consideration due to
its computational demands.

Figure 10 shows the Weighted Sum Model (WSM) scores
for the five algorithms across multiple datasets. HBBE, with a
WSM score of 0.550, demonstrates balanced performance in
accuracy, runtime, and memory usage, making it suitable for
varied contexts. DWM excels with the highest WSM score of
0.930, indicating an optimal balance. Conversely, NSE, with
the lowest WSM score, may need optimization or could be
used in specific scenarios where its strengths are
advantageous. For specific metric-driven decisions, a deeper
analysis of individual performances is essential.

Each methodology uses diversity measures uniquely for
concept drift detection. DMDDM excels in fully supervised
environments, offering high precision and efficiency,
especially with significant drifts, and maintains high WSM
scores in binary classification. DMDDM-S, ideal for semi-
supervised settings, balances accuracy and resource use,
performing well with limited labeled data. HBBE, tailored for
multi-class challenges, adapts to various drift types and
delivers exceptional accuracy but requires careful
consideration of runtime and memory in resource-limited
environments. Overall, each method shows distinct strengths
and adaptability in detecting concept drift across different
scenarios.

B. RQ2

To address RQ2, the comparative bar chart shows diverse
WSM scores for DMDDM, DMDDM-S, DMODD, and
HBBE across different datasets and scenarios. Figure 11
provides a succinct yet contextually varied overview of the
algorithms' performances, requiring nuanced interpretation.

DMODD, with a WSM score of 20.72, appears to
outperform the others, indicating a superior balance of
accuracy, runtime, and memory usage. However, it's
important to note that the scores originate from different
analyses, potentially involving varied metrics and weights.
Both DMDDM-S and HBBE have WSM scores of 0.55,
reflecting similar balanced performances, while DMDDM has
a score of 0.30, trailing slightly. This highlights the need to
consider specific analytical contexts when interpreting these
scores and deploying algorithms, ensuring alignment with the
data's demands and characteristics.

C. RQ3

To address RQ3, this subsection discusses the advantages,
assumptions, and constraints of using diversity measures for
concept drift handling.

The diversity measure is efficient in computational time
and memory, relying on fewer variables compared to sliding
window methods, which reduces memory use and update
times. Most drift detectors operate with constant time
complexity, but exceptions like ADWIN and SeqDrift have
logarithmic complexity. However, the diversity measure has a
higher false alarm rate due to parameter sensitivity. In
DMDDM, increasing γ (100-200-300) reduces false alarms
but may delay or miss changes, balancing between
minimizing false alarms and avoiding delays. Despite higher
detection delays, DMDDM has low time and memory
requirements, thanks to the PH test. This could be improved
by using dual fading factors or integrating fuzzy decision-

Figure 9. Comparison of detectors including HBBE.

Figure 10. The balanced score for each drift detection method.

making for more nuanced detection. HBBE excels in
accuracy, particularly in sudden drifts, though its runtime
performance is affected by ensemble handling. Future
research could focus on:

• Integrating drift detection in IDS for dynamic model

adjustments in anomaly detection [32].

• Enhancing drift detection in Big Data to improve accuracy

while reducing computational demands [33].

• Developing scalable drift detection methods for IoT,

focusing on distributed algorithms for real-time processing

[34].

These areas highlight the potential for further research and

improvement in drift detection methodologies.

VI. CONCLUSION

Diversity measures provide adaptability to various drift
types and robustness across datasets, making them effective
and reliable for detecting concept drift. They offer a balanced
combination of accuracy, adaptability, and resource
efficiency, making them a preferred choice in scenarios
requiring an understanding of evolving data patterns. The
Weighted Sum Model (WSM) scores show that algorithms
using diversity measures, like DMDDM, perform well in
terms of accuracy, runtime, and memory usage, especially in
binary classification.

References

[1] J. Gama, Knowledge discovery from data streams. CRC Press, 2010.

[2] O. A. Mahdi, N. Ali, E. Pardede, A. Alazab, T. Al-Quraishi, and B.
Das, “Roadmap of Concept Drift Adaptation in Data Stream Mining,
Years Later,” IEEE Access, 2024.

[3] B. R. Prasad and S. Agarwal, “Stream data mining: platforms,
algorithms, performance evaluators and research trends,”
International journal of database theory and application, vol. 9, no.
9, pp. 201–218, 2016.

[4] O. A. Mahdi, E. Pardede, N. Ali, and J. Cao, “Diversity measure as a
new drift detection method in data streaming,” Knowl Based Syst,
vol. 191, p. 105227, 2020.

[5] O. A. Mahdi, E. Pardede, N. Ali, and J. Cao, “Fast reaction to sudden
concept drift in the absence of class labels,” Applied Sciences, vol.
10, no. 2, p. 606, 2020.

[6] O. A. Mahdi, E. Pardede, and N. Ali, “A hybrid block-based
ensemble framework for the multi-class problem to react to different
types of drifts,” Cluster Comput, vol. 24, pp. 2327–2340, 2021.

[7] O. A. Mahdi, N. Ali, E. Pardede, and T. Al-Quraishi, “Online
Concept Drift Detector: Optimally Balancing Delay Detection,
Runtime, Memory, and Accuracy.,” Procedia Comput Sci, vol. 237,
pp. 559–567, 2024.

[8] A. Tsymbal, “The problem of concept drift: definitions and related
work,” Computer Science Department, Trinity College Dublin, vol.
106, no. 2, p. 58, 2004.

[9] P. E. Hart, D. G. Stork, and R. O. Duda, Pattern classification. Wiley
Hoboken, 2000.

[10] A. Pesaranghader and H. L. Viktor, “Fast hoeffding drift detection
method for evolving data streams,” in Machine Learning and
Knowledge Discovery in Databases: European Conference, ECML
PKDD 2016, Riva del Garda, Italy, September 19-23, 2016,
Proceedings, Part II 16, 2016, pp. 96–111.

[11] J. Gama, P. Medas, G. Castillo, and P. Rodrigues, “Learning with
drift detection,” in Advances in Artificial Intelligence–SBIA 2004:
17th Brazilian Symposium on Artificial Intelligence, Sao Luis,
Maranhao, Brazil, September 29-Ocotber 1, 2004. Proceedings 17,
2004, pp. 286–295.

[12] A. Bifet and R. Gavalda, “Learning from time-changing data with
adaptive windowing,” in Proceedings of the 2007 SIAM international
conference on data mining, 2007, pp. 443–448.

[13] I. Frias-Blanco, J. del Campo-Ávila, G. Ramos-Jimenez, R. Morales-
Bueno, A. Ortiz-D\’\iaz, and Y. Caballero-Mota, “Online and non-
parametric drift detection methods based on Hoeffding’s bounds,”
IEEE Trans Knowl Data Eng, vol. 27, no. 3, pp. 810–823, 2014.

[14] G. J. Ross, N. M. Adams, D. K. Tasoulis, and D. J. Hand,
“Exponentially weighted moving average charts for detecting
concept drift,” Pattern Recognit Lett, vol. 33, no. 2, pp. 191–198,
2012.

[15] J. Gama, R. Sebastiao, and P. P. Rodrigues, “On evaluating stream
learning algorithms,” Mach Learn, vol. 90, pp. 317–346, 2013.

[16] R. Pears, S. Sakthithasan, and Y. S. Koh, “Detecting concept change
in dynamic data streams: A sequential approach based on reservoir
sampling,” Mach Learn, vol. 97, pp. 259–293, 2014.

[17] D. T. J. Huang, Y. S. Koh, G. Dobbie, and R. Pears, “Detecting
volatility shift in data streams,” in 2014 IEEE International
Conference on Data Mining, 2014, pp. 863–868.

[18] R. S. M. Barros, D. R. L. Cabral, P. M. Gonçalves Jr, and S. G. T. C.
Santos, “RDDM: Reactive drift detection method,” Expert Syst Appl,
vol. 90, pp. 344–355, 2017.

[19] M. Baena-Garca, J. del Campo-Ávila, R. Fidalgo, A. Bifet, R.
Gavalda, and R. Morales-Bueno, “Early drift detection method,” in
Fourth international workshop on knowledge discovery from data
streams, 2006, pp. 77–86.

[20] B. Krawczyk and M. Woźniak, “Reacting to different types of
concept drift with adaptive and incremental one-class classifiers,” in
2015 IEEE 2nd International Conference on Cybernetics
(CYBCONF), 2015, pp. 30–35.

[21] H. Wang, W. Fan, P. S. Yu, and J. Han, “Mining concept-drifting
data streams using ensemble classifiers,” in Proceedings of the ninth
ACM SIGKDD international conference on Knowledge discovery
and data mining, 2003, pp. 226–235.

[22] J. Kolter and M. Maloof, “Dynamic weighted majority: A new
ensemble method for tracking concept drift,” in Int’l Conf. Data
Mining (ICDM), 2001.

[23] R. Elwell and R. Polikar, “Incremental learning of concept drift in
nonstationary environments,” IEEE Trans Neural Netw, vol. 22, no.
10, pp. 1517–1531, 2011.

[24] R. E. Banfield, L. O. Hall, K. W. Bowyer, and W. P. Kegelmeyer, “A
new ensemble diversity measure applied to thinning ensembles,” in
Multiple Classifier Systems: 4th International Workshop, MCS 2003
Guildford, UK, June 11–13, 2003 Proceedings 4, 2003, pp. 306–316.

[25] G. Giacinto and F. Roli, “An approach to the automatic design of
multiple classifier systems,” Pattern Recognit Lett, vol. 22, no. 1, pp.
25–33, 2001.

[26] D. D. Margineantu and T. G. Dietterich, “Pruning adaptive
boosting,” in ICML, 1997, pp. 211–218.

[27] L. L. Minku, A. P. White, and X. Yao, “The impact of diversity on
online ensemble learning in the presence of concept drift,” IEEE
Trans Knowl Data Eng, vol. 22, no. 5, pp. 730–742, 2009.

[28] L. I. Kuncheva, Combining pattern classifiers: methods and
algorithms. John Wiley & Sons, 2014.

[29] O. A. Mahdi, “Diversity Measures as New Concept Drift Detection
Methods in Data Stream Mining,” La Trobe University Melbourne,
Australia 9, 2020.

[30] H. Taherdoost and M. Madanchian, “Multi-criteria decision making
(MCDM) methods and concepts,” Encyclopedia, vol. 3, no. 1, pp.
77–87, 2023.

[31] J. J. Thakkar, Multi-criteria decision making, vol. 336. Springer,
2021.

[32] O. A. Mahdi, A. Alazab, S. Bevinakoppa, N. Ali, and A. Khraisat,
“Enhancing IoT Intrusion Detection System Performance with the
Diversity Measure as a Novel Drift Detection Method,” in 2023 9th
International Conference on Information Technology Trends (ITT),
2023, pp. 50–54.

[33] R. Seraj and M. Ahmed, “Concept drift for big data,” Combating
Security Challenges in the Age of Big Data: Powered by State-of-the-
Art Artificial Intelligence Techniques, pp. 29–43, 2020.

[34] F. E. Casado, D. Lema, M. F. Criado, R. Iglesias, C. V Regueiro, and
S. Barro, “Concept drift detection and adaptation for federated and
continual learning,” Multimed Tools Appl, pp. 1–23, 2022.

