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Abstract: 

Purpose: This research aims to estimate the nonparametric path function of the Fourier series and to describe 

the lemma and theorem for the analysis of the nonparametric path of the Fourier series at low oscillation levels 

(K=2,3,4,5). 

Method: The analytical method used is a Fourier series nonparametric path analysis with a low level of 

oscillation. Primary data is obtained from customers at a Bank (Bank X) in Indonesia. The data is in the form 

of item scores that are used as the average variable so that the average data scale is obtained which is the data 

of the relevant latent variable. 

Findings: The function estimation in nonparametric path analysis using the Fourier series approach is 

( ) ( )
1

1 ' 1 'ˆ n X X D n X y  
−

− −= + . The best nonparametric path model that can describe the 5C variable on 

Time to Pay through Willingness to Pay is when the oscillation K=4 with R2 is 78%. 

Originality: This study applies the Fourier series approach to path analysis in modeling on time to pay credit 

in the banking sector 

Keywords: Path analysis, Fourier series, on-time pay, willingness to pay 

1. Introduction 

Statistics is a method and science about collecting, processing, presenting, analyzing data, and how to 

draw general and informative conclusions with a series of procedures both descriptively and inferentially. 

According to Gujarati and Porter (2012), regression analysis is related to the study of the dependence of one 

variable, namely the dependent variable, on one or more other variables, namely the independent variable, to 

estimate the average value (population) of the dependent variable from the value of the dependent variable. 

known or fixed value of the independent variable (in repeated sampling). Regression analysis is used if you 

want to know whether the independent variable has a direct influence on the dependent variable. The 

regression analysis approach can be done in three ways, namely parametric approach, semiparametric 

approach, and nonparametric approach. 

Financial support from financial institutions is very much needed in the context of business 

development and welfare. The provision of credit can provide convenience for customers in meeting their 

daily needs. Bank is one of the financial institutions that provide credit products. There are various credit 

options offered to customers. One of the credit products offered by banks is Home Ownership Loans (KPR). 

The success of the bank in managing credit is the key to the success of the bank in its operations. If there is 

congestion in the credit management process, the bank will face problems, one of which is reducing the bank's 

operating income. The way to overcome the risk of bad credit is that customers must pay credit on time. The 

5C principle (Character, Capacity, Capital, Collateral, and Condition) can be used by the bank to decide 

whether the customer is able to pay the loan on time or not. 
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Path analysis was first developed by Wright in 1934 (Fernandes et al., 2017). Path analysis is used to 

test the model of the relationship between variables in the form of cause and effect (Solimun, 2002). Path 

analysis is a technique that can be used to determine whether there is a causal relationship between exogenous 

variables and endogenous variables. Path analysis is not only used to determine the direct effect of exogenous 

variables on endogenous variables, but also explains whether or not there is an indirect effect given by 

exogenous variables on endogenous variables through mediating endogenous variables.  

Path analysis is divided into two, namely parametric-based path analysis and nonparametric-based path 

analysis. Parametric-based path analysis can be used if the linearity assumption is met, while if the linearity 

assumption is not met, two possible analyzes can be used, namely nonlinear and/or nonparametric analysis. 

Solimun (2010) mentions six assumptions that underlie path analysis, namely (1) the relationship between 

variables is linear and additive, (2) the remainder is normally distributed, (3) the pattern of the relationship 

between variables is recursive, (4) minimum endogenous variables in the measuring scale. intervals, (5) 

research variables were measured without error, and (6) the analyzed model was specified based on relevant 

theories and concepts. The assumption that can make the model change is the assumption of linearity. The 

assumption of linearity influences the shape of the model. If the linearity assumption is met then the path 

analysis is parametric, but if the linearity assumption is not met there are 2 possibilities, nonlinear path analysis 

is used when the nonlinear form is known, but if the nonlinear form is unknown and there is no information 

about the data pattern, then nonparametric path analysis is used. The relationship between variables can be 

known using the linearity test, one of which is the Regression Specification Error Test (RESET) method. 

Research involving the selection of oscillation parameters in nonparametric regression analysis of the 

Fourier Series was carried out by Nurjanah et al. (2015) using a large value oscillation parameter, which is 

between 60 to 99. The results show that an oscillation of 70 is able to provide a high enough R2 compared to 

an oscillation of 99 so that many parameters must be estimated as many as 72 parameters. Research conducted 

by Wisisono et al. (2018) using oscillations with a value between 1 to 18 shows that an oscillation with a value 

of 16 has been able to provide a fairly high R2 compared to an oscillation of a value of 18 so that many 

parameters must be estimated as many as 16 parameters. Research conducted by Soliha et al. (2018) using 

oscillation parameters with values between 3 to 6 shows that oscillations with a value of 3 have been able to 

provide a high enough R2 compared to oscillations with a value of 6 so that many parameters must be 

estimated as many as 8 parameters. Based on some of these studies, it can be concluded that a high value 

oscillation level does not always give a high R2 as well. So that in this study we will compare the oscillation 

levels of 2, 3, 4 and 5. The choice of the oscillation level to be compared is based on the number of parameters 

that must be estimated if the oscillation parameter is too large then, in the research conducted by Soliha et al, 

(2018) proves that the oscillation parameter of less than 10 already gives a fairly high R2 value. 

The Fourier series is a trigonometric polynomial that has flexible properties, so the model can adapt 

effectively to the local properties of the data. Research on nonparametric regression modeling of the Fourier 

Series has been carried out by Prahutama (2013) and Sholiha et al. (2018). Prahutama (2013) conducted a 

study on nonparametric regression analysis of the Fourier Series to analyze the open unemployment rate in 

East Java. then Sholiha et al. (2018) conducted research on nonparametric regression analysis of the sine and 

cosine-based Fourier Series in modeling the sales planning of typical Madurese snacks. The Fourier series has 

the advantage that it is able to overcome data that has a trigonometric distribution, namely sine and cosine 

(Prahutama, 2013) which can show periodic functions in general (Wisisono et al., 2018). Periodic means that 

a situation occurs at a fixed time interval (Nurjanah et al., 2015). The data pattern that is suitable for the 

Fourier Series approach is a repeating data pattern, repetition of the value of endogenous variables for different 

exogenous variables (Prahutama, 2013). Based on the explanation above, the aim of this research is to estimate 

the nonparametric path function of the Fourier series and to describe the lemma and theorem for the analysis 

of the nonparametric path of the Fourier series at low oscillation levels. 

2. Literature Review 

2.1 Parametric Regression Analysis 
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Regression analysis according to Kutner et al. (2005) is a statistical methodology that utilizes the 

relationship between two or more quantitative variables so that the response variable or outcome can be 

predicted from other variables. Simple linear regression analysis can be used when one predictor variable is 

used to predict the response variable. The simple linear regression model can be expressed as follows: 

0 1i i iY X  = + +
 

(2.1) 

with: 

Yi : the value of the response variable on the i-th observation 

β0 : intercept parameter 

β1 : slope parameter 

Xi : the value of the predictor variable on the i-th observation 

εi : error on observation i 

If there is more than one predictor variable, multiple linear regression analysis is used. According to 

Kutner et al. (2005) multiple linear regression analysis is one of the most widely used statistical methods when 

there is more than one predictor variable used to predict the response variable. Multiple linear regression 

models can be expressed as follows: 

0 1 1 2 2i i i iY X X   = + + +
 

(2.2) 

The general linear regression model can be expressed as follows: 

0 1 1 2 2 1i i i p ip iY X X X    −= + + + + +
 

(2.3) 

with: 

Yi  : the value of the response variable on the i-th observation 

β0  : intercept parameter 

 β1, β2, … , βp : slope parameters 

Xi1 , … , Xip−1   : nilai variabel prediktor dalam pengamatan ke-i.  

i  : 1, 2, ..., n. 

n  : number of observations 

εi  : error on observation i 

Solving the problem of parameter estimation in multiple linear regression analysis that has more than two 

predictor variables can be solved by the matrix method. Equation 2.3 is a general equation of the population 

multiple linear regression model with the number of predictor variables as many as p-1 pieces. If there are n 

observations and p predictor variables, the regression equation can be written as follows: 

1 0 1 11 2 12 1 1 1p pY X X X    −= + + + + +
 

2 0 1 21 2 22 2 1 2p pY X X X    −= + + + + +
 

3 0 1 31 2 32 3 1 3p pY X X X    −= + + + + +
 

                                     

0 1 1 2 2 1n n n p np nY X X X    −= + + + + +
 

(2.4) 

From the above equation, it can be written in matrix form as follows: 

11 12 1 11 1

21 22 2 12 2

31 32 3 13 3

1 2 1

1

1

1

1

p

p

p

n n npn n

X X XY

X X XY

X X XY

X X XY









−

−

−

−

    
    
    
    = +
    
    

    
      

(2.5) 

The linear regression model in matrix form can be written as follows: 
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Y  = +X
 

(2.6) 

Parameter estimation in the parametric regression model with a matrix approach is done by minimizing 

the number of squares of errors 

Y = −X
 

(2.7) 

( ) ( )
'

' Y Y   = − −X X
 

Then it is derived to the parameter, namely β and equates to zero 
' ' ' ' 'Y Y Y Y     = − − +' '

X X X X
 

( )' ' ' 22Y Y Y   = − +' '
X X X

 

( )' ' 2' 2Y Y Y  

 

 − +
=

 

' '
X X X

 

( )
'

0 2 2Y
 





= − +



' '
X X X

 

( ) ˆ0 0 2 2Y = − +' '
X X X

 

( ) ˆ2 2 Y =' '
X X X

 

( ) ˆ Y =' '
X X X

 

( ) ( ) ( )
1 1ˆ Y
− −

=' ' ' '
X X X X X X X

 

( )
1ˆ Y
−

= ' '
I X X X

 
So that the parameter estimation for multiple linear regression with a matrix approach is as follows: 

( )
1

'ˆ Y
−

= '
X X X

 
(2.8) 

2.2 Nonparametric Regression Analysis 

Nonparametric regression is a very flexible regression in modeling data patterns so that the subjectivity of 

the researcher can be minimized (Soliha et al., 2018). Nonparametric regression analysis is used if the classical 

assumptions in parametric regression analysis (assumptions of normality, nonmulticollinearity, and 

homoscedasticity) are not met. This method is best suited for concluding situations where there is little or no 

prior information available about the regression curve or data pattern (Eubank, 1999). 

The use of parametric regression can pose a risk if it is forced on data whose data pattern is not known, 

that is, it can create an unrepresentative regression model so that decisions made through hypothesis testing 

are inaccurate. To find out the pattern of the relationship between the predictor variable (X) and the response 

variable (Y) whose curve shape is not yet known, a nonparametric regression model can be used as follows 

(Soliha et al., 2018): 

( )ˆ
i i iY f x = +

 
(2.9) 

If the linearity assumption is met, then the analysis is continued by using parametric path analysis by 

fulfilling the following assumptions: 
2N(0, )i 

 
But if the assumption of linearity is not met then the analysis uses a nonlinear and or nonparametric path. 

dimana: 

Yi : the value of the response variable on the i-th observation 

xi : the value of the predictor variable in the i-th observation. 

f̂ : regression curve. 
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i : 1, 2, ..., n. 

n : number of observations 

εi : error on observation i 

 

2.3 Path Analysis 

Path analysis was first developed in 1934 by a geneticist, Sewall Wright. Path analysis is a technique for 

estimating the effect of a set of independent variables on the dependent variable from a series of observed 

correlations. The purpose of path analysis is to measure the direct effect on each separate path in the system 

thereby finding out the extent to which the variation of a given effect can be determined by each cause. 

Solimun (2010) describes six assumptions that underlie path analysis, namely: 

1) The relationship between variables is linear and additive. The assumption of linearity can be checked 

with a scatter plot, but the results will be subjective. Another way of checking the assumption of 

linearity is with the Regression Specification Error Test (RESET) introduced by Ramsey in 1969. 

2) The error is normally distributed (remaining normality). The method for testing the normality of the 

residuals is the Kolmogorov-Smirnov. According to Widarjono (2005), the test for the effect of the 

predictor variable on the response variable is valid if the residuals obtained have a normal distribution. 

3) The pattern of relationship between variables is recursive (one-way causal flow system). The 

characteristics of the recursive model are: 

a. Between εi are mutually free. 

b. Betwee εi and Xi are mutually free. 

4) Minimum endogenous variable in interval measuring scale. 

5) Research variables were measured without error (valid and reliable research instrument). 

6) The analyzed model is specified based on the relevant theories and concepts. 

The assumption that can make the model change is the assumption of linearity. The assumption of linearity 

has an influence on the shape of the model. If the linearity assumption is met, then the path analysis is 

parametric, but if the linearity assumption is not met there are 2 possibilities, if the nonlinear form is known, 

then use nonlinear path analysis, if the nonlinear form is unknown and there is no information about the data 

pattern, then use nonparametric path analysis. 

2.3 Nonparametric Path Analysis Fourier Series  

One approach that can be used in nonparametric path analysis is Fourier series path analysis. The 

Fourier series is a trigonometric polynomial that has flexibility, so it can adapt effectively to the local nature 

of the data (Wisisono et al., 2018). The Fourier series has the advantage that it is able to overcome data that 

has a trigonometric distribution (sine and cosine) (Prahutama, 2013). The data pattern that is suitable for the 

Fourier Series approach is a repeating data pattern, repetition of the value of the dependent variable for 

different independent variables. The estimator for the nonparametric path function of the Fourier series is as 

follows (Tripena, 2009): 

0

1

1ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) cos
2

K

i i k i

k

f x b x a a kx   
=

= + +
 

(2.10 

3. Methodology 

The data used in this study is primary data. Primary data was obtained from one of the Banks (Bank 

X) in Indonesia with a Likert scale with a second order measurement model. The seizure data consisted of 5 

exogenous variables, 1 intervening endogenous variable, and 1 pure endogenous variable. Measurement of 

variables using the average score of each item. This method uses the average scale of all indicators on each 

variable so that the average scale data is obtained which is the data of the relevant latent variable.  

4. Result And Discusion 

4.1. The Lemma and Theorem of Nonparametric Path Analysis Fourier Series  

Lemma 4.1 Form of Fourier Series Nonparametric Path Model at Oscillation Rate = 2 
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If given paired data (X1i , X2i, Y1i , Y2i ) with i = 1,2, … , n; which follows the non-parametric path analysis 

model, the form of the nonparametric path analysis function is obtained as presented in equation (4.1)  

f̂ = X  (4.1) 

If the function is described for each response variable, it is presented in equation (4.2) 

1 1 1 2 1

2 2 1 2 1 2

( , )

( , , )

i i i i

i i i i i

Y f X X

Y f X X Y





= +

= +
 (4.2) 

The equation model is as follows 

1 01 11 1 11 1 21 1 21 2 31 2 41 2

1ˆ cos cos2 cos cos2
2

i i i i i i if a b X X X b X X X   = + + + + + +  

(4.3) 
2 02 12 1 12 1 22 1 22 2 32 2 42 2

32 1 52 1 62 1

1ˆ cos cos2 cos cos2
2

cosY cos2

i i i i i i i

i i i

f a b X X X b X X X

b Y Y

   

 

= + + + + + +

+ + +
 

With the form of the matrix X is as follows 

11 11 21

12 12 22

1 1 2

11 11 11

12 12 12

1 1 1

1
cos cos2 0 0 0 0

2

1
cos cos2 0 0 0 0

2

1
cos cos2 0 0 0 0

2

1
0 0 0 0 cos cos2

2

1
0 0 0 0 cos cos2

2

1
0 0 0 0 cos cos2

2

n n n

n n n

x x x

x x x

x x x

x x y

x x y

x x y

 
 
 
 
 
 
 
 
 
 =
 
 
 






 

X








 

(4.4) 

And a  are as follows 

01 11 41 02 12 62

1 1

2 2

Ta a b a b 
 

=  
 

 (4.5) 

So the dimension of the matrix for nonparametric path analysis of the series at the oscillation level = 2 is 

2 1 2 17 17 1nx nx xf = X  (4.6) 

where: 

( )ijf X
%  

: Vector nonparametric regression function of the i-th observation nonparametric of the j-th 

exogenous variable  

ijX  : The j-th exogenous variable matrix on the i-th observation 

ij  : Parameter vector of the j-th observation of the  i-th exogenous variable  

 

Proof 

Before obtaining a model for the nonparametric path analysis of the Fourier series, the process was first 

obtained from (a) multiple linear regression analysis; (b) simple linear path analysis; and (c) nonparametric 

regression analysis as follows: 

 

First part: 

The simple linear regression model can be expressed as follows: 

0i i i iY X  = + +  (4.7) 
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where: 

Yi : the value of the response variable on the i-th observation 

β0 : intercept parameter 

β1 : slope parameter 

Xi : the value of the predictor variable on the i-th observation 

εi : error on observation i 

If there is more than one predictor variable, multiple linear regression analysis is used. Multiple linear 

regression model can be expressed in equation (4.8) 

0 1 1 2 2i i i iY X X   = + + +  (4.8) 

The general linear regression model can be expressed in equation (4.9) 

0 1 1 2 2 1i i i p ip iY X X X    −= + + + + +  (4.9) 

 

where: 

Yi  : the value of the response variable on the i-th observation 

β0  : intercept parameter 

 β1, β2, … , βp : slope parameters 

Xi1 , … , Xip−1   : the value of the predictor variable in the i-th observation.  

i  : 1, 2, ..., n. 

n  : number of observations 

εi  : error on observation i 

Solving the problem of parameter estimation in multiple linear regression analysis that has more than two 

predictor variables can be solved by the matrix method. Equation 4.9 is a general equation of the population 

multiple linear regression model with the number of predictor variables as many as p-1 pieces. If there are n 

observations and p predictor variables, the regression equation can be written as follows: 

1 0 1 11 2 12 1 1 1p pY X X X    −= + + + + +
 

2 0 1 21 2 22 2 1 2p pY X X X    −= + + + + +
 

3 0 1 31 2 32 3 1 3p pY X X X    −= + + + + +
 

                                     

0 1 1 2 2 1n n n p np nY X X X    −= + + + + +
 

(4.10) 

 

From the above equation, it can be written in matrix form as follows: 

11 12 1 11 1

21 22 2 12 2

31 32 3 13 3

1 2 1

1

1

1

1

p

p

p

n n npn n

X X XY

X X XY

X X XY

X X XY









−

−

−

−

    
    
    
    = +
    
    

    
    

 
(4.11) 

 

 

The second part: 

It is known that the simple path analysis model is presented in equation (4.5) and the model in (4.6) 
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1 1 1 2 1

2 2 1 2 1 2

( , )

( , , )

i i i i

i i i i i

Y f X X

Y f X X Y





= +

= +

  

(4.12) 

1 10 11 1 12 2 1

2 20 21 1 22 2 23 1 2

i i

i i

Y X X

Y X X Y

   

    

= + + +

= + + + +
 

(4.13) 

With matrix form: 

2 1 2 7 7 1 2 1nx nx x nxY  = +X
 

(4.14) 

 

1111

12

11

12

41

21 3 21

21

22

23

2

11

10

12

1

21

12 22

20

1

22

22

2

2

0

0

where

1

1

1

X nxn

nx XY

n

X

n n

n

n

Y

Y

XY

Y X

Y

Y

X X

X X
X

X X
























  
    
    
    
    

       = +      
      

    
    
            

 
 
 =
 
 
 

M

%

%

M

M

M

M

11 21 11

12 22 12

1 2 1

1

1
;  

1

XY

n n n

X X Y

X X Y
X

X X Y

 
 
 =
 
 
 

M

 

With: 

Yhi : h-th endogenous variable and i-th observation 

Xi : the value of the predictor variable on the i-th observation 

  : predictor variable parameters 

εhi : random error of the h-th endogenous variable, i-th observation 

Third Part: 

After knowing the equations and multiple linear regression models, nonparametric regression models can be 

made as presented in equations (4.15) and (4.16). 

1 1 1 2 1( , )i i i iY f X X = +  (4.15) 

2

0

1

1ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) cos
2

i i k i

k

f x b x a a kx   
=

= + +  (4.16) 

With equations and matrix forms such as the following equation: 

2 1 2 7 7 1nx nx xf = X  (4.17) 

 

1
11 11 11 21 21 21

2 12 12 12 22 22 22 0

13 13 13 23 23 23
1 1

1 1 1 2 2 2
7

1 cos cos2 cos cos2
1

1 cos cos2 cos cos2
2

1 cos cos2 cos cos2

1 cos cos2 cos cos2
n n n n n n

M

by
x x x x x x

y x x x x x x a
x x x x x xy a

x x x x x x ay

  
   

   
   
   =
  
  
  
    






 
 
 
 



 
(4.18) 
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where: 

( )ijf X
%

: Vector nonparametric regression function of the i-th observation nonparametric of the j-th exogenous 

variable 

ijX  : The j-th exogenous variable matrix on the i-th observation 

ij  : Parameter vector of the j-th observation of the  i-th exogenous variable 

From the equations in the simple linear regression analysis model, simple path analysis, and 

nonparametric regression analysis that have been described, it can be obtained a function that is formed as in 

equations (4.1) and (4.2), so that the following matrix is obtained: 

2 1 2 17 17 1nx nx xf = X  (4.19) 

11 11 21

12 12 22

1 1 2

11 11 11

12 12 12

1 1 1

1
cos cos2 0 0 0 0

2

1
cos cos2 0 0 0 0

2

1
cos cos2 0 0 0 0

2

1
0 0 0 0 cos cos2

2

1
0 0 0 0 cos cos2

2

1
0 0 0 0 cos cos2

2

n n n

n n n

x x x

x x x

x x x

x x y

x x y

x x y

 
 
 
 
 
 
 
 
 
 =
 
 
 






 

X








 

(4.20) 

where: 

( )ijf X
%

: Vector nonparametric regression function of the i-th observation nonparametric of the j-th exogenous 

variable 

ijX  : The j-th exogenous variable matrix on the i-th observation 

ij  : Parameter vector of the j-th observation of the  i-th exogenous variable 

 

 

 

Theorem 4.1 

If the data is given following the nonparametric flow analysis model in the cross-section data as presented in 

Lemma 4.1, then the parameter estimation method that can minimize the number of squares of error is the 

ordinary least square method. Then the estimator of the Fourier series by minimizing 
'   is: 

 

( ) ( )
[(K 1)*(P P )] 2 [(K 1)*(P P )] 21 2 1 2

''( )
R R

Min Min Y Y
 

   
+ + + + + +

 

= − −X X
 (4.21) 

 

with f̂ = X
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11 11 21

12 12 22

1 1 2

11 11 11

12 12 12

1 1 1

1
cos cos2 0 0 0 0

2

1
cos cos2 0 0 0 0

2

1
cos cos2 0 0 0 0

2

1
0 0 0 0 cos cos2

2

1
0 0 0 0 cos cos2

2

1
0 0 0 0 cos cos2

2

n n n

n n n

x x x

x x x

x x x

x x y

x x y

x x y

 
 
 
 
 
 
 
 
 
 =
 
 
 






 

X








 

( ) ( )
1

1 ' 1 'ˆ n X X D n X y  
−

− −= +  

Proof: 

Based on the Nonparametric Regression model, f(xi) is approached by the Fourier series as follows:  

Minimize εi
2  

( )( ) }{}{
1

2

1

2


==

−=
n

i
ii

n

i
i

xfyMinMin   (4.22) 

In addition to minimizing equation (2.19), a penalty is also given for the size of the smoothness of the 

function f as follows:  
2

(2)

0

2
(f (x)) dx



  
(4.23) 

Thus the estimator for the regression curve f can be obtained from completing the optimization using 

Penalized Least Square (PLS) 

( )( ) ( )( )
221 (2)

0
1

2
{ }

n

i i

i

Min n y f x f x dx





−

=

− +   
(4.24) 

 

To solve equation (2.24), first find the value of P(a) in the following way: 
2

(2)

0

2
( ) (f (x))P a dx




=   

( ) ( )( )
2

2 2 2

0
1

2
( ) cos 2 cos cosj

K K K

k k j

k k j k j

P a k a kx k a kx j a x dx


 =  

 
= + 

 
 

 


=

=
K

k
k

akaP
1

24)(  (4.25) 

 

( )
2

(2)

0

2
( ) f (x)P a dx




=   

2
2

02
10

2 1
cos

2

K

k

k

d
bx a a kx dx

dx



 =

  
= + +  

  
  

2

0

10

2 1
cos

2

K

k

k

d d
bx a a kx dx

dx dx



 =

   
= + +       

  
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2

10

2
0 ksin

K

k

k

d
b a kx dx

dx



 =

  
= + −  

  
  

2

10

2
ksin

K

k

k

d
b a kx dx

dx



 =

  
= −  

  
  

2

10

2
0 kcos

K

k

k

ka kx dx



 =

 
= − 

 
  

2

10

2
kcos

K

k

k

ka kx dx



 =

 
=  

 
  

( ) ( )( )
2 2 2

10

2
kcos 2 cos cosj

K K K

k k j

k k j k j

ka kx k a kx j a x dx



 =  

 
= + 

 
 

 

( ) ( )( )
2

2 2 2

10 0

2 2
cos 2 cos cosj

K K

k k j

k k j

k a kx dx k a kx j a x dx

 

 = 

= +    
(4.26) 

Suppose ( )
2

2

10

2
cos

K

k

k

A k a kx dx



 =

=   

( )( )2 2

0

2
2 cos cosj

K

k j

k j

B k a kx j a x dx



 

=   

 

a) Calculating the integral of the equation A 

( )
2

2

10

2
cos

K

k

k

A k a kx dx



 =

=   

4 2 2

1 0

2
cos

K

k

k

k a kxdx



 =

=   

4 2 2

1 0

2
cos

K

k

k

k a kxdx



 =

=    

4 2

1 0

2 1 2cos

2

K

k

k

kx
k a dx



 =

+
=    

4 2

1 0

2 1 2
sin

2

K

k

k

k a t kx
k



 =

  
= +     

  

( )4 2

1

2 1 1 1
sin 2 sin(0)

2 2 2

K

k

k

k a k
k

 
 =

   
= + −   

   


 
4 2

1

K

k

k

k a
=

=
 

(4.27) 

 

b) Calculating the integral of the equation B 

( )( )2 2

0

2
2 cos cosj

K

k j

k j

B k a kx j a x dx



 

=   

( )( )2 2

0

2
2 cosk cosj

K

k j

k j

k a x j a x dx



 

=   
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2 2

0

4
cosk cosj

K

k j

k j

k j a a x xdx



 

=   

 

( )
2

0

4
cosk cosj

K

k j

k j

kj a a x xdx



 

=    

( )
2

0

4 cos(k j) x cos(k j) x

2

K

k j

k j

kj a a dx



 

+ + −
=    

( )
2

0 0

4 1 1
cos(k j) x cos(k j) x

2 2

K

k j

k j

kj a a dx dx

 

 

= + + −    

( )
( )

( )

( )
( )

24 1 1
sin(k j) sin(0)

2

1 1
sin(k j) sin(0)

2 0

K

k j

k j

kj a a
k j

k j








 
= + −  + 

 
+ − −  
 


 

( ) ( ) ( )
24 1 1

0 0 0 0
2( ) 2( )

K

k j

k j

kj a a
k j k j 

 
= − + − 

+ − 
  

( ) ( )
24

0
K

k j

k j

kj a a
 

= 
 

0=
 

(4.28) 

 

 

So that: 

( ) ( )( )
2

2 2 2

10 0

2 2
( ) cos 2 cos cosj

K K

k k j

k k j

P a k a kx dx k a kx j a x dx

 

 = 

= +    

4 2

1

0
K

k

k

k a
=

= +
 

4 2

1

K

k

k

k a
=

=
 

(4.29) 

 

Since f is a continuous function, f can be approximated by the function x, with  


=

++=
K

k
k

kxaabxxf
1

0
cos

2

1
)(

 (4.30) 

 

Based on equation (4,29) it can be written 

Min {n−1 ∑(yi − f(xi))
2

n

i=1

+ λ ∫
2

p
(f (2)(x))

2
dt

p

0

} 

= Min {n−1 ∑ [yi − bx −
1

2
a0 − ∑ aKcoskx

K

k=1

]

2

+ λ

n

i=1

∑ k4ak
2

K

k=1

} 

= Min{n−1(y − 𝐗𝐚)′(y − 𝐗𝐚) + λ𝐚′𝐃𝐚} 

 aDXXnayXanyXanyynMin )()( '1''''1''1'1 ++−−= −−−−

 
(4.31) 

 

where: 
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( )4 4 40,0,1 ,2 , ,diag K= D              

Suppose that equation (4.31) is called , by subtracting ( )Q a  partially with respect to a and equating 

to zero we get:  

( )
( )1 10 2 2

Q a
n y n

a
− −


= − + + 


X X X D a

 
 

( ) ( )
1

1 ' 1 'ˆ n X X D n X y  
−

− −= +
 

(4.32) 

Based on the properties of the Fourier series estimator, it can be written in matrix form 
f a e= +X

 (4.33) 

f̂ a= X
 

(4.34) 

 

dimana: 

0 1

1
, , , ,
2

Ka b a a a
 

=  
   

(4.35) 

1 1 1 1

2 2 2 2

3 3 3 3

1 cos cos2 cos

1 cos cos2 cos

1 cos cos2 cos

cos cos2 cos1
n n n n

K

K

K

K

x x x x
x x x x
x x x x

x x x x

 
 
 
 =
 
 
 
 

X  (4.36) 

 

4.2. Assumption of linearity 

Path analysis modeling will be carried out on the relationship between the variables Character, 

Capacity, Capital, Collateral, and Condition on time to pay through the willingness to pay. The path analysis 

modeling steps begin with a linearity test to determine the form of the relationship between variables. The 

Ramsey Reset test is used to determine whether the relationship between variables has a linear or non-linear 

relationship. Table 1 presents the results of the Ramsey Reset test between the variables used in the study. 

Table 1. Linearity Assumption Test Results 

Research variable p-value Conclusion 

Character (X1) → Willingness to Pay (Y1) 0.909 Linear 

Capacity (X2) → Willingness to Pay (Y1) 0.001 Not Linear 

Capital (X3) → Willingness to Pay (Y1) 0.234 Linear 

Collateral (X4) → Willingness to Pay (Y1) 0.129 Linear 

Condition (X5) → Willingness to Pay (Y1) 0.029 Not Linear 

Character (X1) → Obedient Paying Behavior (Y2) 0.130 Linear 

Capacity (X2) → Obedient Paying Behavior (Y2) 0.092 Linear 

Capital (X3) → Obedient Paying Behavior (Y2) 0.159 Linear 

Collateral (X4) → Obedient Paying Behavior (Y2) 0.517 Linear 

Condition (X5) → Obedient Paying Behavior (Y2) 0.178 Linear 

Willingness to Pay (Y1) → Obedient Paying Behavior (Y2) 0.033 Not Linear 

 

From the results of the linearity test above, it is known that there are three non-linear relationships 

between variables, namely the relationship between variables X2 and Y1, X5 and Y1, and Y1 and Y2. Thus, 

modeling can be done by nonparametric path analysis. 
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4.4. Comparison of GCV of each lambda on each oscillation 

4.4.1. Selection of the Best Model for Each Oscillation  

Estimation of nonparametric path function when K=2,3,4,5 is performed on a value of 0.2-0.9. First,   
the optimal value will be selected by looking at the GCV value. The minimum/smallest GCV value will result 

  in an optimal value. Table 2 shows the GCV value of each value of  . 

 

Table 2. Selection of the Best Smoothing Parameters 

OSCILLATION LAMBDA GCV 

2 

0,2 89937.560 

0,3 1560106.000 

0,4 4598515.000 

0,5 664767.600 

0,6 332864.500 

0,7 227785.800 

0,8 178524.700 

0,9 150476.400 

3 

0,2 94060.860 

0,3 73789.970 

0,4 66028.350 

0,5 61945.170 

0,6 59429.910 

0,7 57725.930 

0,8 56495.590 

0,9 55565.640 

4 

0,2 56588.770 

0,3 53643.340 

0,4 52256.130 

0,5 51449.470 

0,6 50922.030 

0,7 50550.240 

0,8 50274.070 

0,9 50060.820 

5 
0,2 56588.770 

0,3 53643.340 
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OSCILLATION LAMBDA GCV 

0,4 52256.130 

0,5 51449.470 

0,6 50922.030 

0,7 50550.240 

0,8 50274.070 

0,9 50060.820 

 

In table 2, it gives the smallest lambda value at each oscillation level. Furthermore, the calculation of the 

coefficient of determination is carried out to determine which path analysis model is the best at oscillation 

levels 2, 3, 4, and 5. The coefficient of determination for each oscillation is shown in table 3. 

Table 3. Coefficient of Determination Value for Each Oscillation 

Oscillation 
Coefficient Of 

Determination 

2 0.762 

3 0.775 

4 0.780 

5 0.770 

 

Based on Table 3 shows that K = 4 has the largest coefficient of determination, which is 78% so that the best 

model is at the time of oscillation 4 with a lambda of 0.9 with many parameters that must be estimated as 

many as 31 and 37. R2 of 78% indicates that the variance is correct. Time to Pay can be explained by character, 

customer capacity, capital, collateral, and condition of economy by 78% while the rest is explained by other 

variables. The following is a nonparametric path analysis function with the best Fourier series approach: 

1 1 1 1 1 1 1

2 2 2 2 2 2 3

3 3

2.737 0.348 0.001 0.001 2 0.001 3 0.001 4 0.001 5

0.328 0.373 0.001 2 0.001 3 0.001c 4 0.001c 5 0.001

0.269 0.194 2 0.001 3

ˆ
i i i i i i

i i i i i i i

i i

f x cosx cos x cos x cos x cos x

x cosx cos x cos x os x os x x

cosx cos x cos x

−

+ +

+

= + + + + +

+ − + + +

− − 3 3 3 4

4 4 4 4 4 5

5 5 5 5 5

0.001 4 0.001 5 0.001

0.001 0.460 2 0.252 3 0.001 4 0.001 5 0.001

0.001 0.001 2 0.166 3 0.015 4 0.008 5

i i i i

i i i i i i

i i i i i

cos x cos x x

cosx cos x cos x cos x cos x x

cosx cos x cos x cos x cos x

+ + +

− −+ ++ +

+ + −+ +

 

2 1 1 1 1 1 1

2 2 2 2 2 2 3

3 3

0.001 0.001 0.001 0.001 2 0.159 3 0.125 4 0.011 5

0.002 0.001 0.001 2 0.001 3 0.158 4 0.157 5 0.030

0.001cos 0.001 2 0.00

ˆ

1 3

i i i i i i

i i i i i i i

i i

f x cosx cos x cos x cos x cos x

x cosx cos x cos x cos x cos x x

x cos x cos x

+

+ −

+

= + + + + +

+ + + − +

+ + 3 3 3 4 4

4 4 4 4 5 5 5

5 5 5 1 1

0.001 4 0.004 5 0.080 0.001cos

0.001 2 0.001 3 0.001 4 0.001 5 0.424 0.403cos 0.014 2

0.003 3 0.001 4 0.001 5 0.001 2.141cos 1.259

i i i i i

i i i i i i i

i i i i i

cos x cos x x x

cos x cos x cos x cos x x x os x

cos x cos x cos x y y

+

+

+ −

+ − +

+ + + + − −

− + + − 1 1

1 1

2 0.010 3

0.002 4 0.001 5

i i

i i

cos y cos y

cos y cos y−

−

+

  

The actual and predicted data plots on the nonparametric path function of the Fourier Series when the 

oscillation is equal to 4 can be seen in the figure below: 
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Figure 1. The plot of actual and predicted data 

between variables X1 and Y1 

 

Figure 2. The plot of actual and predicted data 

between variables X2 and Y1 

 

 

Figure 3. The plot of actual and predicted data 

between variables X3 and Y1 

 

Figure 4. The plot of actual and predicted data 

between variables X4 and Y1 

 

Figure 5. The plot of actual and predicted data 

between variables X5 and Y1 

 

Figure 6. The plot of actual and predicted data 

between variables X1 and Y2 

 

Figure 7. The plot of actual and predicted data 

between variables X2 and Y2 

 

Figure 8. The plot of actual and predicted data 

between variables X3 and Y2 
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Figure 9. The plot of actual and predicted data 

between variables X4 and Y2 

 

Figure 10. The plot of actual and predicted data 

between variables X5 and Y2 

 

Figure 11. The plot of actual and predicted data between variables Y1 and Y2 

Based on the data plot formed, it can be seen that the path function estimation using the Fourier Series 

approach can describe the model well. This can be shown by the actual data that is around the predicted line 

of the path function of the Fourier Series approach, resulting in a small residual. 

 

 

 

 

Conclusions 

1) The function estimation in nonparametric path analysis with Fourier series approach is as follows: 

( ) ( )
1

1 ' 1 'ˆ n X X D n X y  
−

− −= +  

2) The nonparametric path function that is formed on each oscillation comes from the lambda which has 

the optimal value, which is when the GCV is the smallest. The best model for each oscillation is: 

a) K=2 while 0.2 =  

b) K=3 while 0.9 =  

c) K=4 while 0.9 =  

d) K=5 while 0.9 =  

3) The best nonparametric path model that can describe the 5C variable on Time to Pay through 

Willingness to Pay is when the oscillation K=4 with R2 is 78%.  
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