EasyChair Preprint
Ne 932

j’ —crie

Multi Objective Optimization of Multimodal
Two-Way Roundtrip Journeys

Felix Glindling, Pablo Hoch and Karsten Weihe

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

April 25, 2019

Multi Objective Optimization of
Multimodal Two-Way Roundtrip Journeys*

Felix Giindling !, Pablo Hoch !, Karsten Weihe !
! Department of Computer Science, Technische Universitit Darmstadt
Darmstadt 64289, Hochschulstraf3e 10, Germany
E-mail: {guendling, hoch, weihe } @cs.tu-darmstadt.de, Phone: +49 (0) 6151 16-20874

Abstract

Multi modal journeys often involve two trips: one outgoing and one return trip, as in many
cases, the traveller would like to return to her starting point. If a car or bike was used
in combination with public transportation (i.e. park & ride), this introduces a dependency
between outward and return trip: both must include the same parking place. Optimizing
both trips independently may yield suboptimal results. We consider the multi modal two-
way roundtrip problem and propose several algorithms. All proposed algorithms compute
journeys that are optimal regarding multiple criteria. We present a variant that supports
price optimization (including driving and parking costs) as a Pareto criterion in addition to
travel time and the number of transfers. Our study with realistic scenarios based on real data
shows promising results.

Keywords
2-way round trip, multi modal, multi criteria optimization, park and ride, routing

1 Introduction

Many journeys do not consist of one-way trips. On the contrary, in many cases travelers
return to the starting point (home for private, office for business trips) (Baumann et al.,
2004). We consider a very common practical use case of multi modal routing: optimizing
outward and return trip of a journey involving both private (e.g. a private car or bike) and
public transportation (e.g. busses, trains, etc.). Planning a journey with commonly available
online systems, that calculate optimal one-way trips, becomes quite cumbersome: finding
the optimal P&R parking place (or an optimal place to park the bike) is not trivial. A parking
place that was optimal for the outward trip might yield a suboptimal or infeasible return trip
and vice versa. Considering multiple optimization criteria such as the number of transfers
and travel time (accumulated for both trips), there might even be multiple optimal solutions.
The reason for this is the time-dependent and directed nature of public transportation: an
optimal route on the return trip does not necessarily include the parking place used in the
outward trip. Combining independently optimized journeys may thus yield suboptimal or
infeasible journeys. Consequently, optimizing both trips in a combined manner is required
to compute optimal journeys for this use case. The fastest journey may not always be the
most attractive one for everyone: in addition to a short travel time, some users prefer a cheap
and/or convenient travel that minimizes the number of transfers. Since priorities of those

*This work was partially supported by Deutsche Bahn.

optimization targets differ from traveler to traveler, our approaches compute a complete
Pareto set considering convenience (number of transfers) and travel time as criteria. One
variant additionally considers the price of the journey as optimization criterion: the total
price is the sum of the costs of private transportation including time dependent costs for
parking as well as the public transport ticket price. For the public transport ticket price, our
price model assigns a separate milage price per means of transportation (high speed trains
are more expensive than local public transport). Parking prices are based on the parking
duration. Our evaluation is based on real data: the public transport timetable is provided by
Deutsche Bahn and covers Germany including trains (long distance as well as local), metro,
busses and streetcar services. Street routing is based on Project OSRM (Luxen and Vetter,
2011) using an OpenStreetMap dataset covering the same geographic area as the public
transport timetable. To the best of our knowledge there are neither scientific publications
nor commercial systems offering this functionality. The presented algorithms are suitable
for use in online routers and mobile routing applications.

The paper is organized as follows. Section 2 discusses previous work in the area. Section
3 outlines our contribution to the topic. Section 4 introduces basic notation and the formal
problem definition. Section 5 describes the different approaches. Section 6 shows how
to extend these approaches to optimize price as an additional Pareto criterion. Section 7
presents the results of our experiments and Section 8 concludes our results and gives an
outlook to future research directions.

2 Related Work

To the best of our knowledge, there are no publications that solve the described problem in
a Pareto-optimal way optimizing multiple criteria. The first solution solving the problem
(Bousquet et al., 2009) considers a single optimization criterion: travel time. An improved
bi-directional shortest path algorithm to solve the problem is described in (Huguet et al.,
2013). Another approach based on access node routing (Delling et al., 2009) is presented in
(Spinatelli, 2015). All three publications optimize travel time as single criterion and apply
their algorithm to datasets covering a single city: Paris including its suburbs (Huguet et al.,
2013), the rural area around Lyon (Bousquet et al., 2009), and Milano (Spinatelli, 2015). Re-
cent advances in public transport routing and multi modal routing such as RAPTOR/MCR!
(Delling et al., 2012, 2013), CSA (Dibbelt et al., 2013), TripBased (Witt, 2015) were not
extended to compute Pareto-optimal journeys for the multi modal park and ride two-way
roundtrip problem.

3 Contribution

In this paper, we present various algorithms to solve the two-way park and ride roundtrip
problem optimizing multiple criteria in a Pareto-optimal way. We compare different solu-
tions based on a time-dependent graph model (Disser et al., 2008) with an algorithm based
on connection scanning (Dibbelt et al., 2013) and another algorithm which is based on Trip-
Based routing (Witt, 2015). All approaches optimize travel time as well as the number of
transfers. Furthermore, we propose a variant that additionally optimizes prices.

We evaluate all algorithms on a realistic nationwide network: a complete public trans-

'Round bAsed Public Transit Optimized Router, Multimodal Multi Criteria RAPTOR

port schedule for all of Germany including all modes of public transportation (e.g. busses,
street cars, all kinds of trains) kindly provided by Deutsche Bahn. Our computational study
shows that our algorithms are suitable to be deployed in online or mobile multimodal routing
systems.

4 Preliminaries

This section describes the problem definition, static and dynamic/user inputs, and how they
are preprocessed to be used as input for our core routing algorithms.

4.1 Problem Definition

We consider computing Pareto optimal solutions to the problem

Lout

a =5 wQlty, to] Iy o where we call the outward trip toy and the return trip ¢y o and w
are locations (addresses / geographic coordinates). o might be the user’s home address and
w the office address. The time interval [t1, t2] is the minimal time range to stay at w (e.g.
office hours). Thus, our journeys have one of the following two structures:

car walk pt walk walk pt walk car.
A= p— Sy — Sy — o w@ty ... W@y — s, s, —p —> a (1)
walk pt walk walk pt walk
D S — Sy — W@ty L. w@iy — 5, — 5, — @)

The first one is most interesting to us. However, enabling the approach to find journeys
with the second structure is necessary to avoid presenting unreasonable journeys to the
user: it is not reasonable to use the car? if the trip between « and s,, over p (o <— p <—
Sw) takes longer than walking directly between « and s,, (o« <— s,,). By allowing both
structures, the journey involving the unnecessary car leg (structure 1) will be superseded by
the walking journey (structure 2).

We minimize the combined travel time sum of ¢, and ¢, as one Pareto criterion and
the combined number of transfers of t,,; and ¢, as another. The travel time includes the
time from the start with the car at o until ¢; for the outward trip and the time from ¢, until
« is reached again for the return trip. This includes waiting times at w.

Note that the stations s, and s, as well as the stations s,, and s,, do not need to match
but the parking place p is required to be the same for outward trip ¢, and return trip ¢..;. The
user specifies o, w, t1, to, maximum driving distance dp,x and maximum walking distance
Wmax. This naturally limits the number of parking places (candidates for p) and stations
(for journey structure 2) reachable from « (cary and cary / walk; and walky), the number of
candidate stations for s,, and s, reachable from a parking place (walk; and walk,), and the
number of candidate stations for s, and s, reachable from w (walky and walks).

4.2 Inputs

Basically, an algorithm to solve the problem described above requires information about the
road network, the locations of suitable parking places P, and the public transport timetable.

2Bad weather or mobility impairments could be reasons to use the car regardless of longer travel time. However,
weather dependent routing and routing for handicapped persons is not addressed in this paper.

The road network as well as the locations of parking places are extracted from Open-
StreetMap. The public transport timetable consists of a set of stations S where each is
associated with a geographic coordinate and a transfer time, #rips (a vehicle visiting a stop
sequence with associated departure and arrival times) and a set of footpaths that connect
stations which are in close proximity so that walking between them is feasible. Further-
more, the timetable data contains information such as track names, service head signs, train
category and service attributes like wireless internet availability or bicycle carriage. All
presented algorithms require the trips to be grouped into routes: all trips in a route share the
same sequence of stations. Additionally, trips in a route are not allowed to overtake each
other. Otherwise, the route needs to be split into two separate routes. Grouping into routes
is done as a preparation step.

4.3 Preprocessing

Since driving and walking is only available for the first and the last leg of both trips ¢, and
tret, We do not need to integrate both networks (timetable and road network). This allows us
to use specialized models and algorithms for each network: contraction hierarchies for the
road network and Time Dependent/CSA/TripBased routing for public transport (cf. Section
5). Consequently, we can split the procedure to compute optimal roundtrip journeys into
two parts without losing optimality: the preprocessing step computes all possibilities for
the first and last leg of ¢,y and ¢.¢. This is the input for the actual core routing algorithm
described in Section 5.

Procedure preprocess_roundtrip () shown in Listing 1 computes three sets W,
C, and D: these enumerate all possibilities to reach a public transport station from « (sets
W and C) and w (set D) respecting the journey structure and user supplied driving and
walking limits dp,x and wm,x. The preprocessing makes use of the following data structures
and procedures:

e The procedures car_route and foot_route compute shortest paths (optimiz-
ing travel time) on the car/foot street network. They return the required time. Our
car_route routine makes use of (Luxen and Vetter, 2011). The foot_route rou-
tine is a specialized implementation based on OpenStreetMap data. Routes by foot are
computed by a specialized algorithm that considers stairs, crossing roads, elevators,
and many more elements.

e The table dist contains precomputed foot path durations between parking places
and nearby stations. dist [p] [s] is the time it takes to walk from parking place p
to station s (and vice versa).

e get_stations and get_parkings are geographic lookup functions taking a co-
ordinate and a radius. They return all stations/parkings where the distance to the
given coordinate is less than the provided radius. The functions can be efficiently
implemented using a spacial data structure such as an R-tree or a quadtree.

C contains all possibilities to get to a public transport station from « and vice versa
(required to find journeys with Structure 1). Note that the entries store also the parking
location. This is important because the core routing algorithm needs to match parking lo-
cations from t,,, and ¢.,. W contains all possibilities to walk between « and nearby public
transport stations within wp,x distance. W is required to find journeys with Structure 2. D

Listing 1: Preprocessing Procedure: computes edge sets W, C, and D to connect o and w
with the public transport network.

dist[p€ P1[s€ S]

fn car_route(from, to) do ... return driving_time done
fn foot_route(from, to) do ... return walking time done
fn get_parkings (coordinate, radius) do ... return parking_set done
fn get_stations (coordinate, radius) do ... return station_set done

fn preprocess_roundtrip (o, w, dpax, Wnax) do
W := 0 // possibilities for a<+—s€S via foot
walking_candidates := get_stations (o, Wnax)
foreach s € walking_candidates do
walking_time = foot_route (a, s)
W := W U {(a — s,walking_time), (s = o, walking_-time)}
done

C:= 1 // possibilities for a—wpeP —s€S and s€eS—>peP =«
II := get_parkings (a, dmax) // parking candidates
foreach p € II do
Cout := car_route (o, p) // driving time outward
Cret := car_route(p, «) // driving time back
station_candidates := get_stations(p, Wnax)
foreach s € station_candidates do
w := dist[p][s] // walking time between parking and station
C :=C U {(a—=p—s,cout +w),(s > p— a,crer +w}
done
done

D := (0 // set of possibilities w<+—s€ S via foot
destination_station_candidates = get_stations (w, Wmax)
foreach s in destination_station_candidates do
walking_time := foot_route(s, w)
D := D U {(s > w,walking_time), (w — s,walking-time)}
done

return (W, C, D)
done

contains all possibilities to walk between w and nearby public transport stations within wpax
distance.

The code in Listing 1 can be improved by computing the routes to all targets in one step.
Since Dijkstra-like algorithms (like contraction hierarchies employed in car_routing)
are inherently “multi target”-algorithms, we calculate the walking/driving times to all can-
didates in one single step instead of running one one-to-one query for each target in a loop.
Thus, we change the interface of route_car and route_foot to take a single location
and a set of targets as input and return the travel time to each target as result.

5 Approaches

This section describes the different approaches for the core routing procedure. Each algo-
rithm takes the same input computed in the preprocessing phase (in addition to the public
transport timetable): the sets W and C' which connect o with the public transport network
through walking/driving, and D which connects w with the public transport network through
walking.

5.1 Time Dependent Graph

One established way to compute multi criteria shortest paths on public transport timetable
networks are label correcting algorithms on graph data structures representing the timetable
(i.e. time expanded and time dependent graphs). The time dependent graph is more compact
(as compared to the time expanded graph) and therefore better suited to cope with large
timetables containing not only trains but also streetcars and busses. So our first approach
is based on the time dependent graph as described by Disser et al. (2008). This algorithm
uses goal direction and domination by early results to speed up the search from one source
to one target node.

The model presented in (Disser et al., 2008) does not support backward search (latest
departure problem) because it is not consistent, meaning that the path lengths ¢(u, v) and
£(v,u) in forward and reversed graph differ for at least one optimization criterion. An
example and the new graph layout can be found in Appendix A. So from now on, finding the
journey with the latest departure (starting with a fixed arrival time) is analogous to finding
the journey with the earliest arrival (starting with a fixed departure time) with reversed
edges. This does also apply to the multi criteria case.

5.1.1 Baseline

In this section, we will describe an algorithm that is purely based on an unchanged base
algorithm: the time dependent earliest arrival problem. We extend the graph model so that
it fits the problem. Basically, the sets W, C, and D can be seen as edges which extend
the time dependent graph. Consequently, we need to add nodes to represent v and w. In
the following, o and w refer to those additional nodes if they are used in the graph context.
Routing toy and ¢ independently with all additional edges at once could yield suboptimal
or unfeasible journeys due to non-matching parking places.

Since the edges from the set D (connecting w with public transport stations and vice
versa) do not introduce any dependencies, they are added for every search. It is sufficient
to add those that match the search direction (w — s € S for t,; and s € S — w for tyy).
However, to prevent the interference between parking places, we conduct one multi-criteria
search for each parking place separately for ¢, and ¢.: the graph gets extended by all edges
(one for each station that is reachable from p) that lead over the selected parking. These are
earliest arrival problems w@t, — p; in case of ¢ and latest departure problems p; < w@t;
for toy (for every parking 7). This generates all optimal trips T%; for toy and T for .
for every potential parking place p;. Waiting time (arriving earlier than ¢; or departing later
than ¢ at w) is considered travel time and is therefore minimized as described in Section
4.1. Note that every overall optimal roundtrip needs to be a combination of optimal trips ¢,y
and t, for one of those potential parking places. Otherwise (if an optimal roundtrip would
not be a combination of optimal individual trips), it could obviously be improved by an

optimal one. Consequently, the combination of all computed trips | J bep TP x TE contains
all optimal roundtrips. Removing all roundtrips that are superseded by others (including
duplicate ones) yields the final set of optimal roundtrips.

Edges from the set W representing all options to walk from « to a public transport
station (for t,y) and vice versa (for ¢.) are added in a separate search (to enable the system
to find journeys of Structure 2). Since there are no constraints to use the same parking place
in toy and £, they can all be used in one search.

This approach requires 2(|IT| 4+ 1) invocations of the basic time dependent routing rou-
tine (earliest arrival / latest departure) where II is the set of all considered parking places:
for each direction one invocation for every parking place candidate and one with all edges
from W. This is certainly not optimal regarding computational effort (compared to the
approaches presented later on). However, this approach is still useful for the practical veri-
fication of other approaches.

5.1.2 Parallelization

Since all searches are independent, they can be trivially parallelized. In theory, if the number
of parallel processors is equals to two times the number of parkings, this can reduce the
overall calculation time to the time it takes to respond to one routing query. However, since
most systems (besides super compute clusters) cannot provide this level of parallelism, this
is not a feasible approach, either.

5.1.3 Combined Search for t,, and ¢,

The basic Dijkstra algorithm computes shortest paths not only to the target node but to all
nodes in the graph. Since the basic algorithm presented by Disser et al. (2008) makes use
of goal direction and domination by terminal labels?, this property does not apply anymore:
when the algorithm terminates, only the labels for one destination node will be correct (in
the sense that they necessarily represent the non-extensible Pareto set).

The first step of the combined search approach is to compute the shortest paths from/to
every single parking place like in the baseline approach described in Section 5.1.1 for one
direction t,, or ty. For the opposite direction, we now can make one combined search:
instead of adding just the edges for only one parking, we add all parking edges but combine
the edge cost with the criteria computed for the opposite direction in the first step. Since the
first routing can yield more than one optimal trip for one parking, we have one additional
edge for each optimal trip. Assuming we chose %oy in the first step, we add one edge from
s € § — « for each optimal ¢, journey using parking p; € P for each station reachable
from p;. The edges carry the following costs: (dist[p][s] + car_route(p, o) + tt;, ic;) where
ic; is the number of transfers and tt; is the travel time for journey ¢ in ¢,y If ¢ Was chosen
for the first step, the approach works analogously.

This approach allows us to reduce the complexity of the baseline approach from 2(|II| +
1) invocations of the time dependent routing routine to |II| 4+ 1 invocations: in one direction
(outward or return) we need to route to/from every parking. In the return direction, only one
query is required. The invocation with all edges from W in the first step stays the same.
The search in the opposite direction is conducted with all edges in W.

As with the baseline approach, this approach can also be parallelized. However, this ap-
proach has one constraint on the ordering: the invocation for the opposite direction requires
all results from the first step.

3labels are partial journeys that are used in the routing algorithm

5.1.4 No Terminal Domination and Worst Bounds

Applying domination by terminal labels (in combination with lower bounds and goal direc-
tion) in the time dependent graph routing is a very effective speedup technique for queries to
a single target. However, in this setting (preventing interference of labels that use different
parking places), domination by terminal labels as implemented in our basic time dependent
routing algorithm demands a high number of invocations as we have seen in the previous
three sections. Now, we want to further reduce the number of invocations by computing all
optimal journeys over all parkings in one run of the algorithm (as opposed to |II] invocations
in the first step of Section 5.1.3). Simply disabling the domination by terminal labels and
routing with all additional edges (W, C, and D) would be one option.

However, domination by terminal labels can be replaced by a different technique that
still allows us to discard labels early in the search process: those that are worse or equal
to the combined worst (i.e. numerically greatest assuming optimization criteria are mini-
mized) value of each optimization criterion over all parking places (“worst bound”) cannot
contribute a new optimum. Consequently, this requires at least one terminal label for each
parking place. Until this precondition is met, we cannot discard any label.

To implement this, we have a list of parkings that were not yet reached. This list is
initialized with all parkings (identified by a unique index) reachable from «. Every time a
label reaches the target node, the used parking is removed from this list if it is the first to use
this parking. If the list is empty (i.e. every parking was reached), this means that domination
by worst bounds can be applied. To track the worst bounds, one variable per optimization
criterion is introduced and updated every time a label is created on the target node. If every
parking was reached, every newly (through edge extension) created label is compared to
the stored combined worst bounds and discarded if its criteria values are equal or greater.
The same check will be applied upon queue extraction since the worst bounds can change
between queue insertion and extraction. Labels that were created through expansion of
edges carrying different parking indices are deemed incomparable to prevent domination of
options that may be part of an optimal round trip but are not optimal for this search direction.
Walking options from W are always added. They can be implemented as “virtual” parking
directly at c. Thus, no driving is required.

The routing for the opposite direction can be implemented as described in Section 5.1.3
and therefore benefit from unconditional dominance by terminal labels. This approach can-
not be parallelized. Altogether this approach further reduces the number of invocations to
two, albeit more complex calls: one for each direction ¢,y and t;e-

5.1.5 Concurrent
In this section, we present an algorithm that handles the search in both directions (for ¢, and
tret) in an interleaved manner. Basically, we still have two multi criteria Dijkstra algorithms
with the addition that they exchange information at runtime. Thus, every data structure
(such as the priority queue, lower bounds, etc.) is redundant: one for each search direction.
Instead of the standard domination by terminal labels, we maintain a list of complete
roundtrips: every time a new label has reached the target node in one direction, it is com-
bined with each terminal label of the opposite direction that has a matching parking place.
The resulting valid round trips are then added to the list of complete round trips if they are
Pareto optimal. Previously added roundtrips that are worse than the newly added roundtrip
are removed. These complete round trips can then be used to dominate labels in both search
directions at the creation of new labels and after queue extraction: if a partial roundtrip is

already worse (in the Pareto sense) than a complete roundtrip, it can be discarded. Instead of
comparing the label values (here: travel time and the number of transfers) directly with those
of the terminal label, we can employ lower bounds to discard suboptimal labels as early as
possible: a label with travel time ¢ in the ¢, routing takes at least ¢ + b, [n] + by, [w] min-
utes for the complete roundtrip where /b, and lb;, are precomputed lower bounds for every
node in both search directions. This is analogous for the ¢, search: ¢ + by, [n] + b, [w].

All in all, we reduced the number of invocations from 2(|II| + 1) for the baseline ap-
proach to just one. This comes with an increased complexity of the queries. However, the
combination of information (instead of separate invocations of the basic time dependent
routing procedure) as described here reduces the total number of steps required to compute
all optimal round trips.

5.2 Connection Scan

In this section, we present an algorithm that is based on the Connection Scanning Algorithm
(CSA) by Dibbelt et al. (2013). As opposed to the time dependent routing algorithm, it does
not require a graph to represent the timetable, neither does it depend on a priority queue.
The timetable model is a simple array of all elemental connections (departure and arrival of
a trip with no intermediate stops in between) of the timetable sorted by departure time. The
algorithm iterates through the array and updates earliest arrival times at the stations visited
by the iterated connections accordingly. The algorithm also handles footpaths between
stations and transfer times between transport services.

As the basic variant of CSA just iterates “through time” (sorted connections) it is not
directed towards a specific target station. Therefore, it is well suited to be adapted as a multi
target algorithm without a performance penalty. This can be utilized: in the first step, we
ignore the actual driving and walking times from D and W that connect o with the public
transport timetable. Instead, we search from all stations in D to all stations in W and C.

The original publication does not describe a multi-criteria version of the earliest arrival
problem or journey reconstruction for this type of search nor does it describe the latest
departure problem or multi source and multi destination routing. Consequently, we need a
specialized version of the CSA algorithm for our use case:

e Multiple Start Stations: In the basic version, only one station is initialized with the
desired start time. In our use case, every station in D is initialized with the walking
time (between w and s € S) as offset that is added to ¢5 (for ¢.) and subtracted from
tl (for tout)~

e Multiple Destination Stations: Basically, this is what the algorithm does anyway if
we omit the early termination mechanism which stops when the departure time of the
currently iterated connection exceeds the earliest arrival at the destination.

e Latest Departure Problem: For t,,, we need to solve the problem
(s €e WUC) < w@ty. This can be done analogously to the forward search. For
example, the connection array is sorted by descending arrival time and footpath walk
times are subtracted instead of added.

e Multi Criteria: To support the optimization of the number of transfers as additional
Pareto criterion, we do not only store a single earliest arrival time for each station
but instead one for each number of transfers. The same applies to the array 7" which

indicates whether a trip can be reached or not: instead of single reachable bit, one bit
per number of transfers is stored. The n'" bit indicates whether the trip can be reached
with n transfers.

e Reconstruction: Since additional journey pointers (which would need to be main-
tained for every number of transfers) as described in (Dibbelt et al., 2013) slow down
the search (scan running time), we chose to adapt the version that works without them.
As our implementation of the algorithm supports the optimization of the number of
transfers as Pareto criterion, we need to reconstruct one journey for each optimal
number of transfers. The recursive call with n transfers at the next interchange stop
continues with n — 1 transfers. Similarly, the trip reachable array needs to be looked
up at the bit referring to the current number of transfers. Not knowing where the
journey may have started imposes additional complexity: we need to iterate every
possible station and check whether the travel time matches the walk (w <+ s € D) for
this station.

Now that we have a variant that handles multiple departure stations, multiple destina-
tions and multiple criteria in both search directions (earliest arrival / latest departure), we can
utilize it to find optimal round trips: For each direction ¢, and ¢, we execute one search.
Both searches are independent and can therefore be executed in parallel. We execute one
latest departure query (starting at ¢; Qw) for t,, and one earliest arrival query (starting at
to@Quw) for .. The results of those queries are then merged to complete roundtrips by it-
erating every parking place and combining all journeys from ¢, and t.. Since not every
roundtrip is necessarily optimal, we remove all that are not Pareto optimal. This yields the
full set of optimal roundtrip journeys.

5.3 TripBased

As with the Connection Scanning Algorithm, TripBased routing as presented by Witt (2015)
is inherently a multi target routing algorithm: it can be seen as a breadth first search on a
graph-like data structure consisting of trip sections and transfers between those trip sections.
Similarly to the RAPTOR algorithm (Delling et al., 2012), it operates in iterations/“rounds”
where the n' iteration computes all optimal connections with n transfers. Each round
updates the trip sections that are reachable through one additional transfer from previously
reachable trip sections.

We adapt the algorithm to be able to compute optimal journeys to multiple targets.
Therefore, we need to keep one result set J for each target station. Additionally, the earliest
arrival time Ty, needs to be kept separately for each target station to check whether a trip
reaching the target is optimal. A new trip segment needs to be added to the queue only if its
arrival time does not exceed the maximum earliest arrival time 7, over all target stations.
Otherwise, it can be discarded because it cannot be optimal for any target station anymore:
every slower connection with less transfers was already discovered in a previous iteration.

The additional footpaths between w and nearby public transport stations can be handled
analogously to those already contained in the basic static timetable.

In addition to the changes required to compute optimal journeys to multiple targets,
the basic TripBased algorithm needs to be adjusted to compute connections for the latest
departure problem, not just the earliest arrival problem. Since the preprocessed transfers
(transfer reduction step) differ for the forward (earliest arrival) and reverse (latest departure)

direction, we need to have one transfer set 1" for each search direction. This doubles the
preprocessing workload. Otherwise, the latest departure computation is analogous to the
earliest arrival computation described in (Witt, 2015).

As we now have an algorithm with properties similar to the adapted CSA algorithm
(multi criteria, multi source, multi target, earliest departure, earliest arrival), we can use it
to compute optimal roundtrip journeys as described in Section 5.2.

6 Price as an Additional Optimization Criterion

In this section, we present a version that optimizes not just travel time and the number of
transfers but also the price. The price of the complete roundtrip is comprised of the costs
for parking at p (depending on the parking duration), the driving costs (of car; and cary),
the public transport ticket price (of pt; and pt,) and an hourly wage to eliminate cheap but
exceedingly long journeys that are unattractive from a practical perspective.

Since public transport pricing models are very complex, constantly changing and dif-
ferent for every area, we decided to use two artificial pricing models. Both are milage and
vehicle class based: a high speed train (such as a German ICE or French TGV) costs $0.22
per kilometer, a local train costs $0.18 per kilometer and short distance transports such as
busses and trams cost $0.15 per kilometer. Additionally, we introduce an hourly wage of
$4.80 (converted to the atomic timetable time unit, minutes). The first model computes just
the sum of those costs. The second, more advanced model, introduces a special ticket that
allows the passenger to use arbitrary local transports (local trains, busses, trams) for a flat
price ($42.00 here). All mentioned values are freely configurable.

All algorithms need an updated route definition which takes the vehicle class into ac-
count because otherwise later departures (which will not be considered by the algorithms)
may yield a cheaper connection. In the following, we describe the extensions to the ap-
proaches presented in Section 5 that enable price optimization for the two price models
described above.

6.1 Graph Based

Extending the graph based approaches (Baseline, Parallelized Baseline, Worst Bound and
Concurrent) to support price as additional Pareto criterion is mostly straightforward: the
edge weight vector as well as the individual labels carry the price as additional entry. How-
ever, we need to also adjust the label comparison. Before, a label @ dominated label b if and
only if every criterion value of a was less than or equal to the corresponding criterion value
in b. The criteria were (arr;, —dep,, transfers;) where arr; and dep, are the arrival and the
departure time of label .

Instead of just adding the price to this comparison, the hourly wage requires special
treatment to retain correctness of the search. Assume we compare two labels a and b where
a has a higher ticket price than b but a lower total price because it arrived earlier and did
accumulate less costs due to the hourly wage. Consequently, from a Pareto perspective a
dominates b (lower price, earlier arrival with same departure time). Since b arrived later, it
now has to wait less for the next departure. Due to the hourly wage, the edge costs less for
b than it does for a. So after edge expansion, a does not dominate b anymore which implies
that we lost an optimal connection. To prevent this, we need to add the hourly wage price of
the travel time difference to the price of @ when comparing a with b. This way, the waiting

time disparity is compensated.

The additional edges derived from the set C' (connecting v with public transport stations
through a parking) now carry the according kilometer based price for the car route. Addi-
tionally, the parking itself can be modeled as a time dependent edge: coming back later to
the parking increases the costs by $2.00 per hour (staircase function).

6.2 Connection Scanning

Data Structures Extending the Connection Scanning algorithm to support price as an ad-
ditional optimization criterion in the Pareto sense requires more effort than for the baseline
approach because the data structures were designed with only travel time and number of
transfers in mind. Before, the data structures holding the earliest arrival time for each sta-
tion (S - note that we use the nomenclature of the CSA publication in this section) and the
trip reachable bits for each trip 7" were both two-dimensional arrays with one entry for each
number of transfers. This was sufficient for two criteria (number of transfers and travel time)
because for each number of transfers only the fastest journey was relevant. Now, when ad-
ditionally optimizing prices, there can be an arbitrary number of optimal journeys for each
number of transfers (all optimal trade-offs between travel time and price). Thus, each entry
of S|station][transfers] now maintains an array with all Pareto optimal travel time / price
tuples for this station instead of just the minimal travel time for this number of transfers.

The array 7" holds a bit (for each number of transfers n) that indicates whether a trip is
reachable with n transfers. However, this is not sufficient because it is not known at which
cost the trip can be reached. Note that the price to reach the trip is not the same for each
section of the trip. Consequently, we need to maintain the cheapest price for each trip section
for each trip for each number of transfers. This is necessary to compute the correct journey
price when iterating the connections array in the main loop of the Connection Scanning
Algorithm.

Algorithm When initializing S with the offsets from D (foot routes between w and nearby
public transport stations) the price (incurred by the hourly wage) needs to be initialized,
too. Furthermore, the main loop of the algorithm needs to be adjusted: if a connection
is reachable through the station and the trip reachable flag is set (i.e. it has a price entry
for the corresponding trip section), the cheaper solution is selected. If entering the trip at
this station is the cheaper solution, the price of the following trip segments in the 7" array
needs to be updated with the cheaper price including the hourly wage. Only Pareto optimal
entries (travel time / price tuples) are added to S[station|[transfers] removing superseded
ones. Footpaths also incur costs due to the hourly wage.

Reconstruction Naturally, the journey reconstruction step also needs to be adapted to the
new data structures: when looking up S and T entries, not only the travel time and the
number of transfers but also the price of the entry needs to match.

6.3 Trip-Based
Preprocessing The preprocessing to eliminate unnecessary transfers was aimed at trans-

fers and travel time as optimization criteria. Thus, transfers that lead to cheap connections
may be discarded. To prevent this, the transfer reduction step is omitted. Even transfers to

later trip sections of the same trip (in case the trip visits a station two or more times) and
other trips of the same line can save money. U-turn transfers are still being removed.

Data Structures To track the price of each journey, queue entries now also carry the
current journey price (in addition to the trip segment and the number of transfers). Similarly
to the CSA extension, the cheapest price to reach each trip segment is maintained: the data
structure R(t) which previously maintained for each trip the first reachable stop now holds
the cheapest price to reach each stop of the trip with the corresponding trip.

Algorithm The algorithm now tracks the price of each queue entry. Updating trip ¢ entails
maintaining the cheapest prices in R(t) as well as the cheapest prices of all trips of the same
route with later departure times.

Pruning We extend the implementation to track the latest arrival time and most expensive
price over each target station. Journeys exceeding these limits are discarded and therefore
not added to the queue to be processed in the next iteration.

7 Computational Study

Our C++ implementation (compiler: LLVM/Clang 6 with “-O2” optimizations) of the pre-
sented algorithms was evaluated on a computer with an Intel Core 17 6850K (6x 3.6GHz)
CPU and 64GB main memory. The public transport timetable was provided by Deutsche
Bahn and covers all services (busses, trams, trains, etc.) operated in Germany. For foot and
car routing the complete OpenStreetMap dataset of Germany was loaded.

The timetable spans the 27th and 28th of November 2018. It contains approximately
30M departure and arrival events (60M events total) that take place in 1.7M trips on 224,832
routes.

Queries are generated by choosing a random ¢; and a random ¢, 30min to 4h after ¢;. To
generate coordinates that yield a high chance of non-empty result sets, we randomly select a
public transport station that has at least one arrival event in the time interval [t; — 60min, ¢;]
and at least one departure event in the time interval [t2,t2 + 60min]. Then, a random
coordinate in a radius of wpy.x around this station is selected as w. « is a random coordinate
located in a 200km radius around destination. Both coordinates need to be within Germany
which is checked with the help of a polygon that resembles Germanys borders.

All algorithms compute set of connections as described in 4. For each response, it was
evaluated that every algorithm produces exactly the same result.

7.1 Preprocessing

Extracting all parking places and calculating optimal foot paths between public transport
stations and nearby parking places takes 41 minutes and 44 seconds. However, this needs to
be done only once for every dataset. At runtime, a fast lookup table with the precomputed
foot path times is used. Our OpenStreetMap dataset contains 319,361 parking places. On
average, 5.18 stations are reachable from a parking place (median 4, 99% quantile 23).
The execution of the preprocessing step described in Section 4.3 takes place at query
runtime. Street routing between « and all parking places in the selected radius takes 383ms.

The lookup times for stations/parkings in a specified radius around a coordinate are negli-
gible (below 1ms). Lookup of precomputed foot routes between parking places and nearby
public transport stations takes 3.68ms. Since w is a user input, foot paths between w
and nearby public transport stations (set D) cannot be precomputed. Computing W takes
27.4ms at runtime. The sets W, D and C can be computed in parallel. So in total, 387ms of
the runtime are due to preprocessing. The next sections report runtimes including prepro-
cessing times. Therefore, to obtain the total core routing runtime, approximately 0.4s need
to be subtracted from the runtimes reported below.

7.2 Baseline Algorithms

Table 1: Runtimes of Baseline Algorithms without Price Optimization in Milliseconds

avg Q(99) Q(90) Q(80) Q(50)

Baseline 659700 2732816 1676236 924110 398985
Combined 399353 1455144 868975 630930 258519
Parallel 276 666 761288 561 843 444 319 215487

Comb. Par. 193793 624 920 402 261 301287 159 545

The baseline algorithms were executed with 100 randomly generated queries. As de-
picted in Table 7.2, parallel execution of the baseline approach yields a reasonable 2.4x
speedup on average. The “trick” of an integrated optimization for one of the two direc-
tions (including parallel execution for the non-integrated search direction) yields another
1.4x speedup on average. Nonetheless, the baseline approach and its variations described in
Section 5.1.2 (parallel implementation) and Section 5.1.3 (combined search) are not really
of any practical use because they require many invocations of the time dependent routing
routine. Users of online services are not eager to wait more than three minutes for their
routing result. However, due to their simplicity those approaches are useful for validation
of the other implementations.

7.3 Advanced Algorithms

Table 2: Runtimes of Advanced Algorithms in Milliseconds
avg Q99 QMO0 QE0) Q(50)
No Terminal Dominance 4800 11430 7969 6615 4403

Worst Bound 4762 11268 8042 6564 4363
Concurrent 3573 10305 6439 5000 3156
CSA 1697 3384 2322 1999 1577
CSA SIMD 908 2453 1353 1113 806
TripBased 816 2644 1302 975 689

All advanced algorithms were executed with 1,000 randomly generated queries. In this
section, we present the results of the advanced algorithms: different Dijkstra-based algo-
rithms (with worst bounds, without terminal dominance and the interleaved / concurrent

approach) on the time dependent graph model (introduced in Section 5.1.4), Connection
Scanning (Section 5.2), and TripBased routing (Section 5.3). Additionally, we have imple-
mented a CSA version that makes use of SIMD instructions.

As we can see in Table 7.3, the concurrent (interleaved) search in both directions (out-
ward and return trip) brings the runtimes on the time dependent graph down from more
than three minutes to 3.5 seconds. However, one percent of the queries take more than 10
seconds to answer. All non-graph-based approaches (CSA and TripBased) yield better run-
time performance: the CSA SIMD variant as well as the trip based routing have average
runtimes under one second. The data-parallel SIMD implementation of the CSA algorithm
yields nearly a 2x speedup compared to the basic CSA version. Note that the CSA SIMD
version is even faster than the TripBased approach when it comes to the 99% quantile (2.45
seconds vs 2.64 seconds) indicating that it has a more predictable performance profile.

Parking Radius In this section, we analyze the relation of the runtime of the approaches
presented in this paper with the d,,x parameter which essentially determines the number of
parkings to consider. We analyze this relation for two and three optimization criteria.

6000
No Terminal Dominance

—a— Worst Bound

—e— Concurrent

—4— Connection Scan

~¥— Connection Scan SIMD
—+— TripBased

40000

5000
35000

4000

w
S
3
3
3

| £ 25000

3000
20000

2000
15000
1000 10000
R PR AR e i D
5000

1 5 10 15 20 25 30 1 5 10 15 20 25 30
Parking radius (km) Parking radius (km)

Running time (ms)
Running time (ms)

No T.D.
—&— Worst Bound
—e— Concurrent
—&— CSA

—~— TripBased

Figure 1: Runtime Subject to Parking Radius Distance dy,.x: the left figure shows the basic
optimization with travel time and number of transfers. The right figure shows the runtime
for optimization with all three criteria: travel time, number of transfers and price.

As we can see in Figure 1, the runtime scales mostly linearly with the parking radius
for all approaches regardless of the optimization criteria. However, the increase in runtime
is different for the presented approaches without price optimization: while the Connection
Scan SIMD and TripBased runtimes rise minimally with an increased parking radius and
stay below one second, Concurrent and Worst Bound runtimes have a steep increase with a
growing parking radius.

Note the different ordinate scale of the right graph of Figure 1: price optimization im-
poses a heavy toll on query runtime. When optimizing prices, the runtimes of the graph
based approaches (Worst Bound and Concurrent) for short distances are better than those of
CSA and TripBased. However, this changes for d;,,x values greater than 23km where CSA
delivers the fastest (almost constant) runtimes. A mixed approach could pick a graph based
algorithm for smaller radii and switch to CSA for larger radii. As the TripBased algorithm
is tailored to two optimization criteria (travel time and number of transfers), the runtimes
with three optimization criteria lack behind the other approaches.

Table 3: Runtimes for Different ov/w Distances in Milliseconds
50km 200km 900km

No Terminal Dominance 2236 4800 5308

Worst Bound 2234 4762 5263
Concurrent 1544 3573 4876
CSA 1778 1697 1656
CSA SIMD 952 908 853
TripBased 878 816 730

Distance Analysis In Table 7.3 we see that the runtimes of the CSA and TripBased ap-
proaches are insensitive to changing distances between v and w. All runtimes of graph
based approaches grow with larger distances. Note that for short distances, the average run-
times of the Concurrent approach are lower than those of the basic CSA approach. This is
not the case anymore for higher distances.

7.4 Price Optimization

Table 4: base scenario, no price vs. simple price vs. regional price

no price simple price regional price

No Terminal Dominance 4800 19505 17492
Worst Bound 4762 19249 17316
Concurrent 3573 17718 15141
CSA 1697 18314 23245
TripBased 816 40670 39542

In this section, we analyze the impact price optimization has on the runtimes of the
different approaches. We evaluated both public transport price models introduced in Section
6: one is based only on distance and vehicle class (called “simple” in this section), the other
model adds a special regional ticket with a flat price (called “regional price”). The changed
route definition (described in Section 6) leads to 0.61% more routes. As we can see in
Table 4, this additional search criterion increases the runtimes of all algorithms between 4x
and 50x compared to the two criteria implementations (regardless of the concrete pricing
model).

Since the price optimizing implementation of TripBased disabled most of the speedup
it gained through the preprocessing (transfers reduction), it switched from being the fastest
implementation to being the slowest implementation. Note that while Worst Bound and
Concurrent could gain more than 10% speedup through the regional price model, CSA was
slowed down by it (by more than 25%).

8 Conclusion

We presented several novel approaches to compute Pareto optimal solutions to the 2-way
park and ride roundtrip problem. In addition to two criteria optimization (travel time and

number of transfers), we introduce variants of the approaches which additionally optimize
the journey price. Since many journeys follow this pattern (e.g. for commuters), the de-
veloped algorithms are useful in practice. The approaches are based on state-of-the art
algorithms for public transport routing such as TD (Disser et al., 2008), CSA (Dibbelt et al.,
2013) and TripBased routing (Witt, 2015). Our evaluation on a dataset covering all of Ger-
many shows that the approaches offer query runtimes below 2 seconds which makes them
suitable for use in online or mobile app information systems.

References

Baumann, D., Torday, A., and Dumont, A.-G. (2004). The importance of computing inter-
modal roundtrips in multimodal guidance systems. In Proceedings of the 4th STRC Swiss
Transport Research Conference, number LAVOC-CONF-2008-029.

Bousquet, A., Constans, S., and El Faouzi, N.-E. (2009). On the adaptation of a label-setting
shortest path algorithm for one-way and two-way routing in multimodal urban transport
networks. In International Network Optimization Conference.

Delling, D., Dibbelt, J., Pajor, T., Wagner, D., and Werneck, R. F. (2013). Computing
multimodal journeys in practice. In Proceedings of the 12th International Symposium on
Experimental Algorithms (SEA’13), volume 7933 of Lecture Notes in Computer Science,
pages 260-271. Springer.

Delling, D., Pajor, T., and Wagner, D. (2009). Accelerating multi-modal route planning by
access-nodes. In European Symposium on Algorithms, pages 587-598. Springer.

Delling, D., Pajor, T., and Werneck, R. F. (2012). Round-based public transit routing. In
2012 Proceedings of the Fourteenth Workshop on Algorithm Engineering and Experi-
ments (ALENEX), pages 130-140. STAM.

Dibbelt, J., Pajor, T., Strasser, B., and Wagner, D. (2013). Intriguingly simple and fast
transit routing. In International Symposium on Experimental Algorithms, pages 43-54.
Springer.

Disser, Y., Miiller-Hannemann, M., and Schnee, M. (2008). Multi-criteria shortest paths in
time-dependent train networks. In International Workshop on Experimental and Efficient
Algorithms, pages 347-361. Springer.

Huguet, M.-J., Kirchler, D., Parent, P., and Calvo, R. W. (2013). Efficient algorithms for
the 2-way multi modal shortest path problem. Electronic Notes in Discrete Mathematics,
41:431-437.

Luxen, D. and Vetter, C. (2011). Real-time routing with openstreetmap data. In Proceed-
ings of the 19th ACM SIGSPATIAL International Conference on Advances in Geographic
Information Systems, GIS ’11, pages 513-516, New York, NY, USA. ACM.

Spinatelli, S. (2015). Minimal effective time two-way park and ride problem. Master’s
thesis.

Witt, S. (2015). Trip-based public transit routing. In Algorithms-ESA 2015, pages 1025—
1036. Springer.

A Changes to the Time Dependent Graph Model by Disser et al. (2008)
to Support Latest Departure Queries

Figure 2: Changes to the Time Dependent Graph Model to Support Backward Search: The
new model (right side) fixes the inconsistency (different costs for forward and backward

search) of the old model (left side).
. route @ route . route route

uren 1o)ye
iy e

%

uren 1a)e
foot
100§ 100}
foot
100§ C) 100}

> @

. route

&

foot
1005
foot

uren 1oje
uren Ioe

pmy 1e

00§
%

As we can see in Figure 2 (edge costs are listed in Table 5), the basic time dependent
model presented in (Disser et al., 2008) is not consistent (i.e. equal graph costs for the same
journey in forward and backward search) for routes containing walks between nearby sta-
tions: in the backward search the path includes the transfer costs of So while in the forward
search no transfer costs are included (which is the desired behavior). This problem arises
because the after train edge is not symmetric for forward and backward search: a “before
train” edge could be introduced but it would enforce expanded labels to use a route edge
thereafter. A label with this restriction may not dominate other labels without this restric-
tion. This would prevent domination in many cases and therefore increase the algorithm
runtime. Instead, we changed to the graph model: in the fixed model, a walk between two
stations has the same costs in forward and backward search direction.

Table 5: Edge Type Costs for Forward and Backward Search in the Time Dependent Graph
as (Travel Time, Transfer Count) tuples: costs marked with a star “*” are not feasible at
edge expansion if the corresponding label did not use a route edge before. The symbol ©
indicates that the edge is not feasible in this search direction. icg is the transfer time for
interchanges at station s € S.

Edge Type Forward Search Backward Search
enter (0,0) (ics, 1)*
exit (ics, 1)* (0,0)

after train forward (0,1)* @

after train backward %) (0,1)*

fwd (z,y) @

bwd % (z,y)

