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Abstract 

This study applies Small Area Estimation (SAE) methods to a Regional Travel Survey (RTS) in order to derive statewide household 

person trips at the PUMA level when no sample is available. Several methods have been tested; those include: area and unit 

synthetic model with both Ordinary Linear Square and Poisson regression, and the Fay-Herriot model. Empirical results have been 

obtained for the State of Maryland, using the 2018 MWCOG Regional Travel Survey and the American Community Survey (ACS). 

RTS provides both the direct estimates of household person trips and the auxiliary variables for the synthetic model estimation, but 

only for PUMAs included in the survey. ACS provides the auxiliary variables for the entire state, including PUMAs with no RTS 

sample. Based on out-of-sample tests, it can be concluded that the area level linear model with RTS auxiliary variables performs 

better when compared to the other specifications proposed. This model was then applied to estimate household person trips for the 

area with no sample. We finally applied the Fay-Herriot method to the PUMAs in RTS and found that the combination of direct 

and synthetic estimation reduces the Coefficient of Variation. This application demonstrates that SAE methods can produce reliable 

transportation statistics by linking information from several datasets and could potentially reduce survey data collection costs.   

 
Keywords: small area estimation, PUMA, household trips, zero sample 

1. Introduction 

Household Transportation Surveys gather data about people’s mobility and are mainly used to derive direct 

statistics of mobility indicators or estimate models of travel behaviour. The National Household Travel Survey 

(NHTS) conducted in the USA supports analysis at the national and Census region levels; the country is divided into 

six regions. The add-on program administrated by the Federal Highway Administration (FHWA) provides the 

opportunity to purchase supplemental samples to support state and metropolitan planning organizations (MPOs) 

analyses at smaller geographical levels, such as cities or counties. Regional Travel Surveys (RTS) are conducted by 

local authorities to have more detailed data about daily travel patterns and to estimate and validate large scale model 

systems (i.e., Four Step or Activity Based models). RTS sample sizes are usually larger than the NHTS sample but 

are relative to much more limited geographical areas.  

This paper proposes the use of Small Area Estimation (SAE) methods to produce transportation-related statistics 

at a small geographical level when no sample is available. Small Area Estimation (SAE) is a term that embraces 

different appro 
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aches and techniques to produce reliable statistics when a very small or even no sample is available. SAE methods 

are applied to small geographical areas such as a county, a municipality, a census tract, or small domains such as 

specific groups of people (i.e., low income-race-employment) within a large population (Ghosh & Rao, 1994). Nation 

or state-wide level surveys do not contain enough data to generate direct estimates for small areas; in such cases, an 

additional dataset with sufficient information for the small areas of interest may be used to obtain reliable estimates. 

In this study we estimate the number of household trips at the PUMA level and for the entire State of Maryland. We 

rely on the American Community Survey (ACS) and the RTS survey collected by the Metropolitan Washington 

Council of Governments (MWCOG) in 2017-2018 that covers 25 PUMAs only, out of the 44 PUMAs in Maryland. 

We demonstrate that by linking RTS data to the American Community Survey (ACS) data, it is possible to obtain 

PUMA level estimates where no sample is available. The method proposed is general and can be adopted to generate 

different types of small area or domain specific statistics. The remainder of this paper is organized as follows. In 

Section 2, we review SAE applications to transportation statistics. Section 3 describes the data that support the 

analysis. Section 4 illustrates the methodology developed, while Section 5 reports on the results obtained. Section 6 

presents the main conclusions from the study and proposes new research directions.   

 

2. Literature Review  

There is a growing interest in reliable small area statistics; these are routinely used for a variety of purposes, 

including assessing the economic well-being of a nation, making public policies, and allocating funds at the federal, 

state and local levels. A comprehensive review of small area methods and their applications can be found in (Jiang & 

Lahiri, 2006; Rao & Molina, 2015).  

In transportation the number of applications of SAE methods are rather limited. Reuscher et al., (2002) estimated 

vehicle and person trips, and miles of travel with data from the 1996 Nationwide Personal Transportation Survey 

(NPTS), an earlier version of NHTS, using clustering techniques aimed at grouping census tracts based on similarity 

in travel behavior indicators. A similar approach was followed by Hu et al., (2007) to derive cluster-specific 

transportation statistics using NHTS 2001 and Census data; the method was validated based on add on samples. Vaish 

et al., (2010) used the 2001 NHTS to derive SAE estimates of percentages of individuals among different age groups 

with high daily mileage travelled for each state in the USA. They used a survey weighted hierarchical Bayes SAE 

method (Folsom et al., 1999) and reported significant gains in the Prediction Intervals (PIs) especially for small states 

with fewer observations. Long et al., (2009) have evaluated three different models of SAE: the generalized regression 

estimators (GREG), the empirical best linear unbiased predictor (EBLUP), and the EBLUP without area effects to 

obtain estimates of the total number of workers per household at tract-level and individual-level using the 2001 NHTS 

dataset. They validated the results obtained using the three models with actual values obtained from the 2000 U.S. 

census (CTPP). They concluded that SAE methods can be used to obtain unbiased travel statistics for local areas. 

A number of studies have focused on the transferability of transportation statistics.  According to Koppelman & 

Wilmot, (1982) model transferability can be implicit when a model estimated on historical data is used to predict the 

future or explicitly when the model estimated in one area is used to make predictions in another area. Koppelman & 

Pas, (1986) has studied transferability of joint and sequential choice models for vehicle ownership and mode to work 

based on goodness of fit measures. A study by Wilmot, (1995) has carried out a comprehensive investigation of the 

transferability for 19 different linear models of trip-generation within several cities and among areas in one region. 

He found that models transfer better within areas that have similar characteristics, such as average income. Also, 

models that have high R2 values showed better transferability than other models with lower R2. (P. Stopher et al., 

2005; P. R. Stopher et al., 2003) proposed a method to synthesize household travel survey data from Census data and 

a national transport survey. The procedure creates distributions of the variables relevant for travel-demand analysis. 

A sample of local residents is drawn from disaggregate census data, providing detailed information on the 

socioeconomic characteristics of the sample. Using these socioeconomic characteristics, travel data are simulated from 

the transport data distributions using Monte Carlo simulation. This procedure was also applied to Adelaide, South 

Australia, in (P. R. Stopher et al., 2003). Bayesian based updating techniques have been used to improve the 

transferability of household travel surveys to small and midsized urban areas in (Mohammadian & Zhang, 2007; 

Zhang & Mohammadian, 2008).  
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Recently the Bureau of Labor Statistics has released the LATCH model (Local Area Transportation Characteristics 

for Household) (LATCH, 2021), that provides estimates of average weekday household person trips, vehicle trips, 

person miles traveled, and vehicle miles traveled per day at the Census tract level in the United States. The 

methodology adopted is quite simple and based on classical SAE methods. The country is divided into six Census 

regions and three areas of urban/suburban/rural; using NHTS, models are estimated for each of the variables listed 

above, selecting dependent variables that are also available in ACS. Model estimates are transferred to Census tracts 

using the ACS data. This application attests the importance of producing small area transportation statistics for federal, 

state and local agencies. A similar effort is ongoing for the Freight Analysis Framework (FAF, 2021) (maintained by 

FHWA and BTS; both agencies are working to produce more granular statistics and implement concepts of SAE in 

the survey design in order to improve estimates’ quality and their transferability.  

The literature review reveals that SAE methods are becoming an essential statistical tool for governmental agencies, 

and applications in transportation are not numerous and limited to basic SAE methods. Also, there is no evidence of 

SAE applications to areas where no sample is available. 

 

3. Data Sources 

The analysis carried out in this paper is based on two datasets. The primary dataset is the Regional Travel Survey 

collected by the Metropolitan Washington Council of Governments (MWCOG) in 2017-2018, called here RTS 2018. 

The secondary dataset is the American Community Survey data relative to years 2014 - 2018, called here ACS 2018. 

ACS is administrated by the U.S. Census Bureau and collects monthly samples that are used to update annual estimates 

at small areas (census tracts and block groups); five years of samples are necessary to produce these small-area data. 

This is the reason why we used 5 years ACS data prior to 2018, which is the year when RTS data collection was 

finalized.  

A total of 8,839 randomly selected households are available in RTS 2018 and 135,590 in ACS 2018 for Maryland. 

In Table 1 we summarize the main characteristics of both datasets; in particular, we identify the finest spatial unit for 

which the data is available, the area coverage, and the main limitations in the context of transportation statistic 

estimation. 

 

Table 1: Data characteristics and limitations   

 
American Community Survey (ACS 2018) Regional Travel Survey (RTS 2018) 

Provided Information It provides detailed population and housing 

information. 

It provides demographics about households 

and individuals and travel information, 

including vehicles. 

Spatial domain County, PUMA. County, PUMA level, zip code 

Area covered All states in the USA. Particularly, it 

covers all the 44 PUMAs in Maryland. 

District of Columbia and parts of Maryland 

and Virginia. Particularly, it covers only 25 

PUMAs out of the 44 PUMAs in 

Maryland. 

Limitations It does not provide the output variable of 

interest (i.e., the total number of household 

person trips). 

It does not cover all the small areas in 

Maryland selected for this study.  
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The study area covers the State of Maryland, which contains 44 PUMAs (Public Use Microdata Area). PUMAs are 

the geographic units defined by the U.S. Census and contain at least 100,000 people; PUMAs do not overlap, and are 

contained within a single state. Among the 44 PUMAs (see Figure 1) in Maryland, only 25 PUMAs are covered in the 

primary dataset (RTS 2018). Out of these 25 PUMAs, 20 were used as the training set to estimate the proposed models  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and the remaining five were selected as the testing set (out-of-sample). The remaining 19 PUMAs represent the 

small areas with zero sample in the primary dataset for which we want to transfer model estimates based on RTS 2018.   

 

4. Methodology: A Three Step SAE Based Procedure 

In this section we first present the SAE method adopted in this study, including the Fay-Heriot model, the 

framework developed for model transfer to areas with no sample, and the tests used to compare models’ performance. 

 

4.1 SAE method with no sample 

 

Different formulations of Linear models and Poisson models were estimated using the data for the PUMAs with 

available samples in the RTS 2018 dataset (the primary dataset). 

 

Linear regression model 

The simple linear regression model can be expressed as the following: 

 

 𝑌 =  𝐵𝑂 + 𝑋𝑖
𝑇𝐵 +  𝜀                                                                                                     (1) 

Where Y is the known dependent variable, 𝑋𝑖
𝑇

is a vector of known independent variables, B is a vector of the 

regression coefficients of the model, 𝐵𝑂 is the intercept of the model, ε is the error term. 

 

Poisson regression model  

The Poisson model was used in order to address the count data of the household total trips. The model assumes that 

the dependent variable Y has a Poisson distribution with probability mass function: 

 

Figure 1: Training, testing, and zero sample PUMAs 
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𝑃(𝑥) =
𝜆𝑥𝑒−𝜆

𝑥!
   , x = 0, 1, 2, … ,                                         (2) 

 

Where 𝜆 is Mean of occurrences in the interval. The Poisson model is a natural log of the dependent variable as a 

linear function of the independent variables. The log of the predicted counts of the output variable of interest in the 

ith small area unit can be expressed as the following:  

For i = 1,2, …n   

log(Yi
p

)  =  𝑋𝑖
𝑇𝐵 + 𝜇𝑖                                 (3) 

Where 𝑋𝑖
𝑇 is a vector of known auxiliary count data, 𝐵 is a vector of the regression parameters of the Poisson model, 

and 𝜇𝑖 is a vector of independent random errors.   

Then the best-performed model was transferred to be applied to the ACS 2018 dataset (the secondary dataset) to 

generate synthetic estimates for PUMAs with zero samples using equation 4. The two used datasets have the same 

auxiliary variables. Therefore, no changes of any kind to the estimation coefficients from the primary dataset had to 

be made before applying the estimated model to the secondary dataset.   

 

�̂�𝑖𝑁𝑆

𝑆
= 𝑓(𝑋𝑖)                                (4) 

Where ŶiNS

S
 is the synthetic estimates for areas with no samples in the primary dataset, 𝒇 is the best performed 

estimated function that can explain the relationship between the predictor and the auxiliary variables for other areas 

in the primary dataset, and Xi is a vector of auxiliary variables from the secondary dataset for the specific areas.  

 

Fay-Herriot Model  

In regression-synthetic estimation, the Fay-Herriot model estimator is a weighted combination of the direct estimator 

and the synthetic estimator as the following:  

 

For i= 1,2,…n 

�̂�𝑖
𝑆 = 𝜔𝑖�̂�𝑖

𝐷 + (1 − 𝜔𝑖)𝑋𝑖
𝑇𝛽                                                 (5) 

Where �̂�𝑖
𝑆 is the Fay-Herriot estimator, �̂�𝑖

𝐷 is the direct estimator, 𝑋𝑖
𝑇𝛽 is the synthetic estimator, and 𝜔𝑖 is the weight 

of the direct estimator as a ratio ranging from 0 to 1 and can be computed using the variances of the model �̂�𝑢
2 and the 

sampling errors �̂�𝑒
2:  

 

𝜔𝑖 = 
�̂�𝑢

2

�̂�𝑢
2+�̂�𝑒𝑖

2                                       (6) 

The Fay-Herriot model minimizes the mean square error in the final estimator to produce more reliable estimates. If 

the sampling error is small, the direct estimate will have more weight on the Fay-Herriot estimator. However, if the 

direct estimate is not reliable, the synthetic estimate will have more weight. In the case of zero sample observations, 

the direct estimate is impossible to be calculated. Therefore, the Fay-Herriot estimator reduces to the synthetic 

estimate. The unbiased estimator of the mean square error of the Fay-Herriot estimator can be approximated by the 

formula given by Prasad and Rao in 1990:  

MSE (�̂�𝑖
𝑆) = 𝜔𝑖�̂�𝑒𝑖

2 + (1 − 𝜔𝑖)𝑋𝑖
𝑇 [∑

𝑋𝑖𝑋𝑖
𝑇

�̂�𝑢
2+�̂�𝑒𝑖

2 ]
−1

𝑋𝑖 +
�̂�𝑒𝑖

2

(�̂�𝑢
2+�̂�𝑒𝑖

2 )3

4 ∑(�̂�𝑢
2+�̂�𝑒𝑖

2 )
2

𝑛2                             (7) 

 

4.2 The modeling framework 

 

The methodology developed and applied in this study is schematically represented in Figure 2, where it can 

be seen that we estimated both area level models based on aggregate data for each PUMA, and unit level models on 

disaggregate households’ observations. A three-step procedure for model estimation, validation and transfer was 

implemented as follows: 
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Step1: Generate direct total estimates of the output variable (i.e., the total number of household person trips) from the 

primary dataset (RTS 2018), and generate the direct estimates of the auxiliary variables from both the primary and 

secondary datasets (RTS 2018 and ACS 2018). 

 

Step 2: Produce synthetic estimates of the output variable (i.e., the total number of household person trips) using 

different formulations for the unit level models and area level models based on the direct estimates generated in Step 

1. 

 

Step 3: Select the best-performing model by comparing the error between synthetic estimates and the actual direct 

estimates for the covered areas in the primary dataset. Then using the selected model, produce synthetic estimates for 

the areas with zero sample in the primary dataset to cover all the PUMAs in Maryland. 

 

 The direct estimates of the total number of household person trips (HHTRIPS) and of the selected auxiliary 

variables were estimated for the 25 PUMAs in the testing and training sets using the survey package in R software 

(Lumley, 2020). The auxiliary variables were chosen based on their availability in both ACS and RTS datasets and 

their relation to the output variable of interest in this study. They are: household size (HHSIZE), household income 

(HHINCOME), and the number of vehicles in the household (NUMVEHICLE). Table 2 lists the selected variables 

and their names, availability in surveys, definitions and associated values.   

 

 

Table 2: List of variables used in this study   

Auxiliary Variables  Values Survey  

Number of household vehicles (NUMVEHICLE)  0,1,2,…6+ ACS & RTS 

Number of household people (HHSIZE)  0 to 20 ACS & RTS 

Household income (HHINCOME)  1 to 9999999 ACS & RTS 

    

Dependent Variable (Outcome)  Values Survey  

Total Household Trips (HHTRIPS)  1 to 9999999 RTS only 

 

 

We considered different model specifications: Linear regression, Poisson model, and empirical best linear 

Figure 2: Methodological Framework 



 Mohammad B. Al-Khasawneh et al.  7 

 

unbiased prediction (EBLUP) using Fay-Herriot model (Fay III & Herriot, 1979). The linear and the Poisson models 

were estimated using the survival package in R software (Therneau & Lumley, 2015), and the Fay-Herriot model was 

estimated using the “SAE” package (Molina & Marhuenda, 2015). 

A total of seven different regression alternatives were considered for the synthetic estimation of the 

household person trips in each PUMA. We estimated five area level models:  

(1) Ordinary linear model using the auxiliary variables in the RTS 2018. 

(2) Poisson linear model using the auxiliary variables in the ACS 2018. 

(3) Fay-Herriot model using the auxiliary variables in the ACS 2018. 

(4) Ordinary linear model using the auxiliary variables in the ACS 2018. 

(5) Poisson linear model using the auxiliary variables in the RTS 2018. 

A two unit-level models:  

(6) Ordinary linear model using the auxiliary variables in the RTS 2018; 

(7) Poisson linear model using the auxiliary variables in the RTS 2018.  

 

 

 

 

 

4.3 Statistical test for model comparison 

 

All the regression models were tested by comparing the synthetic estimates with the direct estimates computed in 

Step 1 for the five PUMAs in the training set defined in Table 1. Two indicators were chosen to measure the errors: 

The Mean Absolute Percentage Error (MAPE) and the Root-Mean-Square deviation (RMSE). They are defined as 

follows: 

 𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |

𝐴𝑖−𝐹𝑖

𝐴𝑖
|𝑛

𝑖=1                                      (8) 

 𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝐴𝑡 − 𝐹𝑡)2𝑛

𝑖=1                                   (9) 

where, At = actual value; Ft = forecast value; n = number of observations. 

Moreover, the coefficient of variance (CV) was used to test the performance of the Fay-Herriot model: 

 

𝐶𝑉 =  
𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝐸𝑟𝑟𝑜𝑟(𝑆𝐸)

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑠
                                                         (10)

        

The standard error is the square root of the mean absolute error as the following equation: 

𝑆𝐸 =  √𝑀𝑆𝐸 =  
1

𝑛
∑ (𝑌𝑖 − 𝑌�̂�)

2𝑛
𝑖=1                                                                                                                              (11) 

 Where, Yi = actual values; 𝑌�̂� = predicted values  
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5. Results: SAE Estimates for Areas with No Sample 

According to the framework in Section 4.3, we first calculate the direct estimates of the independent variables from 

both RTS and ACS data, and direct estimates of the dependent variable using RTS only. The outcome is reported in 

Table 3, where direct estimates are reported for a sample of the 25 PUMAs covered by RTS and ACS and a sample 

of the 19 remaining PUMAs covered by the ACS only. It can be noted that the direct estimates of each of the auxiliary 

variables have similar patterns and very similar values across the two surveys and for both the training and the testing 

areas. This finding supports our approach that intends to use ACS 2018 as a secondary dataset to infer the number of 

household person trips for PUMAs with no sample. 

 

Table 3: Direct estimates 

PUMA 

Direct Total Estimates from RTS 2018 Direct Total Estimates from ACS 2018 

HHSIZE NUMVEHICLE HHINCOME HHTRIPS HHSIZE NUMVEHICLE HHINCOME 

302 125553 99032 286385 403920 117083 86752 251557 

1007 112971 66334 290209 347806 110363 63023 244633 

1103 104390 56464 201719 302215 98398 56761 181934 

1104 115476 65651 225118 292323 105946 64051 208134 

1202 106185 85368 218103 318722 110809 82559 222869 

301 131380 108244 283800 405041 123872 105977 266245 

400 166553 144967 360651 523232 162259 137256 342142 

901 140156 106930 330252 477981 132544 104503 316809 

902 169694 128525 406835 589222 169664 122211 384401 

1001 139708 109942 336110 463088 133039 103750 298192 

1002 140362 87924 287493 412366 127266 82012 256084 

1003 181379 121336 445926 579498 178231 117812 400924 

1004 190480 126504 528252 669010 178930 125307 486955 

1005 146141 87244 327495 428798 134098 87758 272628 

1006 132846 84508 272068 466919 116814 77973 238629 

1101 99796 54866 188847 285350 96185 49941 157277 

100 

No samples 

91996 72001 161242 

200 138861 106986 259444 

501 115094 97510 263606 

502 125928 85776 262160 

503 112288 79891 251567 

504 103695 73967 233730 

505 104373 76112 218450 

506 106322 66145 184429 

507 105388 71167 212109 

601 131809 110268 284081 

602 106296 79220 222164 

700 93032 74685 189184 

801 116344 52400 194005 

802 92896 48633 193329 
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803 104350 56848 194749 

We also calculate the direct estimates of the independent auxiliary variables for the 19 PUMAs with no sample 

using the ACS 2018 data. Then we proceed to estimate the seven regression models described in Section 4.3 using 

data from the 20 PUMAs common to RTS 2018 and ACS 2018 and leaving out the five PUMAs that will be used to 

test model performance. Results from model estimation are reported in Table 4. It can be observed that the area level 

models have higher R2 compared to the unit level models. The Poisson regression did not improve the accuracy for 

the proposed models as all Poisson models showed the same or slightly less R2 compared to the linear models for the 

same category. 

Table 4: Model estimation results 

Model Coefficients: Estimate Std. Error p-value Significance† Observations R2 

(Linear) (1) (Intercept) 64970.000 4.23E+04 0.1425  20 PUMAs aggregated from 

7316 households 
0.908 

 ACS_HHSIZE 1.171 7.78E-01 0.1508    

 ACS_HHINCOME  0.777 2.69E-01 0.0101 **   

(Poisson) (2) (Intercept) 12.200 2.01E-03 <2e-16 *** 
20 PUMAs aggregated from 

7316 households 
0.896 

 ACS_HHSIZE 2.58E-06 3.46E-08 <2e-16 ***   

 ACS_HHINCOME  1.56E-06 1.19E-08 <2e-16 ***   

(Linear) (4) (Intercept) 28670.000 5.11E+04 0.5822  20 PUMAs aggregated from 

7316 households 
0.896 

 RTS_HHSIZE 1.374 8.65E-01 0.1306    

 RTS_HHINCOME  0.708 2.78E-01 0.0209 *   

(Poisson) (5) (Intercept) 12.090 2.38E-03 <2e-16 *** 
20 PUMAs aggregated from 

7316 households 
0.874 

 RTS_HHSIZE 3.65E-06 3.82E-08 <2e-16 ***   

 RTS_HHINCOME  1.22E-06 1.20E-08 <2e-16 ***   

(Linear) (6) (Intercept) -1.38789 0.3351 3.49E-05 *** 
7316 Households based on 

the training 20 PUMAs 
0.362 

 RTS_HHSIZE 2.826 4.75E-02 < 2e-16 ***   

 RTS_NUMVEHICLE 0.305 1.35E-01 0.0243 *   

 RTS_HHINCOME  1.014 1.84E-01 3.48E-08 ***   

(Poisson) (7) (Intercept) 0.745 2.17E-03 <2e-16 *** 
7316 Households based on 

the training 20 PUMAs 
0.345 

 RTS_HHSIZE 2.78E-01 2.21E-04 <2e-16 ***   

 RTS_NUMVEHICLE 1.43E-01 8.22E-04 <2e-16 ***   

 RTS_HHINCOME 1.70E-01 1.11E-03 <2e-16 ***   

 

The performance of the regression-based models was assessed on the testing set composed of five PUMAs using 

the RMSE and MAPE indicators. Table 5 summarizes the results obtained. The linear area-level model with the 

auxiliary variables from the primary dataset (Model 4) was found to have the best performance as it showed the lowest 

RMSE and MAPE values. Therefore, this model was selected to predict the total household trips in the remaining 19 

PUMAs with no sample. We finally estimate the Fay-Herriot model as specified in Section 4.2 for the 25 PUMAs in 

RTS and found that it produced better estimates with respect to the direct estimates since the associated coefficients 

of variance were lower. Figure 3 illustrates the change in the coefficients of variance between the Fay-Herriot model 

and the direct estimates.  The final estimates are shown in Figure 4 as the following: (1) the final improved synthetic 

estimates of the total household trips in the 25 PUMAS using the Fay-Herriot model and (2) the synthetic estimates 

for all the remaining 19 PUMAs with no sample using the linear area-level model with the auxiliary variables from 

the primary dataset. 

 

 

 
† significance code [p-value]: “***” [0, 0.001],  “**” (0.001, 0.01],”*” (0.01, 0.05], “.” (0.05, 0.1], “ “ (0.1, 1] 
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Table 5: RMSE and MAPE in the testing dataset 

 Actual Synthetic Estimation (Predicted) 

 

Direct 

Estimates 

Area Level Unit Level 

  (Linear) ACS-

AUX 

 (Poisson) 

ACS-AUX 

 (Linear) RTS-

AUX 

 (Poisson) 

RTS-AUX 

(Linear) RTS-

AUX 

 (Poisson) 

RTS-AUX 

Testing 

PUMA 
HHTRIPS HHTRIPS HHTRIPS HHTRIPS HHTRIPS HHTRIPS HHTRIPS 

1 302 403920 397455 397367 367730 372789 394424 390650 

2 1007 347806 384208 386335 351659 355315 367341 358849 

3 1103 302215 321500 339616 291221 315391 325314 336003 

4 1104 292323 350688 360772 320241 335181 351573 365488 

5 1202 318721.7 367827 373839 338910 351824 373523 374149 

  Error       

  MAPE 10.8% 13.2% 5.9% 7.9% 6.5% 9.4% 

  RMSEE 38875.74 46150.71 22945.20 28746.14 38779.22 44418.40 

 

 

 

 

 

 

 

 

Figure 3: Coefficient of variance across direct and Fay-Herriot estimates 
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6. Conclusion 

Transportation agencies rely on quantitative statistics to make information-based decisions about investments 

and operations. Data about travel behavior is collected through national and regional surveys, but often their 

representativeness is limited in space and domains. Methods from Small Area Estimation can be applied to produce 

reliable statistics for areas with sparse or no data by leveraging information contained in different data sets. In this 

SAE application, the Regional Travel Survey with no sample for about half of Maryland was linked to a secondary 

dataset (the American Community Survey) that covers the entire state. In order for the linkage to happen the two 

datasets must contain the same auxiliary variables. Direct and synthetic estimations of the variable of interest 

(household person trips) were produced at the PUMA level for the area covered by the survey. The best-performing 

model on the out-of-sample composed of five PUMAs was selected to transfer the estimates and obtain statistics for 

the area with no sample. The Fay-Herriot model was finally applied to the region covered by MWCOG RTS and was 

found to produce inferior CVs with respect to the direct estimates.  

This paper has provided to the transportation community an SAE modeling framework that is ready to be 

applied and can be replicated in different areas and domains. A natural extension of this paper is the SAE estimation 

of person trips at Traffic Analysis Zone (TAZ) level, which is the unit of analysis for large scale transportation model 

systems. Other applications might include the estimation of non-motorized trip rates at the Census tract level, or the 

analysis of travel behavior for specific segments of the population (i.e., low income, disabled, and senior citizen). 

Finally, SAE methods offer a great variety of models for data linkage; these could be applied to link big (traffic) data 

and/or cell phone data to traditional travel survey data to fully exploit the power of passively collected data 

 

 

 

 

 

Figure 4: Final estimated total daily trips per household 
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