
EasyChair Preprint
№ 8110

HYPERBOT – a Benchmarking Testbed for
Acquisition of Robot-Centric Hyperspectral Scene
and in-Hand Object Data

Nathaniel Hanson, Tarik Kelestemur, Joseph Berman,
Dominik Ritzenhoff and Taskin Padir

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

May 28, 2022



HYPERBOT – A BENCHMARKING TESTBED FOR ACQUISITION OF ROBOT-CENTRIC
HYPERSPECTRAL SCENE AND IN-HAND OBJECT DATA

Nathaniel Hanson1∗, Tarik Kelestemur1, Joseph Berman1, Dominik Ritzenhoff1, Taskin Padir1

1Institute for Experiential Robotics, Northeastern University, Boston, Massachusetts, USA

ABSTRACT

Robots will benefit from identifying novel objects in their en-
vironments through multi-modal sensing capabilities. The
overarching goal of this research is to accelerate the multi-
modal sensor data collection for general-purpose robots to
infer material properties of objects they interact with. To
this end, we designed a benchmarking testbed to enable a
robot manipulator to perceive spectral and spatial character-
istics of scene items. Our design includes the use of a push
broom Visible to Near Infrared (VNIR) hyperspectral cam-
era, co-aligned with a depth camera. This system enables
the robot to process and segment spectral characteristics of
items in a larger spatial scene. For more targeted item ma-
nipulation, we integrated a VNIR spectrometer into the fin-
gertips of a gripper. By acquiring spectral signatures both
at a distance and at grasp time, the robot can quickly corre-
late data from the two sensors, each of which contain distinct
quantum efficiencies and noise. Our approach to this chal-
lenge is a step towards using spectral data for enhanced grasp
selection in cluttered environments and automated ground-
truthing of hyperspectral sensor data. This paper describes
our approach to the design of this benchmarking testbed. The
project code and material list are located here: https://
github.com/RIVeR-Lab/HyperBot.

Index Terms— Hyperspectral Imaging, Robot Spec-
troscopy, Grasp Planning, Sensor Fusion, Ground Truth Ac-
quisition

1. INTRODUCTION

Hyperspectral imaging (HSI) has traditionally been applied
in the context of remotely sensed images, where limited spa-
tial resolution fostered the development of multi-band sensors
to compensate for the coarseness of ground data. Existing
datasets such as Pavia University and Indian Pines are ex-
haustively studied and are viewed as benchmarks for nearly
every new development in HSI [1]. Despite the popularity
of hyperspectral imaging, the time and effort required to cre-
ate accurate ground truth measurements is a commonly cited
problem in expanding available datasets [2]. In supervised
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Fig. 1. Spectral benchmarking testbed with architecture to
acquire scene hyperspectral datacubes and in-hand spectral
data. Note the axes orientations and cell dimensions.

machine learning techniques, true labels for a portion of the
data are required to both train and evaluate the performance
(accuracy, precision, recall) of models. This process of estab-
lishing true values for labels has traditionally been undertaken
in the laborious process of a technician carrying a field spec-
trometer and acquiring spectral signatures pinpointed to a ref-
erenced coordinate sample. Our work seeks to automate that
process, by developing a first of its kind robot workcell ca-
pable of collecting hyperspectral datacubes for a scanned set
of items and associating camera pixels with high resolution
spectral readings from in-hand sensor. Our process allows for
the rapid identification of items in a table scene through reg-
istered HSI and point cloud measurements. The contributions
of this paper are:

1. The design, analysis, and procedures for an automated
hyperspectral ground truthing testbed.

2. A pipeline to process and convert spectral readings
between a VNIR hyperspectral camera and fiber optic
spectrometer in real time.

Developing this setup enables the automated collection of
hyperspectral data, without the need for operator intervention.
This work is also needed to enable future research on the role
hyperspectral imaging can play in enhancing object handling
and perception for autonomous systems.

https://github.com/RIVeR-Lab/HyperBot
https://github.com/RIVeR-Lab/HyperBot


2. RELATED WORK

Prior work in use of spectral data in robotics can be split into
two main approaches. The first involves industrial process-
ing of products on a conveyor belt as demonstrated by [3],
[4]. These applications rely on spectral identification of ob-
jects using pretrained machine learning models to enable pla-
nar motion planning.

The second use case is abstract object recognition in un-
structured environments. In our prior work, we focused on
the use of spectral signatures in terrain classification for au-
tonomous vehicles [5], and grasped object manipulation via
the use of point-based spectrometers [6]. Erickson et al. [7]
has demonstrated enhanced material recognition with scan-
ning spectrometers mounted on a mobile manipulator; how-
ever, their work heavily focuses on common objects likely to
be encountered in everyday life.

Although there is demonstrable value in understanding
physio-chemical material characteristics with spectrometers,
the close working distance and limited spatial coverage of
the photodetector array requires motion planning to bring the
gripper into the correct 6D pose to acquire a spectral measure-
ment which is time and energy intensive for robots. Other
projects have attempted to design specialized grasping sys-
tems for fruit ripeness detection [8], but such a manipula-
tor does not translate to the diversity of grasps required by
general-purpose robots.

3. ROBOT DESIGN

The design of the testbed emphasizes the repeatability and
accuracy of the system, especially when acquiring spectral
measurements. The testbed employs a 6 degree of freedom
(DoF) robot manipulator (Universal Robotics UR3e). The
end-effector is a 2-fingered gripper (RobotIQ 2F-85) which
is controllable through a serial interface. The robot system
interfaces with a Linux PC running Ubuntu 20 and the open
source Robot Operating System (ROS) [9].

The arm is mounted to a linear actuator (LOPRO) which
is driven by a stepper motor connected through a serial USB
connector. The drive motor can move the rail gantry, to
which the robot is mounted, at a speed from 0.01-1 m/s.
This rail provides the seventh degree of freedom, increas-
ing the workspace of the arm and enabling scanning for the
hyperspectral camera as further detailed in Section 4. The
environment is isolated from the rest of the ambient room
lighting by an extruded aluminium frame which provides
additional mounting points for sensors and active lighting.
We utilize two Quartz Tungsten Halogen (QTH) lighting
sources to provide diffuse, full-spectrum illumination within
the testbed. The complete setup is shown in Fig. 1.

Fig. 2. Multi-modal perception setup for sensing both spatial-
spectral characteristics of total workspace and in-hand. NB:
Z-axis is perpendicular, coming out of the page.

4. SENSING SYSTEM

Our approach to multi-modal sensing combines two classical
modalities extensively used in remote sensing: VNIR push
broom hyperspectral sensing and point clouds. Most remote
sensing point cloud datasets are generated with Light De-
tection and Ranging (LIDAR) sensors [10]; however, in our
design we substitute a Time-Of-Flight (ToF) camera (Azure
Kinect) to provide both point clouds and RGB images. As
an active sensor, the ToF camera emits infrared light beyond
the VNIR range, meaning spectral readings are not perturbed
by the operation of this sensor. Depth and RGB images are
captured at a consistent 30 frames per second (fps).

The Hyperspectral Camera (Hyperspec-Nano) is mounted
with its lens aligned with the ToF camera. A single measure-
ment of the camera consists of 640 pixels each containing 273
wavelength channels between 400 - 1000 nm. The camera is
run in 12-bit depth mode for all the experiments in this work.
To create the composite datacube, streamed line images are
passed into a dynamically allocated buffer as the rail trans-
lates along the x-axis. The exposure time is set to 25 ms and
the system moves at 0.021 m/s.

The gripper contains additional sensors placed behind
protective elastomer gel (Solaris) which provides added tack
for grasping in-hand objects. The optical clarity of the gel
membrane was confirmed in our previously conducted trans-
mission tests [6]. The reinforced finger tips are 3D printed
with reinforced carbon fiber for added rigidity, and contain
clamp rings to minimize sensor movement. One finger con-
tains an endoscope with a Light Emitting Diode (LED) light
ring to capture macro texture images of grasped items. This
sensor is unused in the scope of this paper, but will be in-
cluded in future work. The opposite finger contains a fiber



optic probe with 7 Low OH fiber optic cores - 6 provide illu-
mination from a QTH light source and the central one reads
the signal back to a VNIR spectrometer (StellarNet). Data
from the spectrometer is acquired at 10 Hz, and consists of
a 2048 length vector of photon counts acquired during the
integration period in the wavelength range of 350 - 1150 nm.

5. SPECTRAL MATCHING

A core capability of our system is the ability to associate spec-
tral signatures sensed by the Hyperspectral camera, with sig-
natures acquired in the gripper. Both sensors utilize different
grating technologies and photodetectors with distinct quan-
tum efficiencies, making the transformation more complex.

5.1. Reflectance Calibration

To begin, both devices are calibrated to true reflectance val-
ues. The in-hand spectrometer was used to grasp a Spectralon
reflectance standard in 10 trials in different gripper orienta-
tions. The probe was then capped and 10 dark current read-
ings were acquired. Eq. 1 shows the procedure to normalize
readings to a range of [0,1]. Readings for the StellarNet spec-
trometer were very low noise so the mean value of the dark
and light calibrations is used here. L is a bright calibration
signal, D is the dark signal, and S is a single time step input
input signal.

Scal spec =
Sspec − Dspec

Lspec − Dspec
(1)

Similarly a sample datacube was acquired using the previ-
ously set parameters for the hyperspectral camera. The same
Spectralon captured the reflectance values for 100 frames and
100 capped frames provided the dark current readings. The
data was noisier than the spectrometer with occasional dead
pixel readings. To prevent these from skewing the results, the
max and min of the signals are taken in Eqn. 2.

Scal HSI =
Sraw −min(DHSI)

max(LHSI)−min(DHSI)
(2)

Fig. 3. Reflectance calibrated spectrometer readings using
colored blocks for evaluation of VNIR spectral signatures.

5.2. Downsampling

The camera and the spectrometer also have slightly different
wavelength ranges. To account for the difference here, we
clip the input spectrometer signal to the inclusive wavelength
range of the spectral camera. The dimensionality of the HSI
signal is an order of magnitude lower than that of the spec-
trometer. To intelligently reduce the dimensionality of the
spectrometer signal to match that of the camera, we consider
the Full Width Half Maximum (FWHM) values for the pho-
todetector. For the camera, this value is 6 nm. To down-
sample the spectral values, we pass a moving Gaussian filter
over the spectrometer data using the derivation from [11]. Us-
ing each wave in the HSI range, λhsi, centered on the target
wavelength from the spectrometer, we weight the signal con-
tributions using:

Weight(λ) =
1

FWHM
2.355

√
2π

exp
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(λhsi − λspec)

2

2
(
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2.355

)2
)

(3)

5.3. Detector Compensation

The final source of noise our model must account for is differ-
ences in optics efficiencies. For instance, the silica in the fiber
optic cable introduces signal loss at known wavelengths [12].
For this processing step, real non-zero and non-max signals
were required. We acquired a sample hyperspectral datacube
and spectral readings from grasped colored wooden blocks.
These simple items were chosen since they covered the visi-
ble light color spectrum. The HSI was segmented into rect-
angular bounding boxes encompassing the spectral signatures
of the region of each color type.

We solve a a multivariate regression of problem to find
corrective weight factors at each wavelength of light with
Non-negative Least Squares [13]. Namely, we take a ma-
trix B of sampled spectral camera readings. As an input
to the system, we stack multiple spectrometer readings that
have been reduced according to the steps in Sections 5.1 and
5.2. Solving the linear regression problem yields a mapping
A → B with 2048 factors, forming an appropriate translation
between sensors. To avoid overfitting the model, the collected
sample values are randomly shuffled into test-train sets with a
ration of 1:3, respectively. The mean squared error by wave-
length is plotted in Fig. 4.

6. OBJECT SEGMENTATION

The second part of our work discusses the procedure needed
to locate the 3D coordinates and align them with an HSI dat-
acube for proper grasping.

6.1. Image Registration

After a datacube is collected with a single linear scan of the
workspace area, the rail is commanded to bring the arm back



Fig. 4. Mean squared error for fit linear regression model.
Note the higher noise at longer wavelengths is correlated with
increased sensor noise in the hyperspectral camera.

into the center of the workspace environment. The camera
end effector is rotated to align the lens perpendicular to the
table. Here the large field of view of the ToF camera, 90°
horizontal and 59° vertical, is sufficient to capture the scene
with a single RGB image.

With knowledge of the forward and inverse kinematics of
the robot arm, we can rotate the view of the camera, Tc to
that of the base linkage of the robot arm Tbase [14]. This
step enables all camera readings to be localized in the proper
global coordinate frame. The same transform procedure is
applied to the point cloud readings.

To register the hyperspectral datacube, three channels rep-
resenting the camera’s RGB readings from the header file.
The image is converted to grayscale to aid in the generation of
image keypoints and descriptors, which are selected using the
SURF algorithm [15]. Because the hyperspectral spatial res-
olution is much coarser than the high-resolution image from
the Kinect, we select a large quantity of features, 2,000, to
describe the components in the scene. To handle cases where
the visual characteristics of an scene are homogeneous, we
add AprilTag fiducial markers to ensure some scene contrast
[16]. Because the images are known to lie on the same plane,
we can use a homography to warp the hyperspectral image
into the coordinate frame of the ToF RGB image. To prevent
noise and diminished resolution from perturbing the solution,
RANSAC [17] is used to prevent false matches from skewing
the image warp.

6.2. Grasp Planning

Our grasp planning framework starts by clustering the objects
in the workspace. To do so, we first segment the table plane
from the raw point cloud using the RANSAC method [17].
Then, the point cloud above the table is extracted and fed into
Euclidean clustering algorithm which generates the individ-
ual point clouds of the objects. Finally, we apply Principal
Component Analysis (PCA) to find the 6D poses of the ob-
jects Ti ∈ SE(3). This point cloud processing pipeline is
implemented using the PCL library [18].

Fig. 5. Real time robot visualization of point cloud data and
table scene objects. The centroid of each clustered is associ-
ated with a local coordinate frame.

Once we have the poses of the objects, we then use a
simple heuristic-based top-down grasp detection strategy.
This strategy respects the added mass and size of the sensors
mounted near the end effector. The z-axis (downward) of
the grasp position is equal to the height of the object plus a
pre-determined offset and the x,y-axis is equal to the object’s
position. For orientation, we set the z-axis to the negative
plane normal direction and y-axis to the largest segment of
the object. From this, the x-axis is found as the cross product
of the y and z axes. To move the robot to the desired grasp
pose, the inverse kinematic problem (IK) is solved using
the Levenberg–Marquardt algorithm [19]. Finally, the found
joint angles from the IK solution is sent to the UR’s low-level
position controller.

Once the object gripper is at its grasp planned position,
the fingers are commanded to close; commencing the collec-
tion of readings with the spectrometer. From this point, ob-
jects can either be released or removed from the scene. The
end-to-end cycle of acquiring a datacube takes approximately
1.75 minutes, while the grasp planning and execution takes an
average of 7 seconds per object.

7. CONCLUSION

Our work demonstrates the efficacy of a first of its kind robot
cell enabling the collection and ground truthing of hyperspec-
tral data. Our methodology allows a multi-degree of freedom
robot arm to capture hyperspectral datacubes, point clouds,
and in-hand spectral readings.

In future iterations of this work, we plan to orient the cam-
era in different positions with the arm, enabling the acqui-
sition of hyperspectral data from multiple angles relative to
scene items. This will enable the generation of dense spectral-
spatial modeling of object points not otherwise visible from
a top-down perspective. This extension could logically lead
to 3D reconstruction of objects and the interrogation of the
spectral properties at each point.



While this work focused on the calibration, alignment,
and association of spectral data, our future work lies in un-
derstanding how hyperspectral data can enable robots to bet-
ter manipulate unknown objects. The authors hope the open-
sourcing of the control and processing code will encourage
the promising integration of spectral sensing into robotics.
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